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A B S T R A C T

Hydrological and non-point source pollution (H/NPS) predictions in ungagged basins have become the key
problem for watershed studies, especially for those large-scale catchments. However, few studies have explored
the comprehensive impacts of rainfall data scarcity on H/NPS predictions. This study focused on: 1) the effects of
rainfall spatial scarcity (by removing 11%–67% of stations based on their locations) on the H/NPS results; and 2)
the impacts of rainfall temporal scarcity (10%–60% data scarcity in time series); and 3) the development of a
new evaluation method that incorporates information entropy. A case study was undertaken using the Soil and
Water Assessment Tool (SWAT) in a typical watershed in China. The results of this study highlighted the im-
portance of critical-site rainfall stations that often showed greater influences and cross-tributary impacts on the
H/NPS simulations. Higher missing rates above a certain threshold as well as missing locations during the wet
periods resulted in poorer simulation results. Compared to traditional indicators, information entropy could
serve as a good substitute because it reflects the distribution of spatial variability and the development of
temporal heterogeneity. This paper reports important implications for the application of Distributed
Hydrological Models and Semi-distributed Hydrological Models, as well as for the optimal design of rainfall
gauges among large basins.

1. Introduction

Non-point source (NPS) pollution has been a key threat to water
quality for decades, and hydrological and non-point source (H/NPS)
models are the main tools used to quantify NPS pollution (Andréassian
et al., 2001; Bera and Borah, 2003; Chaubey et al., 1999; Drecht et al.,
2003). Typically, H/NPS models can be divided into Lumped Hydro-
logic Models (LHMs), Distributed Hydrological Models (DHMs), and
Semi-distributed Hydrological Model (SDHMs). The LHMs regard the
watershed as a whole object and cannot reflect the spatial heterogeneity
of the actual process inside the watershed (Hrachowitz and Clark,
2017). Conversely, DHMs/SDHMs divide watersheds into smaller spa-
tial units, while pollutants are calculated from each separate unit and
are then summed at the watershed outlet. As one special kind of DHMs,
the SDHMs divided the entire basin into sub-watersheds first and then
into a number of hydrological response units (HRUs) or other compu-
tational units depending on slope, soil type and land use instead of
rectangular grids (with uniform size) (Hrachowitz et al., 2016; Viviroli

et al., 2009). In this sense, spatial variations in climate, underlying
surfaces and related hydrological elements could be considered, and
spatial data with higher accuracy that are typically derived via remote
sensing (RS) and geographic information system (GIS) technologies are
required (Bieger et al., 2014; Wang et al., 2016). The commonly used
DHMs/SDHMs include the Soil and Water Assessment Tool (SWAT)
model, the Institute of Hydrology Distributed Model (IHDM) and
TOPMODEL. Among these models, the SWAT model has become one of
the most widely used tools in describing temporal and spatial variations
in H/NPS cycles, especially for large-scale watersheds due to their
greater heterogeneities (Amatya et al., 2011).

Rainfall data are regarded as the most important inputs for DHMs/
SDHMs because they act as the driving force of runoff generation and
pollutant transportation (Lobligeois et al., 2014; Kashani et al., 2016;
Sun et al., 2017). Typically, rainfall data could be obtained using both
rainfall station and radar product (Kashani et al., 2016; Pereiracardenal
et al., 2011). The application of the radar product has become more
widespread as radar technique can reflect the spatial and temporal
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rainfall variability, especially for those remote regions (Biggs and
Atkinson, 2015). However, the radar rainfall product is sometime
questioned as its resolutions are generally based on quantitative rainfall
estimates (QPEs) from weather radar networks (Harrison et al., 2009).
Several major disadvantages of QPEs, such as low spatial resolution,
low level forecast for torrential rain and rough prediction of spatial-
temporal structure of heavy rainfall, make the radar data cannot meet
the requirements of H/NPS models (Cluckie et al., 2004). Thus, there is
a growing need for combined (synergic) use of radar measurements
along with the rainfall stations, and the rain gauge is still the funda-
mental source used by DHMs/SDHMs to determine rainfall variability.

Previous studies have indicated that rainfall has irregular changes
due to the varying natural conditions and shows strong spatial-temporal
heterogeneities among large-scale watersheds, which would impact si-
mulated results of the DHMs/SDHMs (Bardossy and Plate, 1992; Shen
et al., 2012). Long time series of rainfall data is often required for
comprehensive H/NPS evaluations by covering high flow, normal flow
and low flow periods to the greatest extent (Kuangyao et al., 2000;
Troin et al., 2012). However, automatic weather stations are suscep-
tible because certain time series may be lost in part due to direct and
indirect damage caused by lightning electromagnetic pulses. Electro-
magnetic interference and human operational errors are also destruc-
tive factors for automatic stations and can result in random and con-
tinuous absences of rainfall data. As a result, damage to automatic
stations and other equipment errors due to various human and natural
factors can cause losses in rainfall data series (Shen et al., 2015a;
Wambura et al., 2017). On the other hand, previous study has indicated
spatial rainfall variability is an important source of NPS simulation
uncertainty; thus, users must focus on the optimal design of rainfall
stations (Shen et al., 2012). However, accurate descriptions of spatial
rainfall variability cannot be obtained due to the paucity of existing
observation sites, which is caused by economic and technique condi-
tions (i.e., terrain). The spatial and temporal resolutions of rainfall data
are constrained and interrelated and will affect the quantification of H/
NPS (Meusburger et al., 2012; Michaelides et al., 2009). Thus, rainfall
data scarcity indeed exists and has become the key barrier to H/NPS
prediction.

H/NPS predictions in ungauged basins (PUB) have become a hot
topic for hydrological researchers because data scarcity is still a
worldwide problem. The International Association of Hydrological
Sciences (IAHS) began the PUB programme as its first key research
programme in the 21st century, which is called as ‘PUB, 2003–2012:
Shaping an exciting future for the hydrological sciences.’ (Hrachowitz
et al., 2013). For those DHMs/SDHMs, scarce scenarios of rainfall data
could be divided into two types: spatial series and time series. Satellite
remote sensing play an important role in the PUB (Lakshmi, 2004), but
it cannot solve the problem of high spatial resolution and frequent time
duplication (Lakshmi, 2016). Studies have also focused on the effect of
different spatial interpolation methods and their combinations on
rainfall estimation during different rainfall periods (Ali et al., 2005;
Cheng et al., 2017; Swain and Patra, 2017). Although these studies have
shown that spatial rainfall variability could be obtained by inter-
polating rainfall data of each station by the methods such as Thiessen
polygons, average method and centroid method (Cho et al., 2009),
there are few studies focused on their performances during data scarcity
scenarios specifically. Weather generators have been developed for
DHMs/SDHMs to cope with data scarcity in time series, but the impacts
of data scarcity scenarios on their interpolation abilities are not clear
yet (Chen et al., 2017a; Ruan et al., 2016). In that regard, quantifying
the impacts of the temporal and spatial scarcity of rainfall data is in-
deed crucial because those data provide the basic inputs for H/NPS
models.

Therefore, we focused on the influences of rainfall data scarcity on
total phosphorus (TP) prediction in a NPS-dominant catchment by
running and comparing different rainfall scarcity scenarios. The fol-
lowing tasks have been performed by: 1) quantifying the effects of

rainfall spatial scarcity (station number and location) on H/TP simu-
lations, and 2) exploring the impacts of rainfall temporal scarcity (data
scarcity in time series) on H/TP predictions, and 3) developing the
information entropy as a new method to replace traditional indicators
for data scarcity evaluation. The study is carried out for Daning wa-
tershed, China.

2. Methods and materials

2.1. Study area description and data collection

2.1.1. Study area description
The Daning River watershed is located in Wushan county and Wuxi

county, the Municipality of Chongqing, China. As an important tribu-
tary in the Three Gorges Reservoir area, the drainage area of the Daning
River watershed is approximately 2422 km2 and consists of four major
tributaries, including the Xixi River, the Houxi River, the Boyang River
and the Dongxi River. The mean rainfall is 1030–1950mm per year and
the annual temperature of the watershed is approximately 18.4 °C. The
elevation of the Daning River watershed ranges from 200m to 2605m,
while the land use types in this area are primarily comprised of forest
lands (61.85%), croplands (24.90%) and grasslands (12.48%). This area
also consists of seven major soil types: yellow soils (46.05%), yellow-
brown soils (25.79%), limestone soils (18.19%), brown soils (6.28%),
purple soils (1.98%), paddy soil (1.52%) and alluvial soils (less than
0.2%). The location of the watershed in the Three Gorges Reservoir area
and other information are shown in Fig. 1. Based on historical record,
the Daning River suffers serious NPS pollution, and phosphorus (P) is
the limiting nutrient causing eutrophication in the Three Gorges Re-
servoir Region (Shen et al., 2012, 2015b). In this area, excessive use of
phosphate fertilizer are used on slope cropland and the rainfall would
cause P being carrying into the receiving body of water through rainfall
erosion and runoff transport from non-specific sites in form of NPS
pollution. Thus, TP was selected as a representative of NPS pollutants
and water quality in this region.

2.1.2. Data collection
For a comprehensive evaluation, detailed data that are available in

this region are collected and compiled as follows:

• Daily rainfall data at nine rainfall stations inside the watershed and
four stations at sites approximately 30 km outside the watershed
boundary from 1998 to 2008 were obtained from the Meteorological
Bureau of Wuxi County and China National Meteorological
Administration.

• Other meteorological data from 2000 to 2008, such as daily max-
imum and minimum air temperature, relative humidity, wind speed
and sunlight radiation, were collected at the Meteorological Bureau
of Wuxi County.

• The Digital Elevation Model (DEM), which had a resolution of
1:250,000, was digitized from raw data provided by the National
Fundamental Geographic Information Center of China.

• The land use map, which had a resolution of 1:100,000, was ob-
tained from the Resources and Environment science data Center of
the Chinese Sciences Academy.

• The soil type map, which had a resolution of 1:50,000, was obtained
from the Agricultural Science Committee of Wuxi city. The soil
physical properties, including soil density, saturated and un-
saturated soil hydraulic conductivity, and field capacity, were ac-
quired from the Institute of Soil Science in Nanjing. The soil che-
mical properties were obtained from the Soil Database of China.

• The crop management measures were obtained from field in-
vestigations with local farmers.

• The measured daily flow data and monthly water quality data are
mainly obtained from the Yangtze River Basin Water Conservancy
Commission and the Wuxi County Environmental Protection
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Bureau.

2.2. Setup of the SWAT model

2.2.1. Model description
As a physical-based and semi-distributed model, the SWAT is used

for the H/NPS prediction in this study. The SWAT represents spatial
heterogeneities of land covers, soil types and management practices and
is therefore suitable for large-scale and complex watershed studies
(Douglas-Mankin et al., 2010). The Soil Conservation Service (SCS)
method (1972) and Green & Ampt infiltration methods (1911) are the
two alternative methods for surface runoff estimation, while the
Penman-Monteith, Priestley-Taylor and Hargreaves methods are used
for the evapotranspiration estimation. The simulation of subsurface
flow reference from a kinematic storage method, and the routing
channel water is simulated by the Muskingum method. The Modified
Universal Soil Loss Equation (MUSLE) is incorporated to simulate soil
erosion and estimate sediment yield.

The SWAT can monitor organic P, inorganic P and soluble P and
simulates the P cycle in the water stream. Specifically, the solubility of
P is limited in most environments and this property of P makes it ac-
cumulate near the soil surface and migrate easily with surface runoff
(Heathwaite and Dils, 2000; Smil, 2000; Sharpley et al., 2001). More-
over, the SWAT can simulate six P pools in the soil, including three
inorganic and three organic forms, such as insoluble forms of mineral P
and P in the soil solution etc.

= ×P C Q
A

ε0.001 · ·surf orgP
sed

hru
P sed: (1)

where Psurf is the amount of organic P in surface runoff, and CorgP is the
concentration of organic P in the top 10mm of soil, and εP:sed is the P
enrichment ratio, and Ahru is the area of the HRU, and Qsed is the se-
diment yield on a given day.

=Q Q q A K C P L F11.8( · · ) · · · · ·sed surf peak hru ulse ulse ulse ulse CFRG
0.56

(2)

where Qsed is the sediment yield on a given day; Qsurf is the surface
runoff volume; qpeak is the peak runoff rate; Ahru is the area of the HRU;
Kusle, Cusle, Pusle and Lusle is the USLE soil erodibility factor, cover and
management factor, topographic factor; and coarse fragment factor,
respectively.

2.2.2. Rainfall module of the SWAT
To supplement incomplete meteorological data in temporal series,

the weather generator is incorporated as a module of the SWAT
(Hartkamp et al., 2003; Wilks, 2009). The weather generator could be
used to interpolate the scarce data in temporal series, and six meteor-
ological variables are interpolated from the known high and low values,
including rainfall, highest temperature, lowest temperature, daily
average relative humidity, daily radiation and daily average wind speed
(Kilsby et al., 2007). The daily rainfall data are simulated using a
Markov Chain - skewed distribution model (Richardson, 1981). Ac-
cording to the skewed distribution function of the SWAT model, the
formula for calculating the rainfall in rainy days is:

= +
⎡⎣

− + ⎤⎦
−( )( )

R μ σ
SND

g
2

1 1
day mon mon

day
g g

mon

6 6

3
mon mon

(3)

where Rday is the one-day rainfall, μmon is the average daily rainfall in
one month, σmon is the standard deviation of the average daily rainfall
in one month, SNDday is the standard normal deviation of the calculated
one-day, and gmon is the skewness coefficient of the average daily
rainfall in one month.

The standard normal deviation for one day is

= −SND rnd rndcos(6.283 ) 2ln( )day 2 1 (4)

where rnd1 and rnd2 are random numbers between 0 and 1.0.
To capture the spatial rainfall variability, Thiessen polygons are

used for the SWAT simulation in the large watershed and the SWAT also
uses elevation bands to account for orographic effects on rainfall and
temperature. The Thiessen polygons depend on the overall average or

Fig. 1. Location of the Wuxi section in the Daning River watershed.
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data near the missing data and the elevation bands are used in con-
junction with other methods to calculate rainfall and simulate runoff in
the mountain location (Fontaine et al., 2002; Zhang et al., 2008).

2.2.3. Model setup
Using the DEM, the Daning River watershed was divided into 22

sub-watersheds based on a threshold of the critical source area of
5000 ha. The sub-watersheds were then divided into HRUs according to
the different underlying surface features, including land use, soil type
and slope. The Sequential Uncertainty Fitting Version-2 (SUFI-2) of the
SWAT Calibration and uncertainty programme was used for calibration
and validation (Abbaspour et al., 2007). According to the data ob-
tained, the calibration and verification in this paper are based on the
monthly time step. The hydrological and water quality data from 2004
to 2008 are selected as calibration periods because of its completeness.
Hydrological and water quality data from 2000 to 2003 are selected as
validation periods. A one-year warm-up period (1999) was specified for
both the calibration and validation periods. Traditional methods were
used for model evaluation (Merz and Blöschl, 2004), including the
correlation coefficient R2 (Legates and McCabe, 1999) and the Nash-
Sutcliffe coefficient (Ens) (Nash and Sutcliffe, 1970).

The correlation coefficient R2
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where Oi is the ith observed value, Pi is the ith simulated value, is the
average of the observed values, n is the number of observed values (or
simulated values). When the simulated values are equal to the mea-
sured values, then R2= 1. When R2 < 1, the smaller the value are, the
lower the degree of data fit.

The Nash-Sutcliffe coefficient (Ens)
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(6)

when the simulated values are equal to the measured values, Ens= 1
then. When Ens < 1, the smaller the value of a reflects the lower de-
gree of data coincidence. When Ens is less than 0, it indicates that the
model performance is poor.

In sum, the R2 values were quantified as 0.79 and 0.95 for the si-
mulated flows and TP, respectively, and the Ens values were 0.74 and
0.93, respectively, indicating that the SWAT model performed well in
this study area. For more information about this process, please see our
previous studies (Chen et al., 2014; Gong et al., 2012).

2.3. Design of the rainfall data scarcity

2.3.1. Spatial data scarcity
In this study, both spatial and temporal data scarcity are designed

and the details of data scarcity scenario could be found in Table 1. In
the study of spatial data scarcity, the daily rainfall data from 2000 to
2008 were obtained from 9 stations, which are the Xining, Changan,
Xujiaba, Gaolou, Zhongliang, Jianlou, Wangu, Tangfang and Wuxi
rainfall station (Fig. 1). The spatial rainfall variation was then gener-
ated for the 22 sub-watersheds by regarding each station as a single unit
and interpolating them using the Thiessen polygon method. Therefore,
the baseline scenario is setup by using all complete datasets and the
spatial data scarcity is then designed by reducing the number of rainfall
stations and their spatial locations. For data-scarce scenarios, the
number of rainfall stations is often limited so the impacts of station
number on NPS-TP load prediction was compared firstly.

To make more comprehensive results, information entropy was used
to evaluate the spatial model performances in addition to Ens. Entropy
theory, which was introduced by Shannon in the 1940s, is widely used
in the fields of hydrology and the environment (Bian and Feng, 2010;

Khosravi et al., 2016). Shannon notes that there is redundancy in any
information, and the size of the redundancy is related to the probability
or uncertainty of each symbol (number, letter, or word) in the message.
The information entropy is the amount of information which is the
average amount of information after excluding redundancy (Ilunga,
2017). Some studies have shown that the information entropy method
has good results with less computational complexity to compute the
fuzzy formal concepts (Shemshadi et al., 2011; Singh et al., 2014). In
this study, entropy theory is used in the following forms to solve a
variety of problems in terms of H/NPS model evaluation (Chen et al.,
2017b).

∑= −
=

H x P x logP x( ) ( ) ( )spatial j
i

n

ij ij
1 (7)

∑= −
=

H x P x logP x( ) ( ) ( )temporal i
j

m

ij ij
1 (8)

where Hspatial(xj) is the information entropy of each sub-watershed in
the whole simulation period, and Htemporal(xi) is the information entropy
of the whole watershed in monthly time step, xij is sub-watershed j for
month ith, and P(xij) is the ratio of the simulated flow or pollutants data
at xij to the total output of the entire basin in monthly time step, and n is
the number of months during simulations, and m is the number of sub-
watersheds in the whole watershed.

Then indicator of ΔH is used as means that deviation in entropy
values between baseline scenario and data scarcity scenario. In this
sense, the impacts of each single rainfall station on H/NPS prediction
could be reflected by the information theory. Then importance of each
paired stations on the model simulation results could be ranked by ΔH
value during each scenario. This study employed six scenarios by gra-
dually decreasing the total entropy of the rainfall stations (that is,
station numbers) and more details about six scenarios are shown in
Table 1. The scenarios included a complete scenario with 9 rainfall
stations (named S0), an 8-gauge scenario that lacked the Xining station
(named S1), and a 7-gauge scenario that lacked the Changan and Xu-
jiaba stations (named S2). Furthermore, there were 5-gauge, 4-gauge
and 3-gauge scenarios, wherein the number of rainfall stations was
gradually reduced (named S3, S4 and S5 respectively).

By comparing the simulated values, those important stations, which
showed greater influences on the H/NPS simulations, are defined as the
critical-site rainfall stations. Besides, the importance of the rainfall
stations in a watershed is related to the amount of information con-
tained in the river basin (the basin area is controlled by a single rainfall
station) and the locations of the rainfall stations. Specifically, upstream
P would transmit to its downstream reaches and affect a series of
physicochemical processes of P in the downstream channel. Thus, the
impacts of scarcity data location at the upper reaches was further
analysed based on a concept of influence sphere by comparing ΔH va-
lues of the simulated H/TP data of several related downstream sub-
watersheds. Therefore, this paper uses tributaries as confluence units to
study the actual influence of every rainfall station on a series of
downstream reaches and establish the importance of each station lo-
cation by quantifying their downstream ΔH values. To avoid the in-
fluence of time series scarcity on the simulation results, seven rainfall
stations (Gaolou, Jianlou, Tangfang, Wangu, Wuxi, Xining and
Zhongliang) that had relatively complete data were chosen to analyse
the influence sphere of the each station location. These seven scenarios
are named S6–S12 and more details about scenarios settings can be
found in Table 1.

2.3.2. Temporal series scarcity
To reflect the actual data scarcity in the Daning River watershed, an

additional four stations in addition to the above nine stations used for
spatial data scarcity analysis were used to accurately analyse the actual
scarcity situation. Daily rainfall data from 13 rainfall stations on the
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Daning River from 1998 to 2008 are therefore used to represent the
actual data scarcity in time series. There were no daily rainfall data
from 1998 to 2000 because the Wangu and Zhongliang stations were
established after 2000. The Longmen, Changan and Shuangyang sta-
tions did not provide continuous rainfall data in 2003 and 2008 due to a
state of disrepair. The Gaolou station has continuous time series data
scarcity in 2003 and short time series scarcity in 2008. Short durations
of daily rainfall were missing from the Wangu and Xujiaba stations in
2007. The Tangfang and Jianlou stations yielded scarce data over 2003.
In summary, the rainfall data for the Daning River is available at
random times and is for the most part discontinuous and that some
short time series are missing. The actual situation of scarce rainfall data
is shown in Fig. 2.

To avoid spatial scarcity mentioned above, the Xining station, which
had complete data series, was used for experiment design of temporal
scarcity condition. In this study, different scarce data scenarios were
designed according to the actual situation of the watershed. To quantify
the impacts of data scarcity, the scarce data scenarios were divided into
different missing rates and different missing positions (Lopez and
Seibert, 2016) and the missing data distributions with different missing
rates and different missing positions are shown in Fig. 2(a). The dif-
ferent missing scenarios had random and continuous scarce data in
time, with missing short time series. For this paper, the six missing rates
ranged from 10% to 60%. The settings of six missing rates scarcity
scenario named S13 to S18 are shown in Fig. 2(b) and Table 1. The
minimum missing rate of 10% was used for the end of 2004, the be-
ginning of 2005 and for most of 2007. A maximum missing rate of 60%
was utilized for the beginning of 2000, the ends of 2001 and 2008, for
some parts of 2004 and 2005, and for the entireties of 2002, 2003, 2006
and 2007. As the six missing rates increased, the scarce time periods for
the remaining missing rates increased. In addition, Fig. 2(c) shows five
different missing positions (patterns 1–5). Among them, patterns 1, 4
and 5 represent the data scarcity of 2000, 2005 and 2007 which are the
high flow years, respectively. Pattern 2 represents the data scarcity of
2002 year which is the normal flow year. Pattern 3 was designed to
represent the data scarcity of 2004 year which is the low flow year.

3. Results

3.1. Impacts of spatial data scarcity

3.1.1. Impacts of station number and location
The H/TP evaluations results during data spatial scarcity conditions

are shown in Table 2. Specifically, the information entropy of the
Gaolou, Zhongliang, Jianlou, Xining, Wuxi, Wangu, Tangfang, Xujiaba
and Changan station is quantified as 0.2002, 0.0906, 0.2756, 0.3638,
0.2410, 0.0757, 0.1656, 0.3111 and 0.1909. And information entropy
for S0 to S5 was 1.9145, 1.5507, 1.4125, 1.2462, 1.0460 and 0.8804 in
turn, while the Ens of flow and TP were reduced from 0.7425 to 0.6023
and from 0.9299 to 0.742, respectively. This indicates that the model
performance gradually deteriorated if spatial rainfall scarcity exists. In
compare, the 8-gauge scenario lacked the main site of the Xining sta-
tion, which reduced the total set of information by approximately 25%,
indicating an obvious decrease of model performance during the 8-
gauge scenario. However, the simulation results from the several sce-
narios that retained the rainfall station with the highest information
entropy were satisfactory. The resulting effects using the S1 and S2
scenarios were identical because although the Changan and Xujiaba
stations were removed during the S2 scenario, these two stations were
not taken into account due to the interpolation using the Thiessen
polygons in SWAT. The ΔHTemporal values for the simulated H/TP are
shown in Fig. 3. It could be observed that the fluctuations in ΔHtemporal

were relatively stable during different scenarios by mainly con-
centrating in the average value and its vicinity. Compare to Ens values
that reflected model performance at the catchment outlet, the ΔHtemporal

could better reflect the simulation results and their responses to rainfall
data scarcity. As the information entropy decreased from 1.2462 to
0.8804, the maximum and minimum values of the fluctuations in-
creased from 0.41 to 0.86 and from 0.11 to 0.52, respectively, which
reflected the gradual increase in fluctuation range of ΔHtemporal as the
total information entropy decreased. In addition, the maximum and
minimum fluctuations during S1 scenario, which did not contain large
information entropy, were 0.89 and 0.33, respectively. In other words,

Table 1
The experimental design of rainfall data scarcity scenario.

Category Name Detailed description

Baseline S0 No scarce data scenarios (no lack of time series and also retained a
complete nine stations)

Spatial data scarcity Decreasing number of rainfall stations S1 An 8-gauge scenario that lacked the Xining station
S2 A 7-gauge scenario that lacked the Changan and Xujiaba stations
S3 A 5-gauge scenario that lacked the Changan, Xujiaba, Wangu and

Zhongliang stations
S4 A 4-gauge scenario that lacked the Changan, Xujiaba, Wangu,

Zhongliang and Gaolou stations
S5 A 3-gauge scenario that lacked the Changan, Xujiaba, Wangu,

Zhongliang, Gaolou and Tangfang stations
Effect of the location of a removed rainfall stations S6 A scenario with 6 stations that lacked the Gaolou station

S7 A scenario with 6 stations that lacked the Jianlou station
S8 A scenario with 6 stations that lacked the Tangfang station
S9 A scenario with 6 stations that lacked the Wangu station
S10 A scenario with 6 stations that lacked the Wuxi station
S11 A scenario with 6 stations that lacked the Xining station
S12 A scenario with 6 stations that lacked the Zhongliang station

Temporal data scarcity (in the Xining
station)

Rainfall time series degradation with increasing
missing period

S13 A scenario with 10% data scarcity
S14 A scenario with 20% data scarcity
S15 A scenario with 30% data scarcity
S16 A scenario with 40% data scarcity
S17 A scenario with 50% data scarcity
S18 A scenario with 60% data scarcity

Rainfall time series degradation with variable timing
of the missing period

S19 Pattern 1 with data scarcity in the high flow year of 2000
S20 Pattern 2 with data scarcity in the normal flow year of 2002
S21 Pattern 3 with data scarcity in the low flow year of 2004
S22 Pattern 4 with data scarcity in the high flow year of 2005
S23 Pattern 5 with data scarcity in the high flow year of 2007
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the simulated H/TP outputs changed dramatically from the perspective
of the whole watershed.

The ΔHspatial values for each sub-watershed are shown in Fig. 4. It
can be seen the ΔHspatial for the 7th sub-watershed and its other
downstream sub-watersheds such as 9th sub-watershed increased
during S1 scenario (scarcity of the Xining station). At the same time, as
the total information entropy decreased, the sub-watersheds with

greater ΔHspatial increased, indicating information entropy could reflect
changes in trends and processes compare to traditional evaluation
methods employing Ens and R2. In general, the absence of rainfall
stations had different impacts on the flow and TP load simulations,
while the Xining station is identified as the key rainfall station in this
region. By comparing information entropy, the lack of rainfall stations
containing critical amounts of information had a more impact on the

Fig. 2. Actual absence of rainfall data from the rainfall stations in the Daning River watershed and the daily rainfall data scarcity design for the Xining station Note:
Fig. 2(a) represents the actual data scarcity in the Daning River watershed. And the daily rainfall data were from 1998 to 2008 were collected at nine rainfall stations
inside the watershed and four gauges at sites approximately 30 km outside the watershed boundary. Fig. 2(b) represents the different scarcity rates design of daily
rainfall data from 1998 to 2008 for the Xining station. Fig. 2(c) represents the different scarcity location design of daily rainfall data from 1998 to 2008 for the Xining
station.

Table 2
Evaluation of the simulation effects for the different combinations of rainfall stations.

Evaluation indicators 9-gauge 8-gauge 5-gauge 4-gauge 3-gauge

Flow ENS 0.7425 0.5729 0.7308 0.6273 0.6023
R2 0.786 0.638 0.771 0.676 0.66
ΔH 22.5170 9.1101 16.9243 25.4811

Total phosphorus ENS 0.9299 0.6928 0.8299 0.7415 0.742
R2 0.952 0.867 0.947 0.943 0.94
ΔH 32.4108 29.6263 37.0232 47.7475
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simulation results, indicating the lack of critical sites was more im-
portant than the reduction in the total amount of information contained
in each scenario.

3.1.2. Impacts on the downstream simulations
In this section, the change of entropy information of downstream

reaches during different scenarios was further taken into account. As
mentioned above, the model performances for the S0 and S2 scenarios
were identical due to the interpolation using Thiessen polygons. Seven
stations were therefore chosen for this analysis and the ΔHspatial values
of each sub-watershed are shown in Fig. 5. It can be seen that the effects
of the different missing rainfall stations on H/TP simulations were

distinctly different. The Gaolou, Jianlou and Xining stations had large
influences on the simulated flow and there were large ΔHspatial in some
sub-watersheds. If the data of Gaolou station were missing, the vast
majority of the sub-watersheds had changes in entropy exceeding 0.6.
When the data from the Jianlou station were missing, the 12th sub-
watershed experienced a large change in entropy (exceeding 1.0). In
addition to impacts of the Wuxi and Tangfang stations, the absence of
other rainfall stations had greater impacts on the TP simulations. In
particular, if the Xining station were omitted, almost all of the sub-
watersheds experienced changes in entropy exceeding 0.2.

The attenuation of ΔHspatial in downstream processes could be used
to explain the impacts of data scarcity on the downstream simulations.

Fig. 3. ΔHtemproal for different combinations of rainfall stations. (a) Flow and (b) TP.
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Fig. 4. ΔHspatial for different combinations of rainfall stations. (a) Flow and (b) TP.
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As shown in Fig. 1, these listed stations were on the associated tribu-
taries (the Gaolou and Zhongliang stations on the Xixi River, the
Jianlou and Wanguo stations on the Houxi River, the Tangfang and
Wuxi stations on the Baiyang River, and the Xining station on the
Dongxi River). For this paper, the four major tributaries were divided
into eight small tributaries according to the different starting points.
The attenuation process of ΔH for flow and TP load in the tributary
process are shown in Fig. 6. Fig. 6(a) shows that although the trend was
consistent, the attenuation process of ΔH in the Xixi River for the
Gaolou station greatly exceeded that for the Zhongliang station. That is,
in this tributary, the Gaolou station had a greater impact on the
downstream simulations, indicating the scarcity of the Gaolou station
was more likely to cause a larger deviation from the simulation results.
Similarly, when compared with the Wangu station, the omission of the

Jianlou station had a greater effect on the downstream simulated flows.
The attenuation of the ΔH for the Tangfang and Wuxi stations were

consistent but as the Wuxi station is closer to the export of the wa-
tershed, the impact of Wuxi station was still large on the end of the
tributary. Compared with that for flow, the attenuation process of ΔH
for TP was relatively large, but the overall trend remained consistent.
The Gaolou, Jianlou, Wuxi and Xining stations produced relatively
large impacts on the simulations of each tributary due to the effects of
information transmission across basins and because there are no cor-
responding rainfall stations in the sub-watershed near the Gaolou,
Jianlou and Xining stations. In addition, SWAT is based on the rainfall
interpolation method using Thiessen polygons so the rainfall data from
those sites might be interpolated to other tributaries, showing the cross-
tributary impacts.

In our previous study (Shen et al., 2012), it was clearly noted that
the application of Thiessen polygons would cause uncertainties in
rainfall spatial heterogeneities. Coincidentally, Dile and Srinivasan,
2015 and Yu et al., 2011 also gave the same conclusions. This was
confirmed in more detail in this paper by considering the downstream
and cross-tributary impacts. Thus, critical rainfall locations could be
found by quantifying their impacts on the up-downstream simulations.
Scarce data from key rainfall stations will cause simulation results to
widely deviate from the actual situation.

3.2. Impacts of temporal data scarcity

3.2.1. Impacts of missing rates
In this section, the Xining station is used to quantify the impacts of

different missing rates and different location scarcities due to its in-
formation entropy and impacts on downstream simulations. As shown
in Table 3, the Ens results showed a downward trend as the missing rate
increased. For missing rates exceeding 20%, the Ens were less than 0.6
and decreased continuously. Under the different missing rates, the TP
simulation results were consistent with the flow results. For missing
rates less than 60%, the Ens exceeded 0.8, indicating satisfactory TP
simulations under these missing rates. However, Ens dropped to 0.75 if
a missing rate reached 60% primarily due to the small amount of TP
monitoring data. In this sense, if 60% of the rainfall data are missing,
this would result in a poor point-to-point comparison between TP si-
mulation and measured TP as this scarcity condition is a bit large and
might cover most of the paired TP monitoring data. As a whole, these
results showed that 60% is a critical threshold. Once this missing rate is
exceeded, the simulation results will immediately become poor.

The ΔHtemporal for the different missing rates are shown in Fig. 7. It
can be seen that there were large differences in ΔHtemporal for the flows
and TP simulations in different months. In addition, ΔHtemporal increased
with increasing missing rates. This indicates that a high missing rate of
rainfall-driven data is likely to have a large effect on the H/TP simu-
lations. At the same missing rate, the ΔHtemporal for flow and TP simu-
lations were consistent with the change trend over the months, but the
ΔHtemporal in TP was larger than for flow. That is, when compared to the
flow, the simulation results of TP were more affected by the absence of
rainfall data.

When the missing rate was gradually increased, the information
entropy and Ens exhibited the same trends. It can be seen from Table 3
that when the rainfall-driven data loss rate exceeded 50%, the ΔH
tended to be flat without further change. This critical threshold is
consistent with the value mentioned above because as the missing rate
increases, the mean rainfall data gradually approach the threshold. The
weather generator also reaches its interpolation limit. At that time, the
simulation results will have larger deviations.

3.2.2. Impacts of scarcity location
As shown in Fig. 8 and Table 2, the simulation results of flow and TP

were greatly influenced by data missing positions and different location
scarcities caused large differences. Fig. 8(a) shows that the simulated

Fig. 5. ΔHspatial for scarce data from each station. (a) Flow and (b) TP.
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Fig. 6. Attenuation processes for ΔH in the upstream downstream process. (a) Flow and (b) TP. Note: The abscissa of Fig. 6 means that each tributary flows from
upstream to downstream process. The No.1 tributary flows from 1th, 4th, 5th, 6th, 9th, 13th, 19th, 20th to 22th sub-watershed. The No. 2 tributary flows from 2th,
4th, 5th, 6th, 9th, 13th, 19th, 20th to 22th sub-watershed. The No. 3 tributary flows from 3th, 5th, 6th, 9th, 13th, 19th, 20th to 22th sub-watershed. The No. 4
tributary flows from 7th, 9th, 13th, 19th, 20th to 22th sub-watershed. The No. 5 tributary flows from 12th, 11th, 8th, 13th, 19th, 20th to 22th sub-watershed. The No.
6 tributary flows from 10th, 11th, 8th, 13th, 19th, 20th to 22th sub-watershed. The No. 7 tributary flows from 14th, 15th, 18th, 20th to 22th sub-watershed. The No.
8 tributary flows from 21th, 15th, 18th, 20th to 22th sub-watershed.
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values of the missing segments in patterns 1, 4 and 5 had large devia-
tions from the measured values. It can also be seen from Table 3 that
the effects of the simulation on the flows for the three modes were
worse than those for the other modes, primarily because patterns 1, 4
and 5 corresponded to 2000, 2005 and 2007, which were high flow
years. This indicated missing data from high flow years can easily lead
to large deviations in overall rainfall averages, which can import
greater errors on data generated by the weather generator and mea-
sured rainfall data, thereby affecting overall simulation results. By
using Ens values, Fig. 8(b) shows that the TP model performance was
relatively good during different scarcity conditions. The simulated ef-
fect of the TP load for pattern 4 was significantly inferior to those for
the other missing modes, primarily due to the absence of high values of
TP data, which resulted in reduced Ens.

It can be seen from Fig. 8 that the flow and TP load simulations were
not only affected by the positions with scarce data but also experienced
certain impacts during the subsequent time period. Therefore, to in-
vestigate the effects of the SWAT model on the simulation results in the
follow-up periods, the simulation results for the missing segments were
analysed separately from that for the complete data state. The results
show that there were significant differences in the model performances
of flow for the different missing modes. The simulation results for
normal flow years and low flow years (patterns 2 and 3) were generally
better than those for the high flow years (patterns 4 and 5). The si-
mulation results of TP for the different missing modes were consistent
with those for flow rate; that is, the model performances for normal
flow years were better than for high flow years. When compared to
flow, however, the variation of the Ens for TP was greater. In addition,
different missing patterns had certain impacts on the simulations during
subsequent periods. For patterns 4 and 5, which represented data
missing scenarios in high flow years, whether for flow or TP, the model
performances of the missing segments had greater impacts on the
follow-up simulations. The changes were larger, and the levels during
normal flow and low flow years were relatively flat.

The monthly ΔHtemporal for flow and TP under different missing
positions are shown in Fig. 9. The ΔHtemporal increased if data in high
flow years were missing, and the model performance become poor,
which indicates that missing positions had greater impacts on the si-
mulation results, especially for missing positions in high flow years.
When simulating TP, as shown in Fig. 9(b), there was a significant
fluctuation in the ΔHtemporal for TP simulation after the year with
missing data. At the same time, the ΔHtemporal for TP was obviously
greater than the ΔHtemporal for flow rate, which shows that the absence
of different data affected TP more than flow.

4. Discussion

Rainfall is one of the causes of NPS pollution and is inevitable as an
important error source of H/NPS simulation (Ning et al., 2006;
Rathnayake and Tanyimboh, 2015; Schreiber and Mcdowell, 1985).
Based on the results, it could be concluded that rainfall data scarcity
had a great impact on H/NPS simulation so it is necessary to consider
the effects of data scarcity at the early stage of model setup, especially

for those DHMs/SDHMs. This paper provided some practical implica-
tions for H/NPS simulation, as well as the optimal design of rainfall
gauge. Due to limited financial and material resources, it is impossible
to set up rainfall stations at each sub-watershed to capture actual
rainfall spatial variability (Karimi-Hosseini et al., 2011; Lakshmi, 2016;
Sombroek, 2001). This paper indicated that rainfall data at key sites in
the large watershed are very important and will affect model perfor-
mances greatly when such stations were scarce. Therefore, the im-
portance of critical rainfall station is highlighted, even exceeding the
importance of the number of rainfall stations. The critical-site rainfall
stations are those stations that have the greatest impacts on the spatial
heterogeneity of rainfall (Ali et al., 2005; Cheng et al., 2017; Swain and
Patra, 2017). And it can be identified by comparing the changes of
entropy values of simulated H/NPS during different scarcity scenarios.
Besides, it should be noted that critical-site stations might be different
for flow and NPS prediction because pollutants are influenced by more
factors. For the Daning River watershed, the Xining station was iden-
tified as a key site as it is located the center of the catchment instead of
the edge part. Such sites should be more easily to be focused on as their
data might be interpolated into several sub-watersheds that were ad-
jacent to them. Moreover, from the perspective from the downstream
impacts, the rainfall station that near the catchment outlet is more
likely to become a key station and has a major impact on the end of this
tributary. Besides, the application of radar quantitative precipitation
estimation to hydrology and water quality models can be preferred to
interpolated rainfall point measurements because of the wide coverage
that radars can provide, together with a good spatio-temporal resolu-
tions so radar-rainfall measurements have been improving over the
years. In those remote regions, due to unsatisfactory spatial interpola-
tion of scarce rainfall data (Bhowmik and Costa, 2015), the use of the
multi-sources of radar data and station data is further recommended for
a more accurate description of rainfall spatial heterogeneity.

On the other hands, it can be concluded from above temporal series
analysis that: (i) certain threshold values exist for missing rates; model
performance might be stable within this threshold value by using the
weather generator but once that threshold value is reached, model
performance become worsen immediately. This indicated that small
amount of scarce data can be interpolated by the weather generator, but
the accuracy of the simulation changes rapidly when a scarcity
threshold is exceeded. In the study area, 60% is a critical value for
missing rates and data scarcity not exceed 60% of missing rate could
ensure satisfactory model performances. In reality, the scarce data are
inevitable due to a variety of human and natural factors (Wambura
et al., 2017), but determining the threshold of input data can be helpful
in clarifying the robustness of simulations and in reducing unnecessary
monitoring costs. (ii) Compared to normal flow or low flow years,
scarce rainfall data in high flow years will result in greater errors in the
simulation results. Smith et al. (2016) proposed that scarce data during
spring freshets will introduce greater uncertainty to the flow simula-
tion. Thus, simulation results during those periods can be improved by
explicitly indicating soil freezing. As for this paper, we recommend that
rainfall data integrity in high flow periods should be ensured, especially
for NPS prediction. And in actual monitoring, the monitor should try to

Table 3
Evaluation of the simulation results for the different temporal data scarcities.

No missing Different missing rates Different data location scarcity

10% 20% 30% 40% 50% 60% Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

Flow Ens 0.7425 0.6054 0.5457 0.5677 0.5366 0.5693 0.5494 0.6871 0.7287 0.7342 0.6573 0.6103
R2 0.786 0.662 0.611 0.649 0.612 0.641 0.633 0.741 0.778 0.787 0.714 0.667
ΔH 3.7115 6.0821 8.2601 11.7208 14.3642 15.508 2.0351 2.5275 1.7184 3.6907 3.9754

TP Ens 0.9299 0.8655 0.8711 0.8242 0.8615 0.8613 0.7515 0.9329 0.9137 0.9289 0.4339 0.8514
R2 0.952 0.933 0.932 0.905 0.928 0.914 0.794 0.954 0.934 0.961 0.551 0.925
ΔH 5.9542 9.2635 11.5274 16.8487 20.6244 21.3764 4.0201 4.0038 3.0790 5.7503 6.5524
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Fig. 7. The impact of different missing rates on H/NPS prediction. (a) Flow and (b) TP.
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Fig. 8. Simulation results at different scarcity locations. (a) Flow and (b) TP.
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Fig. 9. ΔHtemproal of simulation results for different scarcity locations. (a) Flow and (b) TP.
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ensure the integrity of rainfall data of the critical-site rainfall stations in
the high flow years.

Another major task of this research is to introduce the information
entropy method to evaluate the impacts of data scarcity on the H/NPS
predictions. As mentioned above, the impacts of rainfall scarcity on the
simulated H/NPS data should be considered not only at the catchment
outlet (traditional indicators) but also theirs temporal-spatial distribu-
tions among sub-watersheds through entropy values. As shown in Fig. 8
and Table 2, the Ens values and information entropy were reduced from
0.7425 to 0.6023 and from 1.9145 to 0.8804, respectively. This in-
dicated that although data scarcity might show little impact on tradi-
tional indicator, ΔH would show a more sensitive response to the
rainfall input and higher ΔH reflected more impacts of data scarcity on
simulation results. This is because the information entropy could reflect
the impacts of data scarcity on the simulated data of each sub-wa-
tershed so this indicator outperforms traditional indicators during data
scarcity scenarios. It can be seen from Fig. 9 that the total entropy for
the TP load in different missing modes was nearly twice the total en-
tropy of the flows, indicating the rainfall data scarcity would show
more impacts on NPS-TP simulation. This may be due to a variety of
factors affecting the P transport process, such as underlying surface,
altitude and aspect (Sharpley and Syers, 1979). Therefore, the use of the
combination of the information entropy method and Ens is suggested to
evaluate the H/NPS models when the data has scarcity. Besides, it
should be noted that the loss potentials of multiple pollutants are not
evenly distributed on the same spatial and temporal scales so more
studies should be conducted to provide more comprehensive conclu-
sion.

5. Conclusions

In this study, the impacts of rainfall data scarcity on H/NPS simu-
lations were quantified by running and comparing different spatial-
temporal data scarcity scenarios. The results highlighted the im-
portance of critical-site rainfall stations (Xining station in this paper) on
the H/NPS simulations, which showed influences on ΔH, and have
greater downstream and cross-tributary impacts. Certain threshold
value of data scarcity rate (60% in this paper) did exist, beyond which
the model preformation would become very poor. Compared to tradi-
tional indicators, information entropy could serve as a good substitute
for the Ens because it reflect information at the sub-watershed scale and
attention of impacts within river network. This paper provides im-
portant implications for the application of DHMs/SDHMs tools, as well
as for the optimal design of rainfall gauges, especially in large basins.

However, the results of this study should be extended to other
catchments with caution. For example, besides rainfall inputs, other
parameters like fertilizer input would influence the H/NPS simulation,
while weather generator methodology, which is used to construct some
missing data in this study, also varies from model to model. Further
studies are needed by considering the integrated impact of temporal
and spatial data scarcity. In addition, more studies should also take the
synergism of satellite remote sensing, Climate Forecast System
Reanalysis (CFSR) product and station data especially in an extreme
hydrological event.
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