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a b s t r a c t

Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and
shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used
to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining
the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based
on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model
solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life
cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting
historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area.
Based on the calculated physical and physiological characteristics of surface blooms, principal compo-
nent analysis (PCA) captured the major processes influencing surface bloom formation at different stages
(two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport
and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for
mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple
environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP),
vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT)
were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9%
of bloom formations and maintained blooms over long periods, thus demonstrating the importance of
wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies
influenced blooms at different stages. In conclusion, the approach developed here presents a promising
tool for understanding the processes of onshore/offshore algal blooms formation and subsequent
predicting.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

As the third largest freshwater eutrophic lake in China, Lake
Taihu has been subject to harmful cyanobacterial blooms (Cyano-
HABs), dominated by Microcystis spp. (Paerl and Huisman, 2008).
Because of excessive nutrient inputs to the lake, these blooms
present a serious threat to drinking water supplies, aquatic life,
human health, and the ecological sustainability of the freshwater
ecosystem of this region. A central question facing water re-
searchers and managers is how to predict the spatial-temporal
g).
pattern of surface blooms in large shallow lakes. This question is
of immense importance for estimating the risk of cyanobacterial
occurrence in advance. Understanding the growth and transport
process of Microcystis is essential for resolving this question
(Wynne et al., 2013). Previous studies have identified a host of
physiological processes underlying the excessive in situ prolifera-
tion of Microcystis colonies, particularly from the perspective of
biological responses (such as nutrient-induced over-enrichment
(Reynolds, 2006; Paerl et al., 2011b), photosynthesis (Takamura
et al., 1985), colony formation avoiding predation (Reynolds et al.,
1981), and buoyancy-controlling strategies (ISP) (Reynolds, 1973;
Reynolds et al., 1987; Ndong et al., 2017).

In deep lakes, the response to buoyancy changes (would be on
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Fig. 1. Maps showing the location of the study area and monitoring stations. The main
polluted inflows and outflows have been drawn. The red circle represents the sampling
area (MLB) where the biomass of Microcystis was monitored. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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the order of days) and stationary behavior reduce the chance to
accumulation on water surface (Chien et al., 2013; Medrano et al.,
2013). Therefore, the occurrence of surface bloom in shallow lake
is more sensitive to physical transport process (within minute
scale) than that in deep lake (Wallace et al., 2000; Duan et al., 2009;
Wang et al., 2017). The physical transport processes of colony
comprise of vertical turbulence-inducedmixing velocity (VMT) and
horizontal drift speed (HDT). Wu et al. (2015) and Cao et al. (2006)
emphasized the strong relationship between surface bloom for-
mation and wind-induced turbulence in Lake Taihu (China). The
impacts of wind-induced surface drift and wave-induced Stokes
drift on offshore/onshore bloom migration have been increasingly
acknowledged (Ishikawa et al., 2002; Wu et al., 2010; Deng et al.,
2016; Hua et al., 2016). In addition, buoyancy control and vertical
transport processes have been also observed to interact (Wallace
and Hamilton, 1999; Wallace et al., 2000). Recently, differences in
morphology, as a result of different growth environments, which
influence colony size, have been shown to contribute to diverse
transport patterns (Deng et al., 2016). Therefore, both physiological
process (especially ISP) and physical processes (VMT and HDT)
should be evaluated to understand the timing and intensity of
specific surface blooms (Glibert et al., 2010; Otten et al., 2012).
However, few studies and technologies have integrated these
nonlinear complex and interactive processes, or compared their
respective contributions in shallow lakes.

Using field data to demonstrate the spatial-temporal distribu-
tion of surface cyanobacterial blooms presents a considerable
challenge. Furthermore, linking this information to bio-physical
changes is even more problematic. Recently, satellite imagery
(such as MODIS data) has been used to detect the spatiotemporal
patterns of surface bloom areas over large domains, relating these
patterns to changing environmental conditions (Wynne et al., 2011;
Qin et al., 2015). However, the information acquired from satellite
imagery might obscure Microcystis adaptive migratory movement
patterns (buoyancy-controlling strategy), as such patterns are three
dimensional, induced by water current and/or wind, especially in
shallow lakes. Different responses of growth to variation in light,
temperature, and nutrient levels across seasons must also be
considered. Thus, numerical techniques might be required to
complement satellite data.

Agent-based models (ABM) have beenwidely applied to capture
2-D and 3-D transport trajectories of cyanobacteria over periods of
several days (Dippner et al., 2011; Wynne et al. 2011, 2013;
Henrichs et al., 2015). Most ABM models are forced with the
physical environment from an Eulerian model, allowing the agents
(each representing certain cyanobacteria) to “drift around”, thus
experiencing different biological processes with water quality
variables. In ABM models, the system properties are said to
“emerge” from the properties of the individual particles (Grimm
and Railsback, 2005). Both individual physiological properties and
physical drivers could be easily integrated into agent-based equa-
tions to describe complex ecological processes, as described in
Hellweger et al. (2008) and Glibert et al. (2010). However, the
calibration of phytoplankton parameters in ABM is difficult because
of the enormous computation requirements. Therefore, the pre-
liminary calibrated Euler-based physical-biological model (which
describes the concentration of the distribution of cumulative in-
dividuals) should be integrated into ABM to obtain associated
physiological parameters of cyanobacteria and water quality vari-
ables. The increasingly complex Euler-based ecological models help
us to capture the response of ecological systems to the external
environment (Butensch€on et al., 2016; Rolighed et al., 2016). The
Fortran-based Framework for Aquatic Biogeochemical Models
(FABM) was developed by Bruggeman and Bolding (2014), in which
the biochemical model was arbitrarily connected to a physical
model. Here, we combined a self-contained complex biological
model (called GEM) to a well-known hydrodynamic model
(FVCOM) by FABM. This Euler-based model was used to calibrate
the physiological parameters for phytoplankton.

In Lake Taihu in China, algae begin to emerge from the sediment
and aggregate to form the early blooming stage (AprileJune) before
mass propagation during the mature blooming stage (JulyeOc-
tober), when the water temperature is persistently high (Kong and
Fao, 2005; Cao and Yang, 2010). Therefore, we assumed that the
blooms detected at different stages have specific physiological and
physical characteristics. In the present study, we improved the
original agent-based model of Wang et al. (2017b), and tested our
hypothesis. Furthermore, we evaluated the performance of the
coupled Euler-Lagrangian model using field investigated data and
MODIS data to demonstrate our ability to reproduce the spatial
patterns of algal blooms and characterize the physiological and
physical variables of blooms. We also used the coupled model to
simulate several scenarios and identify the individual contributions
of physiological processes and physical processes of Microcystis to
surface bloom in the shallow lake system. Our results are expected
to provide new insights on the parameters that drive algal blooms,
thus providing a basis onwhich to predict onshore/offshore blooms
in such a large domain.

2. Material and methods

2.1. Study area

Lake Taihu (30�55ʹ40ʺe31�32ʹ58ʺ N; 119�52ʹ32ʺe120�36ʹ10ʺ E)
is located in the lower part of the Yangtze River Delta, China. It is a
well-known large, shallow, and eutrophic lake (Fig. 1). Lake Taihu
covers an area of about 2338 km2 with an average depth of 1.9m
andmaximumdepth of 2.64m. Severe cyanobacterial blooms occur
between April and October (Hu et al., 2006). The cyanobacteria are
primarily Microcystis spp., which is a colony-forming cyanobacte-
rial species consisting of mucilage, gas vesicles, and cells (Qin et al.,



Table 1
State variables of Microcystis agent.

State Variables Units Value

X m Variable
Y m Variable
Z m Variable
PC g C agent�1 Variable
PN g N g C�1 Variable
PP g P g C�1 Variable
dc m Variable
rcolony kg m�3 Variable
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2015). Therefore, the physiological and physical processes of
Microcystis were chosen to represent that of all the cyanobacterial
species in this study. MLB (31.4929�N; 120.2074�E) represents the
validation site for the Eulerian model.

2.2. Model overview

We modified a type of model ensemble referred to as an
Eulerian/ABM hybrid in Wang et al. (2017b). In this study, the
Eulerian model (call as GEM) was improved with ecological pro-
cesses by FABM, to consider the feedback between nutrient field
and physical structure and proliferation of cyanobacteria. Physio-
logical consideration of three phytoplankton species (Diatom,
Chlorophytes and Cyanobacteria) has been included into Eulerian
model. Neither zooplankton nor fish was considered in our coupled
model. ABM focuses on the physiological and physical character-
istic of cyanobacteria, i.e. Microcystis, and models the formation of
surface bloom. The ABM model is a particle-based framework that
describes the agent-based representation ofMicrocystis. Each agent
has its own upscaling number that specifies the number of colonies
that it represents and the colony number in agent keeps constant
during simulation. The biological processes of Microcystis in these
two models were the same.

Overall, the Eulerian models were run first during each time
step, followed by the ABM models, allowing the Eulerian variables
(nutrient and detritus) to interact with physiological growth (car-
bon and intracellular nutrient content) of Microcystis, as shown in
the schematic of GEM (Fig. A2). Then the calculated physical field
(such as temperature) and chemical field (such as dissolved
nutrient) from Eulerian model were directly forced to modify agent
physiology (such as biomass and colony size) and transport pattern
in ABM. Meanwhile, the preliminary Euler-based physical-biolog-
ical model supplied associated physiological parameters for ABM.
Details of this coupled model, including parameters, equations,
concepts of agent, summary of agents, are provided in the Sup-
porting Information. Here, we provide a brief description of the
agent-based model. The variables of the Microcystis agent and
related parameters are presented in Table 1 and Table A1,
respectively.

2.2.1. Biological processes of the agent
The intracellular biomass in individual agent changes as a

function of limited growth and death,

dPC
dt

¼
�
mp � mD

�
PC (1)

where PC (g C agent�1) is the agent biomass, i.e., agent size. The
Chlorophyll a of agent could be acquired by multiplying PC by a
fixed ratio dchla=C , which is easier for monitoring and model cali-
bration. mp (d�1) is the specific proliferation rate of agent biomass
(i.e. physiological growth of agent), and mD (d�1) is the mortality
rate. For simplicity, the mortality rate, which affects carbon content
and therefore buoyancy, includes respiration, excretion and pre-
dation loss. Details about biological processes can be seen in
Section S3.3, Supporting Information.
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2.2.2. Transport processes of the agent
In the original ABM transport equations, advection and wind-

induced mixing terms were included, along with the surface
wind drift on surface scum under low wind conditions. When the
wind speed exceeded a critical value, approximately 3m/s
(Webster and Hutchinson, 1994), and even though surface cyano-
bacterial cells tended to be distributed in the deeper layer, they
were still transported by Stokes drift generated by wind-induced
waves (Hua et al., 2016). Therefore, the optimized pyhsical dy-
namics of the cyanobacterial communities is:

Xði; t þ DtÞ ¼ Xði; tÞ þ Udt þ Uadditionaldt þ xt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DHði; tÞDt

q
(2)

Yði; t þ DtÞ ¼ Yði; tÞ þ Vdt þ Vadditionaldt þ xt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DHði; tÞDt

q
(3)

Zði; t þ DtÞ ¼ Zði; tÞ þWsdt þ D
0
V ðZði; tÞÞdt þ xt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV

�
Z ’
�
Dt

q
(4)

where X, Y and Z are the agent locations. U and V are the passive
current-induced horizontal velocity terms, andWs is the buoyancy-
controlling velocity (i.e. ISP). DH represents the horizontal disper-
sion coefficients (L2 T�1). xt is an independent normally distributed
random variable with zero mean and unit variance. The second and
third terms on the right-hand side of Eq. (2) and Eq. (3) represent
horizontal displacement of agent (i.e. HDT). For the third and fourth
terms on the right-hand side of Eq. (4), we chose the Visser (1997)
scheme as the random-walk vertical mixing scheme to describe the
vertical turbulence-induced displacement of colonies (i.e. VMT). DV
(L2 T�1) is the vertical diffusivity and D

0
V ¼ DV/dZ is the vertical

gradient of DV . Z ’ ¼ Zði;tÞ þ 1/2D
0
V ðZði; tÞÞDt is the vertical position

that is displaced as a function of the diffusivity gradient. The details
about surface wind drift and wave-induced Stokes drift can be seen
in Section S3.3.5, Supporting Information. Ws, the buoyancy-
controlling velocity (termed ISP), is the adaptive biological trait of
Microcystis for higher growth rate. This adaptive behaviour was
estimated using a modified Stokes' law, which reproduced the
observed vertical behaviour of floating up or down. We calculated
an equilibrium speed of the agent, which was related to density and
diameter of colonies:
400 mm

r dc >400 mm
(5)
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where dc is the equivalent diameter of the colony (assumed to be
spherical), called colony size. Changes to the morphology of cya-
nobacteria (i.e. dc) are related with agent size (i.e. agent biomass)
and details can be seen in Section S3.2.5, Supporting Information.
As carbon content of agent increasing, the diameter of colony in
each agent increased. g is the acceleration due to gravity, w is the
viscosity of water, and rcol and rw are the density of the Microcystis
colony and the water, respectively. In this version, the non-linear
drag was added on Stokes' drag coefficient to avoid the over-
predicted rising/sinking velocity of large colonies (>400 mm) with
high Reynolds numbers (Medrano et al., 2013; Portalier et al., 2016).
Re is the Reynolds number and was approximately estimated as
rcoldc
w

gd2
c ðrw�rcolÞ
18w , overlooking the recursive relationship between

speed and drag. In previous studies, density changes were incor-
porated as a function of light regime, without considering the in-
fluences of temperature and nutrients at an annual scale. Thus, the
density equations used herewere those of Rabouille et al. (2005), in
which the fluctuations of colony density resulted from the dy-
namics of carbohydrate reserve metabolism (see Section S3.3.6,
Supporting Information).

2.3. Data acquisition and statistical analysis

Every 3-h meteorological data were downloaded from http://
www.meteomanz.com. The discharge and water quality data
(such as nitrogen, phosphorus, and detritus) of inflow rivers around
lakes were collected from 2008 to 2009. The monthly surface (at
depths of 0.5m) biomass of Microcystis were recorded in Meiliang
Bay, which is the bloom-influenced domain of the lake (Fig. 1). In
Eulerian model, the simulated results of temperature, cyanobac-
teria biomass and nutrient concentration were compared with
these measured data in the Supporting Information. The calibration
and validation period of Eulerian module are in 2008 and 2009,
respectively.

To detect the appearance of blooms in this large lake, cyano-
bacterial bloom events were obtained from satellite images from
April to October in 2008. A total of 20 treated remote sensing im-
ages (MODIS) were obtained from the Lake-Watershed Science
Data Center, National Earth System Science Data Sharing Infra-
structure, National Science & Technology Infrastructure of China
(http://lake.geodata.cn). The treated remote sensing images only
demonstrate the spatial bloom distribution (green color) on water
surface without information about Chlorophyll a concentration. A
bloom case is assumed to be detected in remote sensing images
when Chlorophyll a (Cha) excced 20 mg/L (Qin et al., 2015). In ABM,
the cumulative effect of all the agents was considered when
calculating the mass budget from agent pools (PC) to the concen-
tration for bloom detection. The local mesh will be dyed to green
(such as a series of pictures in Fig. 3B) when calculated Cha in
surface layer exceeds 20 mg/L. The ABM-based model skill assess-
ments were conducted using a binary categorical variable (bloom
or no bloom), by comparing pixel-by-pixel the modelled bloom
map with remote sensing observations. The skill assessment sta-
tistics of Rowe et al. (2016) was applied in this study. The frequency
bias (B) gives the ratio of the number of forecasts of occurrence to
the number of observed occurrences:

B ¼ aþ b
aþ c

(6)

where the number of a, correctly predicted events (hits); b, false
events (false alarms); c, false negatives (misses); and d, correct non-
events. An unbiased forecast has a frequency bias B ¼ 1.0. The
Pierce skill score (PSS) gives the hit rate minus the false alarm rate:
PSS ¼ ad� bc
ðaþ dÞðbþ cÞ (7)

PSS ranges from�1.0 to 1.0, with positive values indicating that the
hit rate was greater than the false positive rate; thus, the model had
acceptable skills. The pixel setting and skill assessment were ach-
ieved by MATLAB programming (details provided in the Section S4,
Supporting Information).

A principal component analysis (PCA) was conducted to cluster
the bloom events based on different types of characteristics of
blooms. Five characteristics have been used in PCA, i.e. biomass
(PC), colony density (rcol), turbulence-induced mixing velocity of
colony (VMT), horizontal drift velocity of colony (HDT) and
buoyancy-controlling velocity of colony (ISP). Analysis of similar-
ities (ANOSIM), which is a non-parametric statistical method, was
used to test the significant difference between clusters. Canonical
correlation analysis (CCA) was performed to determine the rela-
tionship between significant environmental variables and bloom
composition (Wang et al., 2017a). Wind speed, light, water tem-
perature, nutrients (DIN and DIP) and water level were used for
significant environmental variables in CCA. The surface bloom
characteristic describes bloom composition. The surface bloom
characteristic in CCA represented all of the associated auxiliary
processes of Microcystis calculated in ABM model. The associated
auxiliary processes contained carbohydrate reserve process, intra-
cellular nutrient uptake rate, growth rate, mortality rate, HDT, VMT
and so on. PCA, ANOSIM and CCA analyses were carried out using R
3.4.0 software.

2.4. Model application

2.4.1. Model evaluation
The calibration and validation of the Eulerian model with cya-

nobacteria biomass are presented in Section S1 and Section S2,
Supporting Information, which supply associated physiological
parameters and water quality variables for the following ABM. A
certain number of particles were released at the beginning of the
simulation in each water-covered mesh, excluding the plant-
covered meshes. The collection of agents and implementation of
ABM are shown in Section S3 and S4, Supporting Information. We
then ran the ABM to produce a one-year simulation (output at
hourly intervals) to evaluate the model performance (bloom
coverage in surface layer of local mesh) against detected 20 bloom
mapping pixel-by-pixel. The cell-centred tracer control elements
were used as control volumes for converting total agent size to the
concentration of Chlorophyll a, Chla.

2.4.2. Hindcast simulation
Based on the established model, numerical scenarios were

conducted to separate the influence of physiological and physical
processes of Microcystis colonies on surface bloom formation. To
identify the individual contribution of ISP, VMT, and HDT on the
occurrence of CyanoHABs, we carried out four groups of scenarios,
which are shown in Table 2. The individual components of ISP, VMT,
and HDT were embodied or neglected by ABM for the entire annual
simulation. All scenarios were conducted with the same external
boundaries and model parameters. C0 was the calculated concen-
tration, which should be validated against the field investigated
data. The differences between the calculated results of each sce-
nario and C0 indicate individual contributions. For all scenarios, the
biological processes, which describe the growth and death of
agents, were included. This simple additive method can quantify
the relative importance among different factors, although interac-
tion between factors exists.

http://www.meteomanz.com
http://www.meteomanz.com
http://lake.geodata.cn


Table 2
Calculation schemes to identify the individual impacts of HDT, ISP and VMT.

Scenario Result (bloom area) Influencing weight calculation Individual factor

ISP VMT HDT

A C0 e ✓ ✓ ✓

B C1 gHDT ¼ C1
C1þjC0�C2jþjC0�C3j e e ✓

C C2 gISP ¼ jC0�C2j
C1þjC0�C2jþjC0�C3j

e ✓ ✓

D C3 gVMT ¼ jC0�C3j
C1þjC0�C2jþjC0�C3j

✓ e ✓
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3. Results

3.1. Summary of skill statistics of the model ensemble

Our previous paper showed that 1-D random walk simulations
reasonably approximate the changing vertical distributions of
Microcystis colonies in response to varying turbulence. In the cur-
rent study, we advanced this work to test whether the inclusion of
biological process in the coupled model could be utilized to predict
the occurrence of spatial blooms in a large shallow lake.

Fig. 2A shows the statistical value of biomass calibration in the
Eulerian model, whereas Fig. 2B shows the time series of biomass
concentration. The time and intensity of biomass peak was well
captured, whereas the deviation of the modelled and measured
values during the period of calibration and validation was accept-
able (Fig. 2). The calibration and statistical evaluation of other water
quality variables are presented in Section S2, Supporting
Information.

The Frequency bias (B) and Pierce skill (PSS) of 20 scenarios
during April to October are shown in Fig. 3A for the 2008 simula-
tion. The Pierce skill score (PSS) produced positive values in all
cases. Positive values of PSS indicate that the model was more
effective than a random forecast or constant bloom or no-bloom
prediction (Hogan and Mason, 2012). The frequency bias
remained within a reasonable range. The frequency bias was larger
than 1.0 for 13 out of the 20 scenarios, indicating an overall bias
towards over-prediction. For simulations 11, 12, 13 and 15, large
frequency bias represented oversized simulated blooms. Both in-
dicators showed that our ABMmodel performedwell in most cases.
Fig. 2. (A) Taylor diagram of biomass of Microcystis during the calibration (2008) and valida
differences (RMSD). (B) Modelled and measured time series of biomass of Microcystis in ML
To test whether the model was able to match the observed spatially
varying bloom coverage by MODIS, pixel-by-pixel comparison of a
selected simulation day for one scenario per month was conducted
(Fig. 3B). Fig. 3B compared the number of pixels that are flagged as
likely having cyanobacterial blooms. The critical wind intensity for
bloom formation in Lake Taihu is 3.2m/s (Cao et al., 2006). Large
bloom coverage was detected on 19 May, which was a calm day
(wind¼ 1.2m/s) with intense events throughout the western re-
gion (B¼ 1.19; PSS¼ 0.6374). The calm wind coupled with enough
biomass (seen in Fig. 3B) contributed to this phenomenon. In the
following scenario in June, wind increased to 4m/s, and both
MODIS and model indicated reduced surface bloom intensity
(B¼ 1.11; PSS¼ 0.2565, 164.5 km2). In simulation 11 (27 July) and
simulation 13 (26 Aug), wind speed decreased to 2.4m/s, and
oversized simulated bloom coverages were depicted in the western
region (B¼ 1.8359 and 1.4637, respectively). In simulation 16 (18
September), optimum water temperature contributed to the peak
in biomass (Fig. 3B). A subsequent easterly calm wind (2.4m/s)
caused the surface bloom to expand (500 km2) toward the north-
westerly part of the lake (B¼ 1.0807; PSS¼ 0.596). Unfortunately,
the emergence of blooms in Meiliang Bay were missed in our
model. On 14 Oct (simulation 19), a persistent easterly wind (1.2m/
s) induced a severe bloom outbreak in the entire area of Meiliang
Bay, which was captured by our coupledmodel. The performance of
coupled model for bloom size was acceptable, as seen in Fig. 3C.
Comparison of spatial simulation results and detected bloom
mapping for all 20 MODIS images are shown in Fig. A7. Therefore,
the changing map and size of bloom over long-time scale (from
April to October) were successfully captured in most cases,
tion (2009) periods: correlation coefficient, standard deviation, and root mean square
B in 2008 and 2009. Error bars represent the standard deviation of triplicate samples.



Fig. 3. (A) Statistics evaluating the performance of the Euler-Lagrangian coupled
model in simulating the spatial-temporal coverage of cyanobacterial bloom of 2008
year. The plot symbol indicates the simulation day, when surface blooms were
detected by MODIS from April to October. Positive Pierce skill score indicates greater
skill than a random forecast. Frequency bias of 1.0 indicates the same number of bloom
pixels was predicted as observed. (B) Comparison of spatial simulation results (right)
and detected bloom mapping (left). In the detected bloom mapping, green colour
represents the area where bloom happened. In the spatial simulation results, the local
mesh will be dyed to greenwhen calculated Chlorophyll a (Cha) in surface layer exceed
20 mg/L. The picture of modeled results and corresponding remote sensing images are
compared based on the same pixels. X indicates selected simulation day for one sce-
nario per month. (C) A time-series evaluation of the size of blooms using the satellite
images and coupled model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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although over prediction exists. Overall, both the skill assessment
and pixel comparison showed that our coupled model was able to
simulate changing surface blooms in response to changing current/
wind-induced movement and physiological status of Microcystis.

3.2. Statistical analysis of bloom characteristics and relationship
with environmental conditions

Our coupled model could record the physiological value of
surface blooms, such as biomass, colony density, and ISP, while also
capturing temporally varying physical value of blooms as VMT and
HDT. Therefore, these five variables were used to distinguish 20 sets
of surfaceMicrocystis blooms in PCA. When data from the modelled
results within the lake were analysed by PCA ordination, the bloom
community formed two clusters (Fig. 4A). The first three principal
components, Axis1, Axis2 and Axis3, explained 37.5%, 25.28% and
23.16% of total variance, respectively. Thirteen of the simulated
blooms (red circles in Fig. 4A) were clustered in one community,
and were strongly associated with VMT and HDT of surface Micro-
cystis. The other seven simulated blooms (blue circles in Fig. 4A)
were clustered as a single separate community, which was strongly
associated with biomass, density, and ISP. The p-value which
calculated by ANOSIM equaled 0.017. The low p-value demon-
strated the significant difference between two clusters. The former
cluster primarily contained blooms from April to June (except for
bloom 19 and bloom 20), whereas the latter cluster contained
blooms from July to October. CCA was used to analyse the rela-
tionship of environmental conditions with bloom composition
(Fig. 4B). The CCA model accounted for 48.1% of variation in the
bloom composition data. The first two axes explained up to 37.67%
(axis 1) and 10.31% (axis 2) of variation. The variables that were
most strongly correlated with these axes were DIN, light, and water
temperature (as shown by the arrows length in Fig. 4B). Similarly,
the first axis of the CCA separated the communities of early bloom
events (left part of the graph) from late bloom events (right part of
the graph). Early blooms were associated with abundant DIN, high
solar radiation, and high temperature. Mature blooms were posi-
tively associated with water level and DIP, and were negatively
associated with light and temperature. Additionally, wind during
bloom period, with shortest arrow length, explained the least
variation.

3.3. Contribution of physiological and physical processes to bloom
formation

The results of hindcast simulations carried out within whole
lake were analyzed to assess the contribution of HDT, ISP and VMT
to surface scum area during different bloom stages (Fig. 5). During
early bloom stage, HDT and VMT account for bloom occurrences,
33.3% and 43.3% respectively. Otherwise, ISP has the least influence
on bloom area extension, 29.8%. As time goes on, VMT and ISP
control 82.4% of bloom formation, 55.1% and 27.3% respectively.
However, the importance of HDT decreases to 17.6%. Overall, ver-
tical turbulence-induced mixing had the largest impact on bloom
formation during the whole bloom stage in the shallow lake. Re-
sults of scenarios analysis for all 20 bloom cases are shown in
Fig. A8. Smaller (even no) area of bloom happened for most cases
when turbulence-induced mixing velocity of agent (VMT) was
excluded. An example of a spatial distribution map (bloom 16) was
used to reflect the importance of VMT. Fig. 6 shows the spatial
distribution of surface blooms under different scenarios at 11:17 on
18 September 2008. Scenario A shows the baseline of the simula-
tion, considering all HDT, VMT, and ISP. A large section of the bloom
(approximately 500 km2) was simulated in the northern part of the
lake. Scenario B shows the modelled results when considering only
HDT. Colonies always remained at the depth at which they were
released. A bloom was only detected in the southwestern near-
shore region of the lake. Scenario C shows a larger bloom area in



Fig. 4. (A) PCA analysis based on the occurrence of 20 blooms in 2008, according to the physiological and physical characteristics of surface bloom. Numbers within parentheses are
the percentage variance explained by each principal component. The low p-value, calculated by ANOSIM method, represents the significant difference between these two clusters.
All blooms were categorized into two clusters, which are represented by circles. Red and blue circles indicate different bloom clusters. (B) CCA of surface bloom characteristics and
the most significant environmental variables. Symbols indicate blooms and Arrows indicate environmental variables. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. Individual contribution of buoyancy-controlling movement (ISP), vertical
turbulence-induced mixing velocity (VMT) and horizontal drift velocity (HDT) of 20
bloom cases that occurred in 2008.

Fig. 6. Spatial distribution of surface blooms under different scenarios on 18
September 2008. Scenario A shows the baseline of the simulation, considering all HDT,
VMT, and ISP. Scenario B shows the modelled results when considering only HDT.
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the northern region, when only excluding ISP. Interestingly, Sce-
nario D shows no blooms occurring in any part of the lake when
only VMT was excluded from the ABM model.
Scenario C shows results when only excluding ISP. Scenario D shows results when only
VMT was excluded from the ABM model.
4. Discussion

Cyanobacterial blooms occur as a result of the proliferation and
migration of cyanobacteria. Because of the complex interaction
between active physiological induced growth and passive physical
induced transport, a hybrid of Eulerian and agent-based methods
represents a useful tool for resolving this non-linear problem. The
Eulerian model incorporated FVOM, FABM, and GEM. The previ-
ously calibrated FVOM part of the model provided hydrodynamic
forcing, such as water current, temperature profile, and turbulence
diffusivity, for each super individual in a local mesh. In addition, the
validated physiological parameters, which are conveyed as
biological processes in ABM, are also supplied by FABM-GEM to
avoid high computation costs. To capture the spatial-temporal
position of Microcystis accurately, we added growth responses,
wave-generated Stokes drift, and carbohydrate reserve metabolism
based on our original agent-based model (Wang et al., 2017b). We
then confirmed that the spatial comparison between the hybrid
model results with MODIS and sampling data followed the actual
pattern in the distribution of cyanobacteria from a small colony to
surface scum, along with horizontal or vertical transport. The
rigorous verification process used in this study confirmed that our
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approach, which incorporated the physiological characteristics of
surface cyanobacteria, was able to reflect bloom events under
different environmental conditions.

Most published papers have analysed the occurrence or char-
acteristics of blooms using simple linear analysis between bloom
area and/or biomass with potential explanatory variables (such as
wind and temperature) (Zhu et al., 2014; Wu et al., 2015). However,
the relationship between environmental variables and bloom
events is indirect and non-linear. The specific characteristics of
surface blooms, such as growth rate, vertical velocity, and density,
have been consistently overlooked in the analyses of previous
studies. This issue might lead to the understanding of physical and
physiological processes that regulate blooms at different times
being incomplete. Therefore, multivariate statistical analysis was
used to disentangle the relationship between bloom events and the
specific characteristics of surface blooms based on auxiliary infor-
mation provided by the coupled model. Horizontal transport speed
(HDT, mainly wind-induced) and passive vertical speed (VMT,
turbulence-induced mixing) of surface Microcystis blooms were
used as the physical features of formed surface scum. Biomass (PC),
colony density, and buoyant velocity (ISP) were used as the phys-
iological features of blooms. Interestingly, almost all blooms could
be divided into two clusters by these features, i.e. early blooms
(from April to June) and mature blooms (from July to October)
based on PCA. According to the simulation results, enough biomass
had satisfied the requirements for surface bloom formation (20
Chla mg L�1) in bloom-affected area. For early blooms, physical
processes of colony acted as the main features that differentiated
bloom occurrence (red circles in Fig. 4). The colony size of Micro-
cystis during early summer was comparatively small, with an
average of 120 mm being calculated by our model. Small size leads
to a low capacity to overcome wind-induced entrainment for
staying on the water surface (Reynolds et al., 2001; Otten et al.,
2012; Wu et al., 2015). According to model simulation,
turbulence-inducedmixing velocity wasmuch higher than buoyant
velocity during early summer (Fig. A6(A)). Therefore, early blooms
were more sensitive to physical forcing, with turbulence-induced
mixing and advection-induced accumulation being important in-
fluences on surface accumulation and extension (i.e. bloom area).
For mature blooms, physiological processes (i.e. biomass, ISP, and
density) acted as the main features (blue circles in Fig. 4). For
mature bloom stages, colony size increased with increasing
biomass induced by cell division and cell adhesion by extracellular
polymeric substances (Xiao et al., 2017). Average colony size of
surface bloomswas calculated as 300 mm in ourmodel. Turbulence-
induced mixing velocity and buoyant velocity were comparable,
due to the stable water profile. Consequently, enough large colonies
could remain at the water surface, as long as they had buoyant
status. The colony density from April to October was lower than the
water density in our simulations (facilitating persistent buoyancy).
However, protracted exposure to high solar intensity at the water
surface when water conditions were stable and colony size was
large might lead to the formation of heavier colonies in late sum-
mer than in early summer (Fig. A6(B)). This suggestion is consistent
with the results obtained by Wallace et al. (2000). Heavier colony
density might lead to lower flotation velocity according to Stokes
law. Therefore, buoyancy-controlling strategies are required for
mature bloom diversity. Hindcast simulations using our coupled
model helped us to identify the contributions of these processes.
For instance, as shown in Fig. 5, the importance of horizontal drift
and buoyant velocity alternates with one another during whole
bloom stage.

It is difficult to identify a single environmental variable that
explains the timing, intensity and area of all surface blooms that
occurred in the shallow lake. CCA allowed us to classify the key
environmental variables regulating the occurrence of early and late
blooms. Sufficient biomass is the basis of surface scum (Paerl et al.,
2011a). Therefore, light and temperature are important for
biosynthesis in the early stages of bloom formation. Warmer water
temperature and increasing global radiation, which are related
with climate change, are the main factors controlling the growth of
colonies and the initiation of blooms (Kanoshina et al., 2003; Zhang
et al., 2012). Lake warming results in extra buoyancy that sustains
blooms for longer, and might be associated with vertical stratifi-
cation. According to model results, nitrogen limitation emphasised
the importance of DIN, supporting the results of Paerl et al. (2011b).
Paerl et al. (2011b) showed that nitrogen is an essential nutrient
regulating the biomass of cyanobacteria in Lake Taihu. For the
mature bloom stage, sustained suitable temperature and irradia-
tion guaranteed the maintenance of sufficient biomass. Phospho-
rous limitation has been emphasized in mature stages, supporting
Paerl et al. (2011b). The optimum temperature forMicrocystis in our
calibrated model was set as 28.2 �C. Temperatures that were too
high in August were accompanied with smaller bloom area
(Fig. A6(C) and Fig. A6(D)). In addition, relatively lower radiation
prevented colonies from forming high densities, favouring their
protracted retention on the water surface. Therefore, there was a
negative relationship between light and temperature with bloom
occurrence during the mature bloom stage in CCA. Wind is a very
important forcing parameter for bloom formation and extension
(Verhagen, 1994; Wu et al., 2015). Because of the general low wind
speed during bloom events, the importance of wind was weak in
the CCA. However, wind has a strong influence on both the physical
and physiological processes of blooms, which is discussed in
following section. Therefore, multiple environmental variables in-
fluence the formation of the different stages of bloom occurrence in
the study shallow lake, demonstrating its sensitivity to environ-
mental change.

Wind-induced turbulence, which produces the VMT of cyano-
bacteria, has been emphasized by hindcast simulation in Lake
Taihu. Turbulence has direct and indirect effects on bloom forma-
tion. Direct effects represent the entrainment of colonies within the
vertical water column. For early bloom stages (as shown by the
PCA), turbulent-inducedmixing velocity of colony has an important
influence on the surface accumulation of colonies and, then, area
extension. Indirect effects involve vertical mix causing agents to
experience different light intensities within the mixed layer,
avoiding self-contained buoyancy control. When colonies are
entrained into the mixed layer, the loss of light decreases carbon
fixation and, hence, ballast accumulation. Therefore, colonies al-
ways maintain a buoyant status (as shown in Fig. A6(B)), enhancing
their ability to override vertical turbulence, and allowing them to
accumulate on the water surface when the wind ceased. Persistent
buoyancy followed by bloom formation has been documented by
previous studies (Wallace et al., 2000; Ma et al., 2016; Rowe et al.,
2016). In addition, the transient response time (tr) also helps to
avoid the accumulation of too much ballast on the water surface
(Wang et al., 2017b). Without vertical mixing, the vertical move-
ment of colonies is only controlled by buoyancy-controlling stra-
tegies to avoid becoming mixed in the deep layers. However, this
phenomenon cannot be used to interpret the occurrence of moni-
tored blooms at noon versus night time in deep lakes or reservoirs
(Serizawa et al., 2010; Chien et al., 2013). Bloom 16 in Fig. 6 shows a
general trend of smaller bloom area when VMT was excluded.
Therefore, we inferred that VMT is essential for maintaining the
buoyancy of colonies and blooms over long periods in shallow
lakes. VMT can account for 52.9% of bloom formations as seen in
Fig. 5. Interestingly, we can conduct a more in-depth comparison of
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onshore/offshore blooms through scenarios simulation, along with
the actual MODIS data. The obvious downwind accumulation
(onshore bloom) was caused by HDT (mainly wind-induced
advection, as seen in Scenario B of bloom cases). When only
excluding ISP, colonies have poor capability to stay on water sur-
face. The offshore bloom could appear with the existence of VMT
(as seen in Scenario C of bloom cases). The wind entrainment can
prevent the downwind movement according to our former study
(Wang et al., 2017b). The net effect of increasing windwas shown to
reduce horizontal transport. Therefore, the turbulence-induced
mixing is critical for offshore bloom. This finding is useful for un-
derstanding the distribution pattern of surface bloom in large
domain. In general, our study provided in-depth finding about the
respective importance of physical and physiological feature of
cyanobacteria for onshore/offshore bloom formation at different
stages.

The model was developed under the Euler-Lagrangian coupled
framework, and used Lake Taihu as a case study; this coupled
model could be applied to other shallow lakes by adjusting input
conditions and initial values of the super-agent. The shallow region
of Lake Erie is approximately 5m, requiring a stronger wind to
completely mix the water column. Therefore, the fitness of our
finding to this lake could be carefully tested by using our coupled
model. However, possible limitation for transferability of the find-
ings to other lake should also be discussed. Firstly, our conclusion
about the relative importance of physical and physiological features
is only suitable for the shallow area without rooted aquatic vege-
tation, such asMissisquoi Bay (mean 2.8m) (Ndong et al., 2017) and
Thomsons Lake, a shallow (max. depth 1.4m), flat bottomed lake
(Wallace et al., 2000). Secondly, our coupled model is fit for the
Microcystis-dominated bloom. The transferability to Anabaena-
dominated (Hellweger et al., 2008) or Diatom-dominated bloom
is unfeasible.
5. Conclusions

In this study, we used satellite images as a data source and a
coupled model as a form of technology to extract information on
cyanobacterial blooms in Lake Taihu, China. In particular, we ana-
lysed bloom characteristics and their complex correlations with
climatic variables. The idea about the generation of onshore and
offshore bloom was also evaluated by using scenarios analysis in
hindcast simulation. Our study demonstrates that retrieving
ecological information from agent-based modelling is valuable for
the large-scale research of fresh water ecosystems, despite
parameter uncertainties and the complexity of aquatic systems.
Our future work will focus on the identification of on-set bloom for
advanced bloom prevention, which needs more long-time remote
sensing images coupled with elaborately integrated model (such as
WRF-FVCOM-ABM modeling system). Meanwhile, shallow lakes
are a complex system, and the interaction between sediment and
water was not presented in our model, but will be considered in
subsequent studies.
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