Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review

L. Mabit a,⁎, M. Benmansour b, J.M. Abril c, D.E. Walling d, K. Meusburger e, A.R. Iurian f, C. Bernard g, S. Tarján h, P.N. Owensi i, W.H. Blake j, C. Alewelle

a Soil and Water Management and Crop Nutrition Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories, Seibersdorf, Austria
b Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco
c Dpto. Física Aplicada I, Universidad de Sevilla, Seville, Spain
d Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
e Environmental Geosciences, Department of Environmental Sciences, University of Basel, Basel, Switzerland
f Babes-Bolyai University, Faculty of Environmental Science and Engineering, Cluj-Napoca, Romania
g Ministère de l'Agriculture, des Pêcheries et de l’Alimentation, Québec, Québec, Canada
h Radioanalytical Reference Laboratory, Central Agricultural Office Food and Feed Safety Directorate, Hungary
i Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, Prince George, British Columbia, Canada
j School of Geography, Earth and Environment Sciences, Plymouth University, Plymouth, UK

Abstract

Increasing anthropogenic pressures coupled with climate change impacts on natural resources have promoted a quest for innovative tracing techniques for understanding soil redistribution processes and assessing the environmental status of soil resources. Among the different existing tracers, the fallout component of the radioisotope lead-210, also termed unsupported or excess lead-210 (210Pbex) when referring to its presence in soil or sediment, arguably offers the broadest potential for environmental applications, due to its origin and relatively long half-life. For more than five decades, 210Pbex has been widely used for dating sediments, to investigate sedimentation processes and, since the 1990s, to provide information on the magnitude of soil and sediment redistribution.

The aim of this review is to provide a comprehensive evaluation and discussion of the various applications of 210Pbex as a tracer in terrestrial and aquatic environments, with particular emphasis on catchment sediment budget investigations. This paper summarizes the state-of-the-art related to the use of this tracer, the main assumptions, the requirements (including the need for accurate analytical measurements and for parallel validation), and the limitations which must be recognised when using this fallout radionuclide as a soil and sediment tracer. Lessons learned and current and future research needs in the environmental and radiochronological application of 210Pbex are also presented and discussed.

© 2014 Elsevier B.V. All rights reserved.

Keywords:
210Pbex
Soil and sediment tracing
Sediment dating
Soil redistribution

Contents

1. Introduction .. 335
2. Origin and characteristics .. 336
3. Environmental behaviour of 210Pb .. 337
4. Technical aspects regarding the determination of 210Pbex .. 338
5. Using 210Pbex for documenting soil redistribution and sediment sources .. 339
6. Assessing sedimentation rates and dating sediment in freshwater lakes and reservoirs .. 341
7. Assessing sedimentation rates on floodplains and wetlands .. 346
8. Conclusion .. 347
Acknowledgements ... 347
References ... 347

⁎ Corresponding author.
E-mail address: LMabit@iaea.org (L. Mabit).

http://dx.doi.org/10.1016/j.earscirev.2014.06.007
0012-8252/© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Lead-210 (210Pb) is a valuable radioactive isotope for environmental investigations and it has been widely used in the natural and physical sciences for dating, tracing, and modelling biogeochemical cycling in ecosystems. Since the 1970s, 210Pb measurements have been used extensively for dating sediment deposits in a range of sedimentary environments, including lakes, reservoirs, flood plains, wetlands, estuaries, and coastal marine environments, thereby permitting sedimentation rates over the last 100–150 years to be determined (e.g. Appleby and Oldfield, 1978; Robbins, 1978; Wise, 1980; Benninger and Krishnaswami, 1981; Oldfield and Appleby, 1984; Robbins et al., 1990; Abril et al., 1992; Walling and He, 1994; He and Walling, 1996a; Walling and He, 1999a; Wallbrink et al., 2002a; Bennamoun et al., 2006; Laissaoui et al., 2008; Smits et al., 2008; Navas et al., 2011).

While 210Pb was also used concurrently as an atmospheric and aerosol tracer (Burton and Stewart, 1960), it is only since the mid-1990s that studies have used 210Pb for assessing rates and patterns of soil redistribution and for tracing sediment movement in terrestrial and aquatic environments (e.g. He and Owens, 1995; Walling et al., 1995; Wallbrink and Murray, 1996; He and Walling, 1997; Walling and He, 1999b; Walling et al., 2003a,b; Owens et al., 2012). Although several review papers and books have been published in recent years dealing with the environmental impact, distribution and behaviour of lead (e.g. Selim, 2011, 2012) and with the use of its stable (e.g. 206Pb/207Pb ratio) and radioactive isotopes as geochemical tracers to investigate pollution pathways and anthropogenic impacts in different environmental systems (e.g. Robbins, 1978; Renberg et al., 2002; Komarek et al., 2008; Simms et al., 2008; Navas et al., 2011). The focus of this review is therefore on the use of 210Pb as a tracer of soil and sediment in the terrestrial environment, including both the land surface and surface waters. Marine and coastal environments are soil and sediment in the terrestrial environment, including both the land surface and surface waters. Marine and coastal environments are

2. Origin and characteristics

With an atomic number of 82, lead (Pb) belongs to the heavy metals group and has four natural stable isotopes: 206Pb, 207Pb, 208Pb and 204Pb, with natural abundances of 23.6%, 22.6%, 52.3% and 1.4%, respectively. 210Pb is a natural geogenic radioisotope occurring as one of the decay products of the 238U series (i.e. – 226Ra → 222Rn → 210Po → 214Pb → 214Bi → 210Po → 210Pb). Due to its relatively short half-life (t1/2 = 22.23 years), 210Pb is the only radioisotope of Pb that offers potential for applied environmental investigations.
over oceanic or polar areas and (ii) in the Northern rather than in the Southern Hemisphere, due to the higher land to sea ratio.

Significant correlations have been observed between mean annual rainfall and/or number of heavy rain events/thunderstorms and the mean annual deposition flux of ^{210}Pb (e.g. Baskaran, 1995; Bek et al., 1998; Winkler and Rosner, 2000; Caillet et al., 2001; Baskaran, 2011a), suggesting that wet precipitation is mainly responsible for the scavenging of this fallout radionuclide from the atmosphere. In southern Germany, for example, the mean annual ^{210}Pb deposition flux for the period 1981–1999 was $180 \text{ Bq m}^{-2} \text{ yr}^{-1}$ for a mean annual precipitation of 855 mm (Winkler and Rosner, 2000). The minimum and maximum values for the same location were 120 and 250 Bq m$^{-2}$ yr$^{-1}$. In Hungary (Budapest), the mean annual ^{210}Pb deposition flux for the period 1999–2006 was $81 \text{ Bq m}^{-2} \text{ yr}^{-1}$ for a mean annual precipitation of 476 mm, with minimum and maximum values for the same location of 44 and 100 Bq m$^{-2}$ yr$^{-1}$, respectively (Central Radioanalytical Laboratory of Food and Feed Safety Directorate, 2006).

Seasonal variations of ^{210}Pb concentrations in the atmosphere have been reported in many parts of the world. For example, in Budapest (Hungary), the temporal variation of the ^{210}Pb concentration (mBq m$^{-3}$) in the air monitored by the Central Radioanalytical Laboratory of Food and Feed Safety Directorate (2006) shows that in the autumn and winter seasons, the mean activity concentrations of ^{210}Pb were slightly higher than those of the spring and summer seasons (Fig. 2). Similar findings concerning long-term variation of ^{210}Pb concentrations in air have been reported from Egypt (Ahmed et al., 2004) and from southern Germany (Winkler and Rosner, 2000). This seasonal variability can be related to the higher temperatures in spring and summer, which are usually accompanied by higher turbulence.

Taking into account the seasonal variability and the time-scales involved in the studies of soil erosion and in the radiometric dating of recent sediments, meaningful definitions of fluxes and mass accumulation rates require averaging over time intervals of the order of one to several years. For most of the applications, the assumption of constant fluxes therefore remains useful.

3. Environmental behaviour of ^{210}Pb

One major requirement for using an element as a potential tracer of soil redistribution is to confirm its reduced mobility in the topsoil layer and that it is predominantly moved by soil/sediment mobilisation and transport processes (see Guzmán et al., 2013; Koiter et al., 2013). The key feature of Pb behaviour in the soil, on which tracer applications are founded, is its strong binding to soil particles (both mineral particles and soil organic matter) and its chemical stability in soil environments, making possible the fundamental assumption that Pb moves only with soil particles and that the major processes causing its redistribution in the landscape are mechanical processes such as water, wind and tillage erosion.

Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. Sorption and desorption are key processes involved in the interaction between soil and heavy metals. Several studies of the environmental fate of heavy metals have highlighted the strong sorption of Pb in soils (Alloway, 1995). Results reported by Welp and Brümmer (1999), based on several sorption and solubility tests, involving nine metals within A horizons of Hapic Podzol, Fimic Anthrosol, Eutric Cambisol and Calcaric Regosol soils and experimental conditions ranging from strongly acidic to slightly alkaline, showed that lead was the metal most strongly adsorbed by the soils tested, as compared to Mg, Sr, Co, Zn, Ni, Cd, Cr(III) and Cu (elements classified by increasing adsorption based on Freundlich K values). This behaviour was further confirmed for a loessic soil (haplic luvisol) by Welp (1999), with Pb exhibiting the highest sorption constant of the studied metals.

For most metals, pH and organic matter are the key parameters that control the partitioning between the solid and the liquid phase and therefore the adsorption and solubility of metals in soil (Welp and Brümmer, 1999; Degryse et al., 2009). Lead sorption in soil increases with pH and vice versa (see Adriano, 1986; Davies, 1995; Appel and Ma, 2002; Anagu et al., 2009). Some investigations have demonstrated that Pb is more strongly retained in soil than Cs (e.g. Klaminder et al., 2006). Also, Pb binds more strongly on Fe and Mn oxides than many other metals, such as Cu, Zn, and Cd (see Selim, 2011, 2012) and Pb is also preferentially associated with organic matter (see Dörr, 1995; Gustafsson et al., 2011), especially at acidic pH (Degryse et al., 2009).

Lead forms solid inner-sphere complexes with clay minerals (Strawn and Sparks, 1999), organic matter (e.g. Ferraz and Lourenco, 2000; Strawn and Sparks, 2000) and oxides (Trivedi et al., 2003). In addition, Pb forms precipitates with a moderate to low solubility in soil, such as hydroxides and phosphates in calcareous soils (Evans., 1989; Bradl, 2004).

Based on the available evidence (e.g. Selim, 2011, 2012), the bioavailability of Pb depends mostly on soil physico-chemical characteristics (e.g. texture, pH, soil organic matter (SOM), cation exchange capacity (CEC)) and the living phase of soil and plant types. Usually, Pb accumulates in the upper soil layers and is highly immobile. As highlighted by Davies (1995), except for a Ultisol with a low CEC and a loamy sand texture (i.e. Korte et al., 1976), there is little evidence of Pb leaching of Pb in soil profiles. In addition, Pb bound by organic matter has been shown to be not leached by water percolating through the soil profile. Moreover,

![Fig. 2. Variation of ^{210}Pb activity concentrations in air (mBq m$^{-3}$) measured in Hungary. Data presented as monthly mean ± SE.](image-url)
even though some discrepancies were registered between stable and radioactive isotopes of Pb in freshwater environments, their partition coefficients and soil–plant transfer factors are in the same magnitude range (Tamponnet, 2009).

The amount of Pb absorbed by plants is affected by the pH, organic matter, and the phosphorus content of the soil. That is why a remediation strategy aimed at reducing the bioavailability and uptake of Pb by plants involves adjusting the pH of the soil with lime to a level of 6.5 to 7.0 (Tangahu et al., 2011). Some of the assumptions related to 210Pb soil–plant interaction should undoubtedly be confirmed under controlled and/or natural conditions to clearly quantify the transfer factor and the adsorption/absorption of this isotope by plants under various environmental conditions. The influence of the vegetation cover on 210Pb deposition should be verified for different soils and cultivation practices. Al-Masri et al. (2008) found transfer factors greater than 1.0 for soil–plant leaves for tomato, cucumber, broad bean and chickpea. However, the transfer of 210Pb to plants is mainly due to the direct atmospheric deposition of 210Pb to the above-ground portion of the plant, rather than transfer of supported 210Pb via the root system (Bunzl and Trautmannsheimer, 1999; IAEA, 2009). This could influence the total 210Pb inventory of soil profiles, especially in long-term undisturbed areas. However, it is debatable whether trapping of atmospheric dust containing 210Pb by plants should be seen as representing a component of the local natural fallout input. The dust could represent fine particulate material resuspended from local or more distant sources. Furthermore, if the plants are absent in some locations, this input might be lacking. Loss of 210Pb through biomass export must also be considered in a similar context. There is currently no consensus as to whether the 210Pb activity concentration in plants should be included in the total inventory. The decision should arguably depend on careful consideration of the assumptions and requirements of the tracing application involved. In conclusion, more studies are needed to investigate and verify issues related to 210Pb–plant interactions.

4. Technical aspects regarding the determination of 210Pbex

The accurate determination of 210Pbex activity is a fundamental requirement for using this nuclear tool. In-depth knowledge and experience of gamma spectroscopy is required for its reliable determination in soil and sediment matrices. The determination of 210Pbex activity requires the measurement of total 210Pb activity and 226Ra activity. The latter is equivalent to supported 210Pb and so 210Pbex = 210Pbtotal – 226Ra.

Several analytical techniques are available for the measurement of both 226Ra and 210Pb, including gamma spectroscopy, alpha spectrometry and beta counting. The differences between these reflect achievable detection limits, laboratory workloads, reproducibility and analytical times and costs (Ebaid and Khater, 2006; IAEA, 2011). Gamma spectroscopy has the advantage of being a non-destructive technique, allowing the simultaneous measurement of 210Pb and 226Ra and other fallout radionuclides used as soil and sediment tracers, such as 137Cs and 239/240Pu. This analytical method provides reliable results, generally with reduced time, effort and costs when compared with other techniques. Both gamma and alpha spectrometry can be employed for 226Ra analysis in soil and/or sediment samples. 226Ra can be measured by gamma spectrometry via the gamma ray energies of its daughter 214Bi and 214Pb, at 609.3 keV and 351.9 keV, respectively, or directly through its gamma line at 186.2 keV. The second method involves subtracting the contribution of 235U from the overlapping peak, which can be difficult if the 235U activity in the soil sample is very low. When 226Ra is measured using its daughter 222Rn or 212Bi by gamma spectrometry, it is essential to ensure equilibrium with its direct gaseous daughter 222Rn. To achieve equilibrium between 222Rn and 222Rn, soil samples should be properly sealed, to avoid radon escape, in high density polyethylene or aluminium containers for at least 21 days prior to performing gamma analysis. Zhang et al. (2009) demonstrated that the use of the doublet deconvolution method – to resolve the overlapping 235U and 222Ra gamma peaks at 185.7 keV and 186.2 keV – can provide a more accurate 222Rn determination in soil samples, since it is independent of the error caused by the equilibrium assumption between the 222Rn progenies and 222Rn. The amount of radon gas escaping through the sample container walls should be also considered and quantified, even if sealing was performed. However, the 214Pb and/or the 214Bi approaches are preferred by most laboratories, due to the fact that they are easier.

In contrast, alpha-spectrometry offers the direct measurement of radium through its alpha-emanation, which is independent of equilibrium or gaseous loss considerations. This method offers several advantages over other analytical techniques, including: (i) high sensitivity resulting from the high-yield alpha decay process, low intrinsic detector background and peak selectivity; (ii) high reliability associated with the use of an alpha-emitting isotope tracer; (iii) the wide range of radioisotopes that can be determined. Disadvantages are related to the need to use a tracer isotope solution and to the long and laborious chemical separation process (Hou and Roos, 2008).

210Pb can be measured by gamma spectrometry using a high-purity germanium (HPGe) detector. This non-destructive measurement permits subsequent physico-chemical tests on the samples collected. However, the γ-rays are emitted at the low energy of 46.5 keV with a low emission probability of 4.25%. Therefore, the analysis of soils and sediments for 210Pb by gamma spectrometry requires a low energy HPGe detector, with a thin front and side contact and little dead Ge beyond the active region, resulting in improved count rate performance and peak-to-background ratio (see Wallbrink et al., 2002b). ‘N-type’ germanium crystals with beryllium or carbon windows are commonly used for measuring both high and low energy gamma rays. Also, a stabilised ambient air temperature and low background environment must be assured by using conventional passive shielding (e.g. a thick layer of aged lead, coupled with copper and cadmium sheet) or even additional active shielding (e.g. gas or scintillation detectors surrounding the HPGe detector or Na(Tl) anti-Compton shielding), when low detection limits of e.g. 1 mBq are required (Kozak et al., 2001; Povinec, 2008). Particular attention should also be devoted to self-absorption, which varies as a function of the chemical composition and density of the matrix. It is necessary to apply a self-attenuation correction in order to obtain a precise determination of the activity concentration. Several protocols and approaches have been proposed to take into account and to assess this factor (e.g. Cutshall et al., 1983; Boshkova and Minev, 2001; San Miguel et al., 2002; Jodlowski, 2006; Quindos et al., 2006; Hult, 2007; Jodlowski, 2007; Saldou et al., 2007; Khater and Ebaid, 2008; Robu and Giovani, 2009; Jodlowski et al., 2014). A recent International Atomic Energy Agency (IAEA) proficiency test on gamma spectrometry measurement of total 210Pb in spiked soil samples highlighted a clear need for improvement with less than 40% of the 14 participating laboratories able to provide an accurate measurement of this isotope (see Shakhashiro and Mabit, 2009). Furthermore, Albrecht (1999) reported that measurement of the 210Pb and 137Cs activity of sediment samples collected from an alpine catchment by gamma spectroscopy, using a well detector shielded with an anticoincidence proportional chamber provided an overall error of measurement for 210Pb at least two times higher than that for 137Cs. Therefore, quality control procedures, proficiency tests and inter-comparison exercises should be encouraged, to assess the validity and reliability of the results of 210Pb analysis by gamma spectrometry.

Another important consideration associated with obtaining accurate values of 210Pbex activity relates to the need to apportion the measurement of total 210Pb between its supported and unsupported (or excess) components. As indicated above, this is usually achieved by assuming that the supported 210Pb is in secular equilibrium with 226Ra, which is also measured, and subtracting this value from the measurement of total 210Pb. However, if additional input or removal of any of the parents of 210Pb occurs, secular equilibrium is not established (Ravichandran et al., 1995). In most environments, the supported 210Pb will not be in
equilibrium with 226Ra, since some 222Rn will diffuse upwards through the soil or rock and escape to the overlying atmosphere. This loss is commonly quantified by the emanation coefficient (the proportion of the 222Rn that escapes from the soil or rock), which typically has a value of ca. 0.2–0.3 (Du and Walling, 2012). Failure to take account of this loss of 222Rn will result in overestimation of the supported 210Pb and therefore understimation of the 210Pb$_{ex}$, including the generation of negative values of 210Pb$_{ex}$ (see Du and Walling, 2012). This problem can be addressed by applying a correction or reduction factor, based on the emanation coefficient, to the estimated supported 210Pb activity. This reduction factor will be influenced by the texture, bulk density and moisture content of the parent material and can prove difficult to quantify, particularly when determining the 210Pb$_{ex}$ activity of fluvial sediment mobilised from its original in situ source. However, when calculating the 210Pb$_{ex}$ activity of soils, the reduction factor can be estimated from the average ratio of the measured total 210Pb and 222Ra concentrations for samples collected from the lower part of the soil profile (e.g. 40–50 cm in an eroding soil), where 210Pb$_{ex}$ can be assumed to be absent (e.g. Wallbrink and Murray, 1996). This ratio is frequently of the order of 0.8. This measurement problem is of more limited significance for submerged lake sediment deposits, which are characterised by very low emanation coefficients. Ravichandran et al. (1995) calculate an Rn escape probability of less than 0.5 for the sediments of some stations in the Sabine–Neches Estuary, Texas (USA) and concluded that diffusion of Rn did not significantly affect the 210Pb$_{ex}$ profile. As indicated by Ravichandran et al. (1995), this is a very small correction which could be due to the significantly higher sedimentation rates in the study area (for more information see also Imboden and Stiller, 1982; Stiller and Imboden, 1986).

Despite recent reports of the applicability of portable gamma spectrometry for detecting 210Pb in soil (Li et al., 2010), in-situ measurement of 210Pb is almost impossible due to the self-absorption of the low energy 46.5 keV gamma ray in the soil. For example, assuming a soil density of 1.65 g cm$^{-3}$ (soil composition: 68% SiO$_2$, 10% H$_2$O, 1% C, 3% Fe, 7% Al and 11% O$_2$), based on the gamma attenuation law, 97% of the emitted radiation will be absorbed by the first 5 cm of the soil, with an additional 3% absorption in dry air if the detector is placed 1 m above ground level. The indirect approach to determining 210Pb$_{ex}$ activity from measurements of total 210Pb and 226Ra induces potential errors associated with the measurement of both 210Pb and 222Ra and results in a low precision for the final estimate of 210Pb$_{ex}$. Therefore, other methods of quantifying total 210Pb, such as alpha spectrometry and beta or liquid scintillation counting, have been suggested and tested (e.g. Ebaid and Khater, 2006; Jia and Torri, 2007; Zaborska et al., 2007; Baskaran, 2011b). 210Pb concentration can be indirectly determined by alpha-ray spectrometry through its decay progeny 210Po. This radiochemical method is based on a total digestion of the sample and the separation of 210Pb from other radionuclides present in the sample, followed by auto-deposition of its daughter nuclide, 210Po on a silver, nickel or stainless steel disc and further measurement with an alpha spectrometer generally using a Silicon Surface Barrier Detector (SSBD) or Passivated Implanted Planar Silicon (PIPS) detectors (see Vesterbacka and Ilkheimonen, 2005; Ebaid and Khater, 2006). This method is very sensitive with an excellent detection limit and assumes that secular equilibrium is reached between 210Pb and 210Po. This condition is usually fulfilled in the case of undisturbed lake or marine sediments with low sedimentation rates. In most cases, equilibrium between 210Pb and 210Po is not established. Ideally, soil samples should be kept for a minimum of 2 years (around 7 times the half-life of 210Po) to reach secular equilibrium. Otherwise, to reduce the time delay before obtaining reliable measurements of 210Pb activity, the remaining solution with no 210Po should be stored for a period of 3–6 months and 210Po should again be analysed after its significant growing from 210Po (Ebaid and Khater, 2006). Also, liquid scintillation counting (LSC) after radiochemical separation of 210Po, based on a final precipitation of PbSO$_4$, represents a suitable alternative to other spectrometric techniques for direct determination of 210Pb activity through its beta energy line at 63.5 keV (see Villa et al., 2007). The method requires a suitable chemical procedure, careful calibration of the low-background scintillation spectrometer and spectrum correction for the contribution of ingrowing 210Bi to the total 210Pb region. The radiochemical yield can be gravimetrically determined. The main technical advantage of both methods (i.e. alpha spectrometry and LSC) is the ability to provide measurements with low detection limits. However, they are usually more labour intensive and expensive than gamma spectroscopy and it should be kept in mind that these analytical methods are ‘destructive’.

Mabit et al. (2008) provide a comparison of alpha and gamma spectrometry measurements. The authors demonstrated under experimental conditions that for low 210Pb$_{ex}$ activities in the soil matrix, the difference between alpha and gamma spectrometry measurements of total 210Pb is high and that alpha spectrometry performs much better than gamma analysis. The relative uncertainty associated with gamma spectrometry determinations for a 210Pb$_{ex}$ activity of 10 Bq kg$^{-1}$ can reach 40%, although for higher activities (> 30 Bq kg$^{-1}$) uncertainties become acceptable (<15%) and when activities exceed 120 Bq kg$^{-1}$, uncertainty levels are close to those associated with alpha spectrometry (Mabit et al., 2008). Readers are also referred to an intercomparison of the three main analytical techniques used to measure 210Pb reported by Villa et al. (2007). These authors compared the accuracy of the results obtained by LSC for quantifying 210Pb in sediment samples from the estuary of the Odiel and Tinto Rivers (SW Spain) with two other alternative methods (i.e. alpha- and gamma-spectrometry). They found the three methods to give identical results within the uncertainty of the measurements, with the exception of a few samples. These exceptions were thought likely to be related to incomplete homogenization of the associated samples (see Villa et al., 2007).

However, even if chemical separation methods can provide more accurate results for total 210Pb activity, there is still a need to measure the 226Ra content of a sample using gamma spectrometry, in order to determine 210Pb$_{ex}$. The measurement of 210Pb and 226Ra using radiochemical separation methods (alpha spectrometry and/or LSC) could prove appropriate when using a limited number of samples with low activities to determine sedimentation or soil erosion rates.

To summarise, if a sample is expected to have a high 210Pb activity (e.g. >5 Bq kg$^{-1}$), gamma-spectrometry is recommended. However, if the expected activity is <5 Bq kg$^{-1}$, either alpha-spectrometry or LSC could be more appropriate. Alpha spectrometry can achieve low detection limits. The choice between alpha spectrometry and LSC should be guided by the accuracy and detection limit required and the time constraints of the study. For a more in-depth assessment of the comparative advantages and limitations of 210Pb measurement by radiochemical separation methods and gamma spectrometry, the reader is referred to Desideri et al. (2011), Ebaid and Khater (2006), Jia and Jia (2012), Seldou et al. (2008), Villa et al. (2007) and Zaborska et al. (2007).

5. Using 210Pb$_{ex}$ for documenting soil redistribution and sediment sources

The principles associated with the use of 210Pb$_{ex}$ for the assessment of soil redistribution have been described in several publications (e.g. Walling and He, 1999b; Walling et al., 2003a; Zhang et al., 2006; Mabit et al., 2008; Matsioff and Whiting, 2011). The basic principles underlying the method are simple, but there are a number of methodological issues which require careful consideration and some pitfalls which can prove serious obstacles to the successful application of the approach.

The use of FRNs to investigate soil redistribution rates has several important advantages over traditional erosion measurement or assessment methods (see Walling and Quine, 1991; Mabit et al., 2008; Zupanc and Mabit, 2010). The use of 210Pb$_{ex}$ for documenting soil redistribution rates involves the same advantages (e.g. global distribution, retrospective assessment, spatially distributed data, only one
sampling campaign required for assessing the magnitude of both erosion and deposition) and limitations (e.g. choice of reliable reference site, specific detection system) as other FRNs (see Mabit et al., 2008; Matisoff and Whiting, 2011). In addition, it has the following additional advantages: (i) the use of 210Pb$_{ex}$ can extend the timescale associated with other FRN measurements to provide a retrospective assessment of longer-term soil redistribution rates over a period of up to 100 years; and (ii) since the fallout of 210Pb is continuous, its use does not face the problems associated with short- and medium-lived anthropogenic radioactivity soil tracers such as 137Cs.

The general principle underpinning the use of 210Pb$_{ex}$ as a soil tracer is the comparison of the areal activity or inventory of 210Pb$_{ex}$ (Bq m$^{-2}$) of the sampling point with the inventory of an undisturbed site or 'reference site'. If the inventory at the sampling point is significantly less than the reference inventory, erosion can be assumed to have occurred, whereas, if it exceeds the reference inventory, deposition can be assumed to have occurred. The use of appropriate conversion models allows the quantification of soil erosion and deposition rates (t ha$^{-1}$ yr$^{-1}$) associated with a period of ca. 100 years, which corresponds to about five half-lives of 210Pb.

The vertical distributions of 210Pb$_{ex}$ associated with undisturbed and cultivated soils are very similar to those documented for 137Cs (see Fig. 3), however the continuous input of 210Pb results in a maximum activity occurring at the surface (Walling et al., 1995).

Conversion of 210Pb$_{ex}$ inventories to soil erosion rates follows the same principles as for the 137Cs technique (Walling et al., 2011). In order to derive estimates of soil redistribution rates, two mass balance models have been developed for use with the 210Pb$_{ex}$ inventories of samples collected from cultivated sites. They represent adaptations of mass balance models (MBM) 2 and 3 developed for the more widely used 137Cs (see Walling and He, 1999c; Walling et al., 2002, 2003a, 2011). The MBM 3 includes a tillage component, whereas MBM 2 does not. An adaptation of the diffusion and migration model developed for the use of 137Cs in uncultivated areas has also been successfully applied to convert 210Pb$_{ex}$ inventories obtained from non-cultivated (e.g. pasture and rangeland) areas (Walling et al., 2003a). In addition to the need to change the 210Pb$_{ex}$ decay constant, which differs from that for 137Cs, Walling et al. (2011) made two key modifications to the 137Cs conversion models upon which they were based. Firstly, the modelling period extends back 100 years from the sampling date. It is assumed that the influence of any 210Pb deposition prior to this point in time is insignificant due to decay. In theory, only around 4% of the original deposition will remain after 100 years. The time of sampling is not used in the calculation. It is only relevant for interpreting the results obtained from the model. Secondly, it is assumed that the annual 210Pb fallout remains effectively constant through time. The reference inventory will represent a steady state balance between input and decay, and thus will also remain constant over time. The annual deposition flux (I) can be determined from the local reference inventory (A_{ref}) and the decay constant of 210Pb (λ_{Pb}) as:

$$I = A_{ref} \lambda_{Pb}.$$

Most of the parameters used in the conversion models for 210Pb$_{ex}$ inventories are very similar to those used for the 137Cs models. However, a degree of caution is needed in their specification, since the behaviour of 210Pb in soils may differ from that of 137Cs. One key difference is the greater preference of 210Pb for organic matter, with the result that 210Pb is a better tracer of organic and minerogenic particles in combination.

There is a need for a wider testing of the 210Pb$_{ex}$ conversion models to generate an improved understanding of their advantages and limitations and thus assist the further development and improvement of such models and such work is already being reported (see Porto and Walling, 2012; Porto et al., 2013). Attention should also be given to the careful interpretation of the results provided by 210Pb$_{ex}$ (alone or in combination with other radiotracers), because its inventories in soils will be influenced by soil erosion rates over the last ca. 100 years, but are also likely to be more sensitive to the recent soil redistribution rates when compared to 137Cs (Porto et al., 2009, 2013). Therefore 210Pb$_{ex}$ has been promoted for assessing the effectiveness of soil conservation measures and for investigating climate change impact on agricultural landscapes (e.g. Dercon et al., 2012).

The main limitation of the 210Pb$_{ex}$ approach is the difficulty of accurately determining 210Pb$_{ex}$ by laboratory gamma spectrometry. Additional sources of 222Rn to the atmosphere may also create problems. 222Rn and its short-lived decay products are commonly present in the atmosphere at much lower levels than in the soil. However, increased activities can occur in the vicinity of volcanoes, thermal spas, and other sources of gas emanating from zones of the Earth's surface where rocks or minerals with high radium content are found. In some locations, the 210Pb$_{ex}$ content in soil has been found to be very low and even below detection limits. This could reflect either very high soil erosion rates or a low 210Pb fallout deposition flux, and clearly constitutes a major limitation to the use of 210Pb$_{ex}$ in some areas. Where the total 210Pb content of a soil is very close to the content of supported 210Pb indicated by the 226Ra content, the uncertainty associated with determining 210Pb$_{ex}$ may be too high. Limitations of the use of this isotope in some environmental applications such as sediment dating in New Zealand (Graham et al., 2004) and as a soil tracer under certain conditions, including frozen soil (Golosov et al., 2011) have already been reported. Consequently, like 137Cs (Parsons and Foster, 2011; Mabit et al., 2013), 210Pb$_{ex}$ is not applicable everywhere. For example, very low levels of 210Pb$_{ex}$ activity (due to either high erosion process
or low 210Pb input) coupled with a high spatial variability and a high measurement error may inhibit the use of this FRN (see Mabit et al., 2009, 2010).

The combined use of FRNs offers considerable potential to investigate the erosional history of a study site and the impact of land use and climate change, by providing information for different time windows (see Mabit et al., 2008; Dercon et al., 2012; Guzmán et al., 2013). In addition, use of two or more different and essentially independent radionuclides can increase the confidence in the results obtained. In most cases it is possible to measure the different FRNs at the same time using the same samples. In this context 210Pbex is often used in combination with 137Cs to provide information on soil redistribution over the past 100 years. If soil redistribution rates remain essentially constant over this period, the spatial variation of 210Pbex inventories across a study site should theoretically be similar to that associated with 137Cs inventories. Table 1 provides examples of where 210Pbex has been used in combination with 137Cs and includes studies where the results obtained by the radionuclides can be compared with independent contributions of sediment supply and the sediment redistribution rates established by more conventional monitoring techniques. In most cases the different radionuclides provide similar results, but contrasts can reflect land use change over the period of interest. Equally the results provided by the FRNs correlate well with those provided by other direct and indirect monitoring techniques. Fig. 4 emphasises the general consistency between the results provided by 210Pbex and 137Cs for the soil erosion studies included in Table 1, by plotting the relationship between the results derived from two alternative approaches. This demonstrates a near 1 to 1 and highly significant linear relationship (i.e. $y = 1.07x - 0.642; r^2 = 0.93$).

In addition to the use of 210Pbex for documenting soil redistribution rates, as discussed above, the radionuclide has also been successfully employed in a wide range of sediment source fingerprinting studies (e.g. He and Owens, 1995; Walling and Woodward, 1995; Owens and Walling, 2002; Froehlich, 2004). Such studies aim to establish the relative contribution of a range of potential sediment sources to the suspended sediment load of a river (see Walling, 2005, 2006). In this context, the 210Pbex activity of a sample of the fine sediment transported by a river or stream can provide a sensitive fingerprint of the source of that sediment. Because the occurrence of 210Pbex is primarily restricted to the surface horizons of the soil, by virtue of its fallout origin, the radionuclide affords an effective means of discriminating between sediment mobilised from surface sources and that originating from subsurface sources such as river banks and gullies. In addition, the mixing of the radionuclide into the plough layer by cultivation means that sediment mobilised from the surface of uncultivated land is likely to have a higher 210Pbex activity than that mobilised from the surface of cultivated land (Walling and Woodward, 1992; Wallbrink and Murray, 1993). The contrast between the temporal behaviour of 210Pb and 137Cs, with the former being essentially continuous and the latter restricted to the period of bomb testing, means that the behaviour of the two radionuclides in surface materials could differ. For example, erosion of the surface of an uncultivated soil could remove all the 137Cs originally contained in the surface material, but the 210Pbex activity will be replenished by ongoing fallout. In most sediment source fingerprinting studies, there is a need to discriminate between several potential sources and therefore 210Pbex is commonly used in conjunction with other FRNs and/or other sediment properties (e.g. geochemical, mineral magnetic, bulk and isotopic carbon and nitrogen, and compound specific stable isotopes) as part of a composite fingerprint (e.g. He and Owens, 1995; Walling and Woodward, 1995; Wallbrink and Murray, 1996; Walling et al., 1999; Huisman and Karthikeyan, 2012; Owens et al., 2012; Wilson et al., 2012; Hancock and Revill, 2013; Olley et al., 2013).

In another application, several workers (e.g. Matisoff et al., 2005; Evrard et al., 2010) have proposed that the 7Be/210Pbex ratio in the fine sediment transported by river can provide evidence of its ‘age’ or, alternatively, the relative contribution of ‘new’ and ‘old’ sediment to the river’s suspended sediment load. In this context ‘age’ refers to the time the sediment has remained in the river channel since being eroded and transported from the surrounding catchment. ‘New’ and ‘old’ similarly refer to sediment newly delivered to the channel which will be 7Be enriched and 7Be deficient sediment resuspended from the channel bed or banks. It is argued that since both 7Be and 210Pbex have a similar source as contemporary atmospheric fallout, fallout will be characterised by a distinctive 7Be/210Pbex ratio and freshly mobilised sediment will evidence a similar ratio. Because 7Be has a short half-life, the 7Be/210Pbex ratio associated with freshly mobilised suspended sediment will progressively decline as it remains longer in the system and the ‘age’ of the sediment can be estimated from the magnitude of the ratio. Equally, if freshly mobilised or ‘new’ suspended sediment is assumed to have a ratio close to that associated with fallout, and ‘dead’ sediment is assumed to have ratio approaching zero, the proportion of ‘new’ sediment will be directly related to the value of the ratio. However, while attractive in its apparent simplicity, Walling (2013) has shown that approach involves a number of assumptions that compromise such interpretation of the 7Be/210Pbex ratio.

While, there has been much recent interest in the use of Pb as a tracer of soil and sediment movement on hillslopes and through river basins, several studies have shown that, under certain circumstances, the 210Pbex signal may be altered during its transport through the landscape and therefore be non-conservative. For example, studies of wildfire-affected landscapes (e.g. Blake et al., 2009; Wilkinson et al., 2009; Owens et al., 2012; Perreaud et al., 2013) have shown that 210Pbex can be concentrated in surface soils due to the combustion of organic matter at the soil surface (e.g. leaf litter) by the fire and this may influence its ability to trace soil and sediment redistribution in such landscapes (Smith et al., 2013). While this concentration effect has also been noted for other FRNs, like 137Cs, the stronger association of 210Pbex with organic matter means that it may be more pronounced than other FRNs. The well-recognised affinity of 210Pbex to SOM has been exploited by several innovative studies aimed at improving current understanding of carbon fluxes and dynamics in the soil profile associated with erosion processes and with the impact of land use changes (e.g. Yoo et al., 2011; Özden et al., 2013; Teramagi et al., 2013). Similarly, Braakhekke et al. (2011, 2012) have recently initiated studies using 210Pbex as a tracer of SOM transport in mineral soil profiles in The Netherlands and in Central Germany.

We believe that greater emphasis on developing a better understanding of spatio-temporal patterns of 210Pbex is essential to upscale its use to the watershed and river basin scales using adapted sampling strategies, GIS and geostatistical tools. Furthermore, investigating the relationship between this FRN and soil quality indicators could provide additional information regarding soil fertility degradation processes.

6. Assessing sedimentation rates and dating sediment in freshwater lakes and reservoirs

True varves, which occur rarely in most sedimentary sequences, with the exception of lakes in glacialized basins (Ojala et al., 2012), and other non-radiometric dating methods (e.g. fossil markers, pollen, pollution markers) can provide important stratigraphic time-markers. However, radiometric dating is the only technique of general applicability that is able to provide an absolute age determination for lake sediments (Caroll and Lerche, 2003).

The capacity of 210Pbex determinations to provide information on the chronology of a sediment deposit and thereby to estimate the sedimentation rate is founded on its source and relatively long half-life. In general terms, the rate of decline of 210Pbex activity with depth in a sediment core provides the basis for establishing an age–depth relationship and for estimating sediment accumulation rates (SAR). If SAR are high, the 210Pbex activity will decline slowly with depth. On the other hand, if accumulation rates are low, the 210Pbex activity will reduce rapidly with depth.
Table 1: Comparison of soil redistribution magnitudes provided by FRN (i.e., 137Cs and 210Pbex) and conventional direct/indirect measurements.

<table>
<thead>
<tr>
<th>Reference(s)</th>
<th>Location</th>
<th>Climate</th>
<th>Type of site</th>
<th>Objective(s)</th>
<th>Mean reference inventory ($Bq \ m^{-2}$)</th>
<th>Net soil redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>137Cs</td>
<td>210Pb</td>
</tr>
<tr>
<td>Bemmansour et al. (2013)</td>
<td>Marchouach (37° 47′ N, 68 km south west from Rabat, Morocco)</td>
<td>Mediterranean semi-arid climate</td>
<td>Experimental agricultural field</td>
<td>Estimate soil redistribution rates and the assessment of the effectiveness of soil conservation techniques</td>
<td>Undisturbed site (n = 12): 1445 Bq m$^{-2}$</td>
<td>Undisturbed site (n = 12): 1305 Bq m$^{-2}$</td>
</tr>
<tr>
<td>Belyaev et al. (2004)</td>
<td>Tver region, the Osuga river basin, northwest of the Russian Plain</td>
<td>Continental, precipitation of 600 mm</td>
<td>Agricultural field</td>
<td>Evaluate rates of soil and sediment redistribution during a period of intensive agriculture</td>
<td>4013 Bq m$^{-2}$ (n = 5)</td>
<td>8392 Bq m$^{-2}$ (n = 3)</td>
</tr>
<tr>
<td>Blake et al. (2009)</td>
<td>Blue Gum Creek catchment, Nattai National Park, New South Wales, Australia</td>
<td>Humid temperate climate</td>
<td>Wildfire-affected eucalypt forest</td>
<td>Deriving sediment budget for wildfire-affected forested area</td>
<td>Burnt plateau area (n = 20): 493 ± 34 Bq m$^{-2}$</td>
<td>Burnt plateau area (n = 20): 1923 ± 171 Bq m$^{-2}$</td>
</tr>
<tr>
<td>O'Farrell et al. (2004)</td>
<td>Haypress basin, Tennessee Valley, in the Marine Headlands of northern California, USA</td>
<td>Mediterranean, with annual precipitation of 760 mm</td>
<td>Undisturbed soils covered with coastal grasses; poison oak and coyote bush on the hollows</td>
<td>Estimates of the erosion rates and processes</td>
<td>Flat crest of the catchment (n = 2): 1102 ± 1940 Bq m$^{-2}$</td>
<td>Flat crest of the catchment (n = 2): 1508 ± 1904 Bq m$^{-2}$</td>
</tr>
<tr>
<td>Fukuyma et al. (2008)</td>
<td>Near the town of Taiki, In Me prefecture, central Japan (136°25′ E, 34°21′ N)</td>
<td>Humid subtropical climate</td>
<td>Japanese cypress plantations</td>
<td>Confirming the dominant erosion processes</td>
<td>Undisturbed, ridge top of the study catchment (n = 1, using scraper plate): 1710 Bq m$^{-2}$ and (n = 45, using a steel core sampler): 2948 Bq m$^{-2}$</td>
<td>Undisturbed, ridge top of the study catchment (n = 1, using scraper plate): 4354 Bq m$^{-2}$ and (n = 45, using a steel core sampler): 8453 Bq m$^{-2}$</td>
</tr>
<tr>
<td>Gaspar et al. (2013)</td>
<td>Estañalake catchment, central part of the Pre-Pyrenees, NE Spain</td>
<td>Continental Mediterranean</td>
<td>Different land use (natural forest, abandoned fields and cultivated fields)</td>
<td>Test the applicability of the combined FRN techniques in soil erosion studies for different soil types, land use and slope gradients</td>
<td>Level undisturbed sites with a mature and natural vegetation cover (n = 9): 1570 ± 80 Bq m$^{-2}$</td>
<td>Level undisturbed sites with a mature and natural vegetation cover (n = 3): 1943 ± 78 Bq m$^{-2}$</td>
</tr>
<tr>
<td>Kato et al. (2010)</td>
<td>Kherlen-bayan Ulaan (KBU) and in Baganuur (BGN) within the Kherlen River Basin, eastern Mongolia</td>
<td>Cold, semi-arid climate</td>
<td>Steppe grassland with tall-grass prairie</td>
<td>Soil erosion estimates and applicability of the 210Pbex technique for semi-arid grass hillslopes</td>
<td>Permanent grassland: 1889 Bq m$^{-2}$ (KBU) and flat terrace: 1698 Bq m$^{-2}$ (BGN)</td>
<td>Permanent grassland: 6310 Bq m$^{-2}$ (KBU) and flat terrace: 6427 Bq m$^{-2}$ (BGN)</td>
</tr>
<tr>
<td>Porto et al. (2006)</td>
<td>Three small forest/rangeland catchments, Calabria, southern Italy</td>
<td>Mediterranean climate</td>
<td>Three small forest/rangeland catchments</td>
<td>Explore the use of fallout 210Pb to estimate rates of water-induced soil erosion on unconsolidated land</td>
<td>An area of undisturbed rangeland with minimal slope within catchment (n = 1): 5266 Bq m$^{-2}$, soil cores (n = 6): 5440 Bq m$^{-2}$</td>
<td>An area of undisturbed rangeland with minimal slope within catchment (n = 1): 5266 Bq m$^{-2}$, soil cores (n = 6): 5440 Bq m$^{-2}$</td>
</tr>
<tr>
<td>Authors</td>
<td>Location</td>
<td>Methods/Approach</td>
<td>Findings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto and Walling (2012)</td>
<td>Porto and Walling (2012)</td>
<td>40 km north of Reggio Calabria in southern Italy</td>
<td>Cultivated field very close to the study site (n = 8 + 1): 9.4 to 10.4 Bq m⁻²</td>
<td>-9.5 to -12.0 t ha⁻¹ yr⁻¹ (MBM with tillage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto et al. (2013)</td>
<td>Porto et al. (2013)</td>
<td>Bonis catchment (1.39 km²), mountain area of Sila Creca, Calabria, southern Italy</td>
<td>Forest stands (93%) and no tree cover (6%)</td>
<td>Slopes: -3.69 t ha⁻¹ yr⁻¹ (DMM) catchment divides: -1.98 t ha⁻¹ yr⁻¹ valley bottoms: 3.58 t ha⁻¹ yr⁻¹ (DMM) Permanent pasture with minimal slope (n = 8): -38.8 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porto et al. (2014)</td>
<td>Porto et al. (2014)</td>
<td>Small (0.86 ha) cultivated catchment in Sicily, Italy</td>
<td>Cultivation since the early 1950s mainly with wheat</td>
<td>-6.5 to -18.2 t ha⁻¹ yr⁻¹ (MBM with tillage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Mabit et al. / Earth-Science Reviews 138 (2014) 335</td>
<td>L. Mabit et al. / Earth-Science Reviews 138 (2014) 335</td>
<td>432 Bq m⁻²</td>
<td>-9.4 to -38.5 t ha⁻¹ yr⁻¹ (5 runoff plots with different management systems; period: 4 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakiyama et al. (2010)</td>
<td>Wakiyama et al. (2010)</td>
<td>Tsuzura River watershed, a midstream tributary of the Shimanto River basin, in southern Japan</td>
<td>Japanese cypress plantation, natural broadleaf forest stands, and Japanese cedar plantation</td>
<td>Japanese cypress stand (bare): -1.61 t ha⁻¹ yr⁻¹ (DMM) Japanese cypress stand (fern): -1.13 t ha⁻¹ yr⁻¹ (DMM) Japanese cedar stand (bare): -0.58 t ha⁻¹ yr⁻¹ (DMM) Broadleaf forest stand: -0.83 t ha⁻¹ yr⁻¹ (DMM) Net erosion rate for the field: -6.5 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Mabit et al. / Earth-Science Reviews 138 (2014) 335</td>
<td>L. Mabit et al. / Earth-Science Reviews 138 (2014) 335</td>
<td>3067 Bq m⁻²</td>
<td>-9.35 t ha⁻¹ yr⁻¹ (period: 2 years) Japanese cedar: -0.97 t ha⁻¹ yr⁻¹ (period: 2 years) Broadleaf forest: -6.99 (1 plot) and -2.70 (10 runoff plots) (period: 2 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walling et al. (1995)</td>
<td>Walling et al. (1995)</td>
<td>Butsford Barton near Colebrooke, Devon, UK</td>
<td>Small cultivated field</td>
<td>Comparing the estimates provided by ¹³⁷Cs and unsupported ²¹⁰Pb (measurements). Net erosion rate for the field: -9 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walling et al. (2003a)</td>
<td>Walling et al. (2003a)</td>
<td>Upper Kaleya River basin (63 km²), southern Zambia (16°11′S, 28°02′E)</td>
<td>Small cultivated field</td>
<td>Located within the study catchment and characterized by minimal slope (n = 36): 20.20 ± 22.8 Bq m⁻² Commercial cultivation: 4.3 t ha⁻¹ yr⁻¹ (DMM) communal cultivation: 2.5 t ha⁻¹ yr⁻¹ (DMM) bush grazing: 2.9 t ha⁻¹ yr⁻¹ (DMM) Broadleaf forest stand: 0.98 t ha⁻¹ yr⁻¹ (DMM) Net erosion rate for the field: 6.5 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collins et al. (2001)</td>
<td>Collins et al. (2001)</td>
<td>Upper Kaleya River basin (63 km²), southern Zambia (16°11′S, 28°02′E)</td>
<td>Small cultivated field</td>
<td>Located within the study catchment and characterized by minimal slope (n = 36): 20.20 ± 22.8 Bq m⁻² Commercial cultivation: 4.3 t ha⁻¹ yr⁻¹ (DMM) communal cultivation: 2.5 t ha⁻¹ yr⁻¹ (DMM) bush grazing: 2.9 t ha⁻¹ yr⁻¹ (DMM) Broadleaf forest stand: 0.98 t ha⁻¹ yr⁻¹ (DMM) Net erosion rate for the field: 6.5 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. (2011)</td>
<td>Yang et al. (2011)</td>
<td>Mojiagou Basin, on the outskirts of Changchun, Jilin Province, Northeast China</td>
<td>Cultivated field (corn), ploughed along the contours</td>
<td>Sites with gentle slopes and wild grass (n = 5): 2918 ± 420 Bq m⁻² Grassland and flat cultivated land, and undisturbed area near a pine forest (n = 6 + 1): 2005 Bq m⁻² Commercial cultivation: 4.5 t ha⁻¹ yr⁻¹ (DMM) communal cultivation: 2.9 t ha⁻¹ yr⁻¹ (DMM) bush grazing: 1.2 t ha⁻¹ yr⁻¹ (DMM) Bush grazing: 0.3 t ha⁻¹ yr⁻¹ (DMM) Net erosion rate for the field: 6.5 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zheng et al. (2007)</td>
<td>Zheng et al. (2007)</td>
<td>Subtropical climate</td>
<td>Cultivated field manually tilled from the bottom to the top of the slope</td>
<td>Soil erosion estimates associated with manual tillage Grassland and flat cultivated land, and undisturbed area near a pine forest (n = 6 + 1): 2005 Bq m⁻² Commercial cultivation: 4.5 t ha⁻¹ yr⁻¹ (DMM) communal cultivation: 2.9 t ha⁻¹ yr⁻¹ (DMM) bush grazing: 2.5 t ha⁻¹ yr⁻¹ (DMM) Bush grazing: 1.2 t ha⁻¹ yr⁻¹ (DMM) Broadleaf forest stand: 0.98 t ha⁻¹ yr⁻¹ (DMM) Net erosion rate for the field: 6.5 t ha⁻¹ yr⁻¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB: MBM = Mass Balance Model; MBM2 = Mass Balance Model 2; MBM3 = Mass Balance Model 3; DMM = Diffusion and Migration Model; PDM = Profile Distribution Model.
This application of 210Pb$_{ex}$ was first proposed by Goldberg (1963) to date glacier ice, and was subsequently applied to lacustrine (Krishnaswamy et al., 1971) and marine sediments (Koide et al., 1972). The development of the approach proceeded rapidly with other applications in various environments. In the meantime, the dating models used to interpret the 210Pb$_{ex}$ depth distribution in sediment cores increased in variety and complexity (Robbins and Edgington, 1975; Appleby and Oldfield, 1978; Christensen, 1982; Abril et al., 1992; Caroll and Lerche, 2003). Currently, an advanced search in Scirus (http://www.sciirus.com) with the keywords “sediment” and 210Pb$_{ex}$ produces more than 21,000 results which include 13,500 scientific articles. For an extensive review of such dating applications the reader is referred to Sánchez-Cabeza and Ruíz-Fernández (2012). It should be recognised that after half a century of investigations, the 210Pb$_{ex}$ method has facilitated an improved understanding of a wide range of natural processes in recent sediments.

The most commonly used models for converting 210Pb$_{ex}$ data from a sediment profile into a sediment chronology are: the Constant Flux and Constant Sedimentation Rate (CF–CSR) model (see Krishnaswamy et al., 1971; Appleby and Oldfield, 1978), the Constant Initial Concentration (CIC) model (see Pennington et al., 1976) and the Constant Rate of Supply (CRS) model (see Appleby and Oldfield, 1983). Descriptions of the models and the associated equations have been reported in the above references and by Appleby (2001).

The CRS model assumes that the flux of unsupported 210Pb onto the sediment–water interface (SWI) is constant over time. The model works with the partial inventories below a given sediment horizon at depth z (obtained by numerical integration from the determined 210Pb$_{ex}$ concentrations, the bulk density and the thickness of each sediment slice), and, by comparing them with the overall core inventory is able to generate a chronology – the ages at the limits of each sediment slice – and provide values of SAR (see Table 2). The latter can be linked to the major environmental impacts encountered by the investigated sediments. Therefore, accurate estimation of the total inventory is of critical importance for the application of the CRS model (Appleby, 2001; Mackenzie et al., 2011). Sometimes the core is shorter than the equilibrium depth (the depth at which the total 210Pb is in equilibrium with the supporting 226Ra), or analytical uncertainties are too large. The total inventory can be estimated in these cases by using reference accumulation rates (when the older sections of the core follow an exponential decrease with mass depth) or reference dates (by using an independently dated reference level). Details on these methods can be found in Appleby (2001).

Appleby et al. (1979) used three laminated sediment cores from lakes in east Finland to provide an empirical validation of the CRS model in scenarios with varying SAR. Since then, the CRS model has become the most widely applied dating approach. It has been validated by several independent methods, although, some empirical evidence of its limitations has been provided by varved sediments (Wan et al., 1987; Reiniikainen et al., 1997; Lamoureux, 1998).

The CIC model assumes that the 210Pb$_{ex}$ flux co-varies with SAR and therefore that the initial concentration at the SWI remains constant over.

![Fig. 4. Comparison of soil redistribution rates obtained with the 137Cs and the 210Pb$_{ex}$ methods. NB: Based on the data set presented in Table 1, each point representing the 137Cs and 210Pb$_{ex}$ pair information originating from the same study site.](image-url)

Table 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Assumptionsa/notes</th>
<th>Analytical solutions</th>
<th>Some references</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS: Constant Rate of Supply</td>
<td>[1], [2]; it can be formulated in terms of actual depths</td>
<td>$\Sigma(m) = \Sigma_0 \exp(-\lambda t)$</td>
<td>Appleby and Oldfield (1978) and Appleby (2001)</td>
</tr>
<tr>
<td>CIC: Constant Initial Concentration</td>
<td>[1]; $\phi(t)/w(t) = Cte$</td>
<td>$A(m) = A_0 \exp(-\lambda t)$</td>
<td>Robbins and Edgington (1975) and Robbins (1978)</td>
</tr>
<tr>
<td>CF–CSR: Constant Flux and Constant Sedimentation Rate</td>
<td>[1], [2], [3]</td>
<td>$A(m) = A_0 \exp(-\lambda t/w); t = m/w$</td>
<td>Krishnaswamy et al. (1971) and Smith and Walton (1980)</td>
</tr>
<tr>
<td>SIT: Sediment Isotope Tomography</td>
<td>[1] it can be formulated in terms of actual depths</td>
<td>$A(m) = A_0 \exp(-\lambda t/b + \sum_{i=1}^{N} \alpha_i \sin (\frac{\pi m}{N \delta m})); A_0 = \sum_{i=1}^{N} \sum_{b=1}^{N} \sin \left(\frac{\pi b}{N \delta m}\right)$</td>
<td>Caroll and Lerche (2003)</td>
</tr>
<tr>
<td>NID–CSR: Non-Ideal-Deposition, Constant Sedimentation Rate</td>
<td>[1], [2], [3]; fractioning of fluxes, depth distribution</td>
<td>$A(m) = C_1 e^{-\beta m} + C_2 e^{-\gamma m}; C_1 = \frac{\delta \rho}{\rho_0}; C_2 = \frac{1}{\delta \rho - \rho_0}$</td>
<td>Abril and Gharbi (2012)</td>
</tr>
<tr>
<td>CMZ-CS: Complete Mixing Zone with constant SAR</td>
<td>[2], [3]; $k_m = m; m_k = 0; m_{m_k}$</td>
<td>$A(m) = C - C \exp(-\lambda (m-m_k)/w); m-m_k$</td>
<td>Robbins and Edgington (1975)</td>
</tr>
<tr>
<td>IMZ: Incomplete Mixing Zone</td>
<td>[2], [3]</td>
<td>A linear combination of solutions for CF–CS and CMZ-CS with coefficients g and $(1-g)$, being $g \in [0,1]$</td>
<td>Abril et al. (1992)</td>
</tr>
<tr>
<td>CF–CS-Constant Diffusion</td>
<td>[2], [3]; $k_m(m) = Cte$</td>
<td>$A(m) = \frac{\rho_0}{\rho_0 - \rho_0 \exp(-\frac{m}{\delta \rho})}$</td>
<td>Robbins (1978) and Laisaoui et al. (2008)</td>
</tr>
<tr>
<td>CF–CS-depth dependent diffusion and/or translational mixing</td>
<td>[2], [3]; $k_m(m) = f(m); m$ may include local sources and sinks</td>
<td>General numerical solution</td>
<td>Smith et al. (1986), Abril (2003a,b), Abril and Gharbi (2012) and Robbins (1986)</td>
</tr>
</tbody>
</table>

Inventories below the horizon at mass depth m: $\Sigma(m) = \int \rho \lambda(t) dt$; $\Sigma_0 = \Sigma(m = 0)$.

a [1] Non post-depositional redistribution; [2] constant 210Pb$_{ex}$ fluxes at the SWI; [3] constant SAR $A(m)$, 210Pb$_{ex}$ activity concentration in solids at mass depth m.
time. This model permits estimation of the age of each sediment slice and its corresponding SAR history (see Table 2). The CIC model has proved its value in aquatic environments in which the \(^{210}\text{Pb}_{\text{ex}}\) fluxes of inputs by sediment carrying \(^{210}\text{Pb}_{\text{ex}}\) are a set of assumptions about the expected functioning of the sedimentary system (e.g. fluxes of \(^{210}\text{Pb}_{\text{ex}}\), SAR and diffusion) which permit particular solutions to be found from the general and unique physical problem of mass conservation for solids and for the particle-associated tracers, in sediments that undergo accretion and compaction (Abril, 2003b).

Due to natural early compaction in sediments and core shortening during sampling operation and storage (Glew et al., 2001), actual depths (\(z\), measured below the SWI) and sedimentation velocities, \(r\) (with physical dimensions \(L^{-1}\)) are not meaningful magnitudes. Instead, the mass depth variable, \(m\) (the amount of dry matter per unit surface lying above any given sediment horizon at depth \(z\)) and the SAR (with physical dimensions \(M L^{-2} T^{-1}\)) can be used. Thus, if

Assumption (v) allows for the direct estimation of the supported \(^{210}\text{Pb}\) fraction from the asymptotic constant value (at depth) observed in the depth profile of total \(^{210}\text{Pb}\) activity concentration. However, in many cases \(^{226}\text{Ra}\) concentrations are not uniform with depth. Recent advances in gamma spectrometry allow the simultaneous measurement of \(^{210}\text{Pb}\) and \(^{226}\text{Ra}\), making this assumption irrelevant. Assumption (iv) is met in most cases, if the sediment is underwater, although it has to be revisited in cases where sharp gradients of \(^{226}\text{Ra}\) concentrations are found. Only a small fraction of the \(^{226}\text{Ra}\) generated by the decay of \(^{228}\text{Ra}\) reaches the pore space where it can diffuse throughout, resulting in steady-state profiles of supported \(^{210}\text{Pb}\) slightly different from those for \(^{226}\text{Ra}\) (Appleby, 2001). Assumption (iii) is necessary for CRS and CIC models, but is not valid in some sedimentary systems. Alternate models are needed in cases where major bioturbation processes produce complete mixing in the uppermost sediment layers (Robbins and Edgington, 1975). Examples of incomplete mixing (Abril et al., 1992), uniform diffusion (Robbins, 1978; Laissaoui et al., 2008) and translocational mixing – e.g. through a conveyor belt effect due to worm activity (Robbins, 1986; Smith et al., 1986) – have also been described (see Table 2 for model equations). In fact, this is the main restriction of the method, since any dataset with a \(^{210}\text{Pb}_{\text{ex}}\) profile can be simultaneously explained by different models. Even in the case of a well-defined exponential decrease in the \(^{210}\text{Pb}_{\text{ex}}\) activity profile, the profile can be explained by a CFCS model, a model with uniform diffusion, or by a model with a constant increase of SAR over time (i.e. acceleration). One of the most exciting scientific debates related to the radiometric dating of recent sediments concerned questions about sediment mixing and the acceleration of sedimentation rates (see Abril, 2003a, 2004). Thus, the flattening of the \(^{210}\text{Pb}_{\text{ex}}\) profile observed in the uppermost sediment layers of several core profiles can be explained by both complete mixing (or partial mixing), or SAR acceleration. This aspect has been well-known since the beginning of radiometric dating by \(^{210}\text{Pb}_{\text{ex}}\) and has generated much controversial discussion. Nevertheless, this apparent difficulty can be solved when the \(^{210}\text{Pb}_{\text{ex}}\) dating method is complemented by other dating methods as discussed further below.

Assumption (i) is not entirely relevant since \(^{210}\text{Pb}\)-based radiometric dating models operate with fluxes at the SWI instead of atmospheric deposition. Pre-depositional processes operating on atmospheric fluxes can be recognized by comparing the latter with those determined at the SWI using the \(^{210}\text{Pb}_{\text{ex}}\)-based dating method, and further insight can be obtained by studying artificial fallout radionuclides (Abril and García-León, 1994; Robbins et al., 2000; Trabelsi et al., 2012). Most of the \(^{210}\text{Pb}_{\text{ex}}\)-based radiometric dating models assume constant fluxes at the SWI (or fluxes co-varying with SAR, as in the CIC model). Nevertheless, the Sediment Isotope Tomography (SIT) model (Caroll and Lerche, 2003), through the application of Fourier analysis and under the assumption of non-post-depositional redistribution, can run with non-correlated and time-dependent fluxes and SAR. Due to the infinite number of numerical solutions, the SIT model has to be validated by several independent time-marks, more or less regularly distributed within the core.

It should be pointed out that the different radiometric dating models reflect a set of assumptions about the expected functioning of the sedimentary system (e.g. fluxes of \(^{210}\text{Pb}_{\text{ex}}\), SAR and diffusion) which permit particular solutions to be found from the general and unique physical problem of mass conservation for solids and for the particle-associated tracers, in sediments that undergo accretion and compaction (Abril, 2003b).

Due to natural early compaction in sediments and core shortening during sampling operation and storage (Glew et al., 2001), actual depths (\(z\), measured below the SWI) and sedimentation velocities, \(r\) (with physical dimensions \(L^{-1}\)) are not meaningful magnitudes. Instead, the mass depth variable, \(m\) (the amount of dry matter per unit surface lying above any given sediment horizon at depth \(z\)) and the SAR (with physical dimensions \(M L^{-2} T^{-1}\)) can be used. Thus, if...
compaction was neglected, it is possible to find analytical solutions for steady-state profiles in terms of actual depths under a wide variety of assumptions and models (see Robbins, 1978). If bulk densities are assumed to be steady-state (which is possible even under variable SAR when the conductivity of solids co-varies with the rates), the same set of analytical solutions can be re-encountered, but in terms of m, and then, accounting for compaction (Abril, 2011). Under unsteady compaction, the governing equation for radioactive tracers should be coupled with the equation for mass conservation of solids given by the theory of early compaction (Abril, 2003b, 2011).

The diffusion term accounts for the random motion of individual particles, with a null net mass flow. When required, the mathematical description can be improved through a two-phase model (solids and pore-water) assuming local equilibrium for the solid-to-liquid partitioning of the tracer (Robbins and Jasinski, 1995). Nevertheless all these assumptions can be inappropriate to account for fast initial redistribution processes of radioactive fluxes within the pore space, particularly in sediments with high porosities. Thus, all models assume ideal deposition at the SWI, with new radioactive input being deposited above the previously existing material. However in sediments with high porosities, this assumption appears quite unrealistic as part of the incoming flux could penetrate rapidly through the connected pore spaces, which can be modelled as depth-distributed sources (see Abril and Gharbi, 2012). Such processes can explain subsurface 210Pb$_{ex}$ maxima observed in sediment cores, as well as a penetration of 137Cs to greater depth than expected from sedimentation rates and diffusion. A similar situation was reported for an investigated floodplain, where fluxes were distributed almost exponentially with depth in the surface sediment, which could have been buried by further accretion during individual flood events (He, 1993).

A complete and rigorous mathematical treatment of different models and the analytical and numerical methods involved in their respective solutions is beyond the scope of the present review. A summary of the most common 210Pb-based radiometric dating models is presented in Table 2, and, to provide an objective comparison of their advantages and limitations, a laminated sediment core sampled in 1971 in the Santa Barbara Basin, California, USA (Koide et al., 1973) was included to test the different model-chronologies against the one derived from varve counting (see Fig. 5).

The supported fraction was estimated to be 3.5 ± 0.5 dpm g$^{-1}$ (Koide et al, 1972). Bulk densities were estimated from the reported water and organic matter contents, assuming typical densities for inorganic solids (2.5 g cm$^{-3}$), organic matter (1.1 g cm$^{-3}$) and seawater (1.03 g cm$^{-3}$). Discussion will be limited to those models which exclude post-depositional redistribution. In Fig. 5a, the CF–CSR model corresponds to the exponential fit (a single-mean-value of SAR can be obtained from the scaling factor in this exponential, as presented in Table 2), while the Non-Ideal-Deposition, Constant Sedimentation Rate (NID–CSR) model is the best fit to a model including a fraction of fluxes undergoing non-ideal deposition (as an exponential depth distributed source; see figure caption for model parameters). These are two examples of “curve fitting models”. In the same panel, the CRS and CIC models exactly fit to the measured profile since they interpret any deviation from the ideal exponential decay as a change in SAR (CRS model) or in the flux (CIC model), in such a way that they can produce as many values of SAR/flux as data points contained in the profile. These are examples of “mapping models”. The CIT model assumes that both, SAR and fluxes can vary independently with time, and it contains, as particular cases, the CRS and CIC models, and it can operate through an extensive multi-parametric fit.

Fig. 5b shows the chronologies (given as ages before the date of sampling) obtained from the previous models, along with that derived from varve counting. To apply the CRS model, it is necessary to know the total inventory, but this core was not long enough (e.g. 210Pb$_{ex}$ in Fig. 5a does not disappear within the core mass depth). In these cases, some corrections are needed, and the one used here involves estimating the missing part of the inventory from an extrapolation of the exponential decay pattern observed in Fig. 5a (the reference accumulation rate method). The age of each sediment slice is then computed using the analytical solution given in Table 2. CF–CSR and NID–CSR models produced virtually identical results for the mean SAR value. The corresponding plot of the ages versus mass depth is a straight line in quite good agreement with the CRS chronology. Finally, to apply the CIC model it is necessary to have a reliable estimate of the initial concentration, a difficult task in this particular profile which shows a sub-surface maxima. Without any additional constraint, this value is an ad hoc hypothesis. For our test, a value of 1050 ± 50 Bq kg$^{-1}$ has been adopted. The corresponding chronology is then derived using the analytical solution presented in Table 2. It is worthy of note that CIC ages show fluctuations that seem to violate the stratigraphic principle, but this can be overcome by adopting a polynomial smoothing of the data. Without any independent time mark, the CIT model cannot constrain the variability in SAR and fluxes, in such a way that there exists a virtually unlimited number of possible solutions, the CIC and CRS chronologies being two particular cases.

Although error propagation and the χ^2 tests have not been discussed in detail, from this exercise it is clear that neither the high quality of the fits (as in the cases of CF–CSR and NID–CSR models) nor the consistency with other models (e.g. CRS and the two curve-fitting models) can ensure the accuracy of the derived chronologies (in this example they largely deviate from the varve chronology). Therefore, as suggested by Smith (2001), the authors of this review highly recommend confirming the reliability of model-derived 210Pb dates using an independent dating technique. This is often accomplished by comparing 210Pb model dates against ages determined by artificial fallout radionuclides such as 137Cs (e.g. Pennington et al., 1973; Walling et al., 2002), Pu isotopes ($^{239 + 240}$Pu; 238Pu/$^{239 + 240}$Pu) (e.g. Wan et al., 1987; Hancock et al., 2011), 241Am (e.g. Appleby et al., 1991) and 14C (e.g. Massa et al., 2012).

Some attempts have been made to extend and adapt this methodology to study sedimentary processes in reservoirs (McCall et al., 1984) and depositional zones of riverine systems (Chakrapani and Subramanian, 1993; Jewda and Barkaran, 2011; Aalto and Nittouer, 2012). Sedimentation in these aquatic environments may be highly irregular, with some episodic extreme events, and in riverine systems it may coexist with some erosion events. Thus, the usual assumptions involved in 210Pb dating models are rarely met in these scenarios. Particularly, a few decades after a dam construction, neither 210Pb$_{ex}$ inventories in sediments nor their 210Pb$_{ex}$ activity versus depth profiles are in steady-state. In many cases, severe erosion leads to a fast colimation of reservoirs, with deposits up to tens of metres. Despite this intrinsic complication, some new strategies have been proposed to overcome such limitations. Thus, measurement of the thickness of sediment over the original basin floor (McCall et al., 1984) or the inter-comparison of bathymetric surveys at different dates can serve to provide chronologically references and a gross-estimate of SAR in reservoirs. In riverine-estuarine systems, multi-isotopic (e.g. 210Pb, 226Ra, 137Cs, 7Be) analysis, multi-core intercomparison, multi-model testing, granulometric speciation, and normalization of 210Pb$_{ex}$ concentrations to some stable elements (e.g. Al), among other strategies, have been successfully applied (Álvarez-Iglesias et al., 2007; Jewda and Barkaran, 2011; Aalto and Nittouer, 2012).

7. Assessing sedimentation rates on floodplains and wetlands

The 210Pb$_{ex}$ approach has been adapted to permit the investigation of other sedimentary environments, such as river floodplains, wetlands and saltmarshes. In particular, it has been used to provide a chronology of sedimentary deposits and enable sedimentation rates to be determined (e.g. Du and Walling, 2012). This has enabled researchers to investigate changes in sedimentation rates and link these to changes within the contributing catchment (such as land use) and changes in climate (e.g. Craft and Casey, 2000; Walling et al., 2003b; Aalto and Nittouer, 2012), as well as investigating changes in sediment-
associated contaminant fluxes in river basins (Owens and Walling, 2003; Wang et al., 2004). While the overall concept of using \(^{210}\)Pb\(_{\text{ex}}\) to date floodplain and wetland sediments is similar to that described above for lacustrine environments, the processes responsible for incorporating \(^{210}\)Pb\(_{\text{ex}}\) into the deposited sediment are likely to be more complex. In some cases, wetlands do not receive external inputs of sediment from outside the wetland; they are a closed system. In these situations, sediment accretion is mainly associated with the build-up of autochthonous organic material and \(^{210}\)Pb\(_{\text{ex}}\) is derived primarily from atmospheric fallout. Thus, dating follows the approaches described above (Section 6). In the case, of wetlands receiving both autochthonous and allochthonous sediment (i.e. an open system) and in the case of accreting floodplains, \(^{210}\)Pb\(_{\text{ex}}\) is derived from both direct fallout of \(^{210}\)Pb to the sediment surface and that associated with the deposition of sediment mobilised from the upstream catchment during storm events (He and Walling, 1996a). In this situation, it is not appropriate to assume a constant rate of supply or a constant initial concentration. A number of additional factors therefore need to be taken into consideration. Whereas the annual input of direct atmospheric fallout \(^{210}\)Pb to a lake is commonly assumed to be contained within the sediment deposited during that year, in the case of floodplain and wetland sediments, it will be distributed approximately exponentially with depth in the surface horizon of the existing floodplain or wetland sediment, which may itself be buried by further accretion during individual flood events (He and Walling, 1996a). In this case, the average sedimentation rate \(R\) (g cm\(^{-2}\) yr\(^{-1}\)) over the past ca. 100 years can be estimated by distinguishing the input of \(^{210}\)Pb associated with atmospheric fallout and that associated with deposited sediment. Thus, in the case of floodplain environments, He and Walling (1996a) developed the CICCS (constant initial concentration and constant sedimentation rate) model and \(R\) can be determined using the following equation:

\[
R = \frac{\lambda_{\text{Pb}} A_{\text{inv}}}{\lambda_{\text{Pb}} A_{\text{inv,At}} - C_t} \tag{2}
\]

where:

- \(\lambda_{\text{Pb}}\) decay constant of \(^{210}\)Pb;
- \(A_{\text{inv}}\) \(^{210}\)Pb\(_{\text{ex}}\) inventory (mBq cm\(^{-2}\)) measured for a specific point on a floodplain;
- \(A_{\text{inv, At}}\) local \(^{210}\)Pb\(_{\text{ex}}\) inventory (mBq cm\(^{-2}\)), measured by analysing soil samples collected from undisturbed land close to the floodplain above the inundation level;
- \(C_t\) Initial \(^{210}\)Pb\(_{\text{ex}}\) concentration (mBq g\(^{-1}\)) in catchment-derived sediment.

This approach has the advantage that only a single assessment of the total \(^{210}\)Pb\(_{\text{ex}}\) inventory of a floodplain core, rather than information on the depth distribution of \(^{210}\)Pb\(_{\text{ex}}\) activity is required (He and Walling, 1996a); although it is still possible to use the \(^{210}\)Pb\(_{\text{ex}}\) depth profile to determine sediment chronology (e.g. Owens et al., 1999; Walling et al., 2003b; Du and Walling, 2012). In addition, since only the total inventory of the sediment core is measured, the potential effects of biological activity in causing mixing within the sediment column and thus perturbing the \(^{210}\)Pb\(_{\text{ex}}\) depth distribution can be essentially ignored. The CICCS model does require the determination of \(^{210}\)Pb\(_{\text{ex}}\) concentration associated with the catchment-derived deposited sediment (i.e. \(C_t\)). This can be obtained from measurements of contemporary sediment (i.e. suspended sediment or overbank deposits collected from scrapes or floodplain deposition mats) with allowance made for particle size effects. One of the main benefits of the CICCS model is that it enables many sediment cores to be analysed, and therefore enable spatial patterns of overbank sedimentation to be determined (e.g. He and Walling, 1996a).

Recently, in northern Bolivia the application of a revised geochronological methodology using a new conceptual model of \(^{210}\)Pb input during floods (the constant initial reach clay activity, unknown sedimentation (CIRCAUS) model) has been used to investigate decadal and annual recurrence frequency of floodplain sedimentation (see Aalto and Nittouer, 2012), and shows great potential.

In estuarine and coastal wetland systems, additional complications can be envisaged in determining accretion rates linked to (i) sediment delivery dynamics and (ii) saline pore waters. Delivery of reworked material during tidal cycles and fluctuating inputs of catchment material in response to landscape disturbance can lead to complex accretion dynamics that do not conform to standard models (e.g. Leorri et al., 2013). Furthermore, mobility of \(^{137}\)Cs due to saline pore waters (Foster et al., 2006) can make corroboration of \(^{210}\)Pb dates difficult in the absence of other independent stratigraphic markers.

8. Conclusion

This review summarizes and critically examines the assumptions related to the use of \(^{210}\)Pb\(_{\text{ex}}\) as a tracer of soil and sediment redistribution and as a geochronometer. As highlighted, the analysis of this isotope should be undertaken with care to ensure reliable determination of \(^{210}\)Pb\(_{\text{ex}}\) activity concentrations in soil and/or sediment. Accurate measurement of this isotope – including quality control and verification of analytical methodologies – still remains a challenge for the scientific community.

Although considerable progress has been made in using \(^{210}\)Pb\(_{\text{ex}}\) as a tracer in terrestrial and aquatic environments under a range of different climatic conditions, it is clear that there is still a need to pursue the validation of the results obtained with \(^{210}\)Pb\(_{\text{ex}}\) and to promote the approach further through combining radiotracing techniques and traditional measurement methods. Some of the assumptions related to the Pb interactions between soils/sediment and plants should undoubtedly be investigated further under controlled and/or natural conditions to clearly quantify transfer factors and adsorption/absorption of this isotope by plants in various environment. Development and improvement of the \(^{210}\)Pb\(_{\text{ex}}\) technique will depend on the ability of the scientific community to address some of the research challenges outlined in this review.

Acknowledgements

This review has been conducted in the frame of the FAO/IAEA Co-ordinated Research Project on “Integrated Isotopic Approaches for an Area-wide Precision Conservation to Control the Impacts of Agricultural Practices on Land Degradation and Soil Erosion” (i.e. CRP D1.20.11). The authors are grateful to the anonymous reviewers for their helpful suggestions and comments which significantly improved the manuscript.

References

L. Mabit et al. / Earth-Science Reviews 138 (2014) 335–351

