
Water Research 242 (2023) 120182

Available online 7 June 2023
0043-1354/© 2023 Elsevier Ltd. All rights reserved.

Trophic status and lake depth play important roles in determining the 
nutrient-chlorophyll a relationship: Evidence from thousands of 
lakes globally 

Lei Zhao a,b,*, Rao Zhu a, Qichao Zhou c, Erik Jeppesen c,d,e,f,g, Kun Yang a,b,* 

a Faculty of Geography, Yunnan Normal University, Kunming 650500, China 
b GIS Technology Engineering Research Centre for West-China Resources and Environment, Ministry Education, Yunnan Normal University, Kunming 650500, China 
c Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China 
d Department of Ecoscience, Aarhus University, Aarhus 8000C, Denmark 
e Sino-Danish Centre for Education and Research, Beijing 100049, China 
f Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Limnology Laboratory, Middle East Technical University, Ankara 06800, 
Turkey 
g Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey   

A R T I C L E  I N F O   

Keywords: 
Eutrophication 
Nutrients 
Chlorophyll a 
Lake depth 
Bayesian networks 
Bayesian hierarchical linear regression model 

A B S T R A C T   

A fundamental problem in lake eutrophication management is that the nutrient-chlorophyll a (Chl a) relationship 
shows high variability due to diverse influences of for example lake depth, lake trophic status, and latitude. To 
accommodate the variability induced by spatial heterogeneity, a reliable and general insight into the nutrient-Chl 
a relationship may be achieved by applying probabilistic methods to analyze data compiled across a broad spatial 
scale. Here, the roles of two critical factors determining the nutrient-Chl a relationship, lake depth and trophic 
status, were explored by applying Bayesian networks (BNs) and a Bayesian hierarchical linear regression model 
(BHM) to a compiled global dataset from 2849 lakes and 25083 observations. We categorized the lakes into three 
groups (shallow, transitional, and deep) according to mean and maximum depth relative to mixing depth. We 
found that despite a stronger effect of total phosphorus (TP) and total nitrogen (TN) on Chl a when combined, TP 
played a dominant role in determining Chl a, regardless of lake depth. However, when the lake was hyper-
eutrophic and/or TP was >40 μg/L, TN had a greater impact on Chl a, especially in shallow lakes. The response 
curve of Chl a to TP and TN varied with lake depth, with deep lakes having the lowest yield Chl a per unit of 
nutrient, followed by transitional lakes, while shallow lakes had the highest ratio. Moreover, we found a decrease 
of TN/TP with increasing Chl a concentrations and lake depth (represented as mixing depth/mean depth). Our 
established BHM may help estimating lake type and/or lake-specific acceptable TN and TP concentrations that 
comply with target Chl a concentrations with higher certainty than can be obtained when bulking all lake types.   

1. Introduction 

Freshwater eutrophication is a major global problem, and phyto-
plankton blooms in lakes have increased globally since the 1980s (Ho 
et al., 2019). Enrichment of nutrients, including phosphorus (P) and 
nitrogen (N), is considered the main driver of phytoplankton growth. 
Based on the strong empirical relationship between phytoplankton 
biomass and chlorophyll a (Chl a) and P, P reduction with the aim of 

decreasing the phytoplankton biomass is often the first measure taken to 
control eutrophication; this is a long-standing paradigm in lake man-
agement (Carpenter, 2008; Filstrup et al., 2014). However, several 
studies have challenged this P control paradigm, pointing out that the 
effect of N on lake ecosystems is underestimated. A large-scale meta--
analysis of experimental enrichment showed that N and P limitation is 
equivalent in almost all situations (Elser et al., 2007). Studies based on 
hundreds of lakes in 17 north-eastern and mid-west US states found that 
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P limitation is more likely to occur under oligo-mesotrophic or eutrophic 
Chl a conditions, while co-limitation of P and N occurs at hyper-
eutrophic Chl a (Liang et al., 2020). Many case studies have also found 
successful eutrophication control by combined N and P reduction or 
reduction of N alone (Abell et al., 2010; Kolzau et al., 2014; Maberly 
et al., 2020). As different methods and strategies are needed for N and P 
control and the associated costs differ, it is critical to select an appro-
priate strategy for P, N or N+P control in lake eutrophication 
management. 

Lake morphological characteristics, such as lake depth may also play 
a critical role in determining nutrient-Chl a relationship and lake 
eutrophication migration strategy. Søndergaard et al. (2017) and Qin 
et al. (2020) pointed out that differences in in-lake nutrient dynamics 
between shallow and deep lakes may play a critical role in determining 
the response of Chl a to nutrients. Internal P loading, for example, is 
especially important in shallow lakes (Søndergaard et al., 2003). There is 
also evidence that the role of N might be stronger in shallow lakes as the 
loss by denitrification is higher here due to e.g. better contact between 
water and sediment, making N a potential limiting factor in summer 
(Jeppesen et al., 2007; Søndergaard et al., 2017). Moreover, there is a 
higher risk of loss of submerged macrophytes at high N as evidenced in 
several experiments (e.g. Olsen et al., 2015; Søndergaard et al., 2007), 
being supported also by field data (Jeppesen et al., 2007). Furthermore, 
Phillips et al. (2008) revealed that shallow lakes have a higher yield of 
Chl a per nutrient unit of P and N than deep lakes, implying that lower 
nutrient levels are needed in shallow lakes than in deep lakes to pass a 
desired Chl a concentration. Therefore, setting appropriate nutrient 
criteria based on the response of Chl a to nutrients for different lake 
types is a fundamental task for lake managers to achieve cost-effective 
eutrophication control. 

Many studies have used historical observations, whole-lake experi-
ments in a single lake, or observations in a few selected lakes to identify 
the limiting factors for phytoplankton growth and to investigate the 
potential control strategies and responses of Chl a to nutrients (Paerl 
et al., 2016; Qin et al., 2019; Schindler et al., 2016). While providing 
useful information, inferences from small-scale geographical observa-
tions may be constrained to local ecological conditions (Liang et al., 
2020) and limited to individual lakes or sets of lakes (Phillips et al., 
2008) as the nutrient-Chl a relationship may vary temporally and 
geographically (Abell et al., 2010; Paerl et al., 2016; Canfield et al., 
2019; Jeppesen et al., 2020). More universal relationship can be 
deduced by using datasets of lakes covering large ecological and climate 
gradients (Janssen et al., 2019, Jeppesen et al., 2020). Some studies 
based on local scale datasets have been conducted using data-driven 
predicted models, such as regression equations to investigate the 
nutrient-Chl a relationship and to determine the nutrient that is limiting 
the phytoplankton growth (Abell et al., 2010; Elser et al., 2007; Huang 
et al., 2020; Liang et al., 2020; Phillips et al., 2008; Poikane et al., 2019). 

However, a comprehensive analytical framework suitable for handling 
the uncertainty induced by spatial heterogeneity when exploring the 
relationship between nutrients and Chl a is lacking. 

A model based on data covering broad conditions and a compre-
hensive analytical framework may provide more general and reliable 
insight into the nutrient-Chl a relationship and, moreover, be directly 
applied to different type of lakes, including lakes with limited data or 
low-frequency sampling. To elucidate the complex processes associated 
with the nutrient-Chl a relationship as well as to accommodate the 
variability of nutrient-Chl a induced by spatial heterogeneity, we used a 
probabilistic machine-learning analytical framework, Bayesian net-
works (BNs) (Pearl, 1985), and a Bayesian hierarchical linear regression 
model (BHM) (Malakoff, 1999), an approach widely used in ecosystems 
modelling (e.g., Cha et al. 2016, Feki-Sahnoun et al. 2017, Malve and 
Qian 2006, Mellios et al. 2020, Liang et al. 2020). The Bayesian hier-
archical linear regression model (BHM) estimate parameters by inte-
grating information from multiple sources and handle uncertainty in a 
probabilistic manner (Chen and Pollino, 2012; Malve and Qian, 2006; 
Mellios et al., 2020). Moreover, methods based on Bayes’ theorem 
provide a mutually verified analytical framework that ensures reliable 
results. Thus, the objectives of this study were to: (1) elucidate the role 
of N, P, or both are the potential most important growth limiting factor 
for phytoplankton (Chl a) in lakes across broad spatial scales and trophic 
status gradients; (2) examine whether the potential limiting nutrient 
varies with lake depth; (3) test BHM to estimate how changes in nutrient 
concentrations may alter the probability of Chl a concentrations to 
provide detailed information for lake eutrophication management de-
cisions and nutrient criteria; and (4) examine to what extent the 
response curve of Chl a to nutrient concentrations varies with lake 
depth. The analysis is based on a dataset comprising 2849 lakes globally. 

2. Materials and methods 

2.1. Dataset 

We integrated several regional lake monitoring datasets, including 
the geospatial and temporal database of US lakes (LAGOS) (Soranno 
et al., 2017), European lake monitoring data collected by the European 
Environment Agency member countries (Waterbase-Lakes, http 
s://www.eea.europa.eu/data-and-maps/data/waterbase-lakes-10), the 
China Lake Scientific Database (http://www.lakesci.csdb.cn), and water 
quality data from Yunnan Plateau lakes monitored by the Environmental 
Monitoring Station of Yunnan Province. We conducted a quality control 
of the compiled data as follows: First, we removed extreme values, 
defined as Chl a >400 μg/L and <1 μg/L. We then selected data collected 
from June to September (the growing season) to minimize the influence 
of temperature discrepancy caused by diverse latitudes and altitudes. 
Moreover, to investigate potential differences in the nutrient-Chl a 

Table 1 
Number of lakes, number of observations, mean concentrations (± standard deviation) of observed chlorophyll a (Chl a), total phosphorus (TP), and total nitrogen (TN) 
in shallow, transitional, and deep lakes with oligo-mesotrophic, eutrophic, and hypereutrophic status. Lake trophic status was determined according to the threshold 
values of Chl a (oligo-mesotrophic: Chl a ≤ 7 μg/L, eutrophic: 7 < Chl a ≤ 30 μg/L, hypereutrophic: Chl a > 30 μg/L) proposed by USEPA (2009). Shallow lakes were 
those where the mixing depth exceeded the maximum depth, the transitional lakes were those where mean depth ≤ mixing depth ≤ maximum depth, and the deep 
lakes were those where the mixing depth was lower than the mean depth.   

Trophic status Number of lakes Number of 
observed data 

Mean TN (μg/L) Mean TP (μg/L) Mean Chl a (μg/L) 

Shallow lakes Oligo-mesotrophic lakes 77 527 778(±538) 33.2 (±37.2) 4.6 (±1.6) 
Shallow lakes Eutrophic lakes 126 975 1130 (±584) 81.5 (±134.6) 15.9 (±6.8) 
Shallow lakes Hypereutrophic lakes 147 985 2177 (±1108) 162.3 (±125.4) 76.4 (±47.5) 
Transitional lakes Oligo-mesotrophic lakes 496 4568 556 (±428) 17.6 (±18.0) 3.9 (±1.5) 
Transitional lakes Eutrophic lakes 414 3902 1046 (±997) 44.1 (±35.8) 15.2 (±6.5) 
Transitional lakes Hypereutrophic lakes 262 1861 2092 (±1284) 133.7 (±122.7) 63.8 (±39.1) 
Deep lakes Oligo-mesotrophic lakes 734 6530 561 (±511) 16.1 (±15.1) 3.5 (±1.5) 
Deep lakes Eutrophic lakes 448 3933 1163 (±981) 47.6 (±51.6) 14.9 (±6.6) 
Deep lakes Hypereutrophic lakes 145 1802 1799 (±1280) 96.4 (±76.5) 54.3 (±29.9)  
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relationship related to lake morphometry, recordings of surface area and 
maximum and mean depth of a number of lakes without documented 
data on these parameters were drawn from the HydroLAKES database 
(Messager et al., 2016) according to their geographical location. A total 
of 25083 observations of TN, TP, and Chl a from 2849 lakes (Table 1, 
Fig. 1) were used in the analysis. Of these 2849 lakes, 1324 had only one 
observation, while for the remaining lakes the observations ranged from 
2 to 354, the average number per lake being 8.8. There are 21 lakes that 
have more than 100 observations. In our database, 2088 lakes were from 
the US, 705 from Europe, and 56 from China. 

2.2. Categorization of lakes 

The categorization of lakes for lake-specific models is often based on 
the assumption that lakes belonging to a particular type exhibit a similar 
response of Chl a to the stressor (TP and/or TN) (Malve and Qian, 2006; 
Canfield et al., 2019; Mellios et al., 2020). For example, due to limited 
information on geographical and natural characteristics of their study 
lakes, Malve and Qian (2006) classified 2289 Finnish lakes into nine 
groups based on mean depth and humic type, and Qin et al. (2020) 
classified their study lakes into three groups based on lake depth. 
However, for more global datasets, detailed information of lake char-
acteristics are lacking. It is critical to apply effective tools to quantify the 
Chl a nutrient response to the most influential factors, while taking into 
account the data limitation that often exists when exploring these 
nutrient-Chl a relationships at macroscale. 

As numerous local studies have shown that lake depth plays an 
important role in the Chl a nutrient response (Malve and Qian, 2006; 
Mellios et al., 2020; Søndergaard et al., 2017; Qin et al., 2020), we 
divided our lakes according to depth following Qin et al. (2020) into 
three groups: shallow, transitional, and deep based on lake mixing depth 
(Zmix), mean depth (Zmean), and maximum depth (Zmax), i.e. shallow 
lakes are those with mixing depths exceeding the maximum depth, 
transitional lakes are those with a mean depth ≤ mixing depth ≤
maximum depth, and the deep lakes are those with mixing depths lower 
than the mean depth. The mixing depth was estimated using lake area, 
Zmix = (100.185Log(A) + 0.842 – 2.37) / 1.05 (where A is the area of the lake 
surface (km2)) (Hanna, 1990). 

2.3. Bayesian networks 

Being a widely used and powerful probabilistic graphical modeling 

technique, the Bayesian networks (BNs) method (Pearl, 1985) allows 
investigation of the implicit relationship between variables in a proba-
bilistic manner even when the relationship involves uncertainty. The 
method is particularly useful when data are integrated across varied 
ecological conditions. Therefore, a BNs model was established to 
investigate whether the nutrient limitation of Chl a varied with lake 
type. 

A BNs model uses nodes (variables of interest, including parent nodes 
and child nodes) and edges (the connections among nodes) to represent 
dependency relationships among nodes. We developed a simple BNs 
model with TN, TP, and lake depth as drivers (parent nodes) and Chl a as 
the response variable (child node). Although continuous variables can 
be dealt with to some extent in BNs (Uusitalo, 2007), the usual solution 
is to discretize the variables to avoid overly complicated algorithms and 
time-consuming computation (Aguilera et al., 2012; Feki-Sahnoun et al., 
2017; (Liang et al., 2020; Uusitalo, 2007). We adapted a lake 
eutrophication-management-oriented method for discretization of TN, 
TP, and Chl a which defined TN, TP, and Chl a as oligo-mesotrophic (TP 
≤ 25 μg/L, TN ≤ 750 μg/L, Chl a ≤ 7 μg/L), eutrophic (25 < TP ≤ 50 
μg/L, 750 < TN ≤ 1400 μg/L, 7 < Chl a ≤ 30 μg/L) and hypereutrophic 
(TP > 50 μg/L, TN > 1400 μg/L, Chl a > 30 μg/L) (USEPA, 2009). The 
discretization of the lake depth was the same as that of lake classifica-
tion. The discretization data on TN, TP, Chl a, and lake depth (TN, TP, 
and Chl a are expressed as trophic status and lake depth as water depth 
type) were used as input and output for the BNs model. Thus, the 
established BNs model has three network parent nodes (TN, TP and lake 
depth) with three states of each parent node and one network child node 
(Chl a) with three states. 

We used the R package of bnlearn to estimate the parameters and 
evaluate model performance (Scutari, 2010). A 10-fold cross-validation 
strategy, in which the model was fitted 10 times to 90% observations, 
while the remaining 10% was retained for out-of-sample prediction, was 
adapted to assess the established model classification accuracy. The 
classification accuracy was 68.8% which is satisfactory and ensures the 
reliability of established BNs model. The calibrated BNs model can 
provide the possibility of Chl a trophic status under certain trophic 
status of TN and TP, and certain lake depth type. For example, we can 
get the probability of Chl a being eutrophic when setting TN to be 
eutrophic, TP to be hypereutrophic and lake depth to be shallow. 

Fig. 1. The spatial distribution of the lakes in our dataset. The lakes were categorized into three groups (shallow, transitional, and deep) according to mean depth 
and maximum depth relative to mixing depth. Shallow lakes were those where the mixing depth exceeded the maximum depth, the transitional lakes were those 
where mean depth ≤ mixing depth ≤ maximum depth, and the deep lakes were those where the mixing depth was lower than the mean depth. 
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2.4. Bayesian hierarchical linear regression model 

The Bayesian hierarchical linear regression model (BHM) has proven 
effective and suitable in studies modeling the nutrient-Chl a relationship 
(Malve and Qian, 2006), a hierarchical model can obtain enough pa-
rameters from information pooling based on different levels to form a 
realistic and hierarchical model without overfitting the data (Gelman 
et al., 2013). Here we used an established BHM based on a dataset 
covering different lake depths and trophic states to pool information 
within and among lake types. The BHM used induced a lake-specific 
curve of the nutrient-Chl a response: 

log
(
Chl aijk

)
∼ Normal

(
β0,ij + β1,ij × log

(
TPijk

)
+ β2,ij × log

(
TNijk

)
, τ2) (1)  

βij ∼ N
(
βi, σ2

i

)
(2)  

βi ∼ N
(
β, σ2) (3)  

β ∼ N(0, 10000) (4)  

σi, σ, τ ∼ unif(0, 100) (5)  

where Chl aijk, TPijk, and TNijk are the kth observed Chl a, TP, and TN 

Fig. 2. Boxplots and scatterplots depicting the variability and distribution of (a) total phosphorus (TP), (b) total nitrogen (TN), and (c) chlorophyll a (Chl a) 
concentrations for three lake groups (shallow, transitional, and deep). Black line within the box represents the median, red dot within the box represents the mean, 
black box encompasses the 25th–75th percentiles, and the black dots outside the box represents outliers. Four asterisks indicate the difference between groups are of 
statistical significance (Permutation-test, p < 0.0001). Shallow = shallow lakes, Transitional = transitional lakes, Deep = deep lakes. See Fig. 1 for explanations of the 
categorization of lakes according lake depth. 

Fig. 3. Probability of chlorophyll a trophic status at different combinations of total phosphorus (TP) and total nitrogen (TN) trophic status for three lake groups 
(shallow, transitional, and deep). These results were inferenced form the established Bayesian networks (BNs) model which was validated using 10-fold cross- 
validation method and the classification accuracy was 68.8%. Olig_meso = oligo-mesotrophic, Eutro = eutrophic, Hyper = hypereutrophic, Shallow = shallow 
lakes, Transitional = transitional lakes, Deep = deep lakes. See Fig. 1 for explanations of the categorization of lakes according lake depth. 
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concentrations, which are monitored in the jth lake (j = 1, …, 2849) of 
type i (i = shallow, transitional, deep); τ2 is the model error variance; 
β0 is the intercept; β1 and β2 are model slope parameters; βij is the lake- 
specific model parameter vector consisting of intercept and slopes as 
well as the parameter for individual lakes at the bottom of the hierarchy; 
σi is the variance of model parameters among lakes belonging to lake 
type i; σ is the variance among lake types; β is the global parameter with 
a normal distribution having a mean of 0 and a variance of 10000; unif 
(0, 100) is the uniform distribution of σi, σ, and τ. 

Parameter estimation and model implementation were based on the 
python library of PyMC3, which was developed for Bayesian statistical 
modeling and probabilistic machine learning (Salvatier et al., 2016). 
Coefficient of determination (R squared (R2))， absolute mean error 
(AME) and root mean square error (RMSE) were used to assess the ac-
curacy and precision of the model fit. 

3. Results 

3.1. The role of TP and TN in differential depth lakes 

The statistics and boxplots of TN, TP, and Chl a for the different 
groups of lakes are shown in Table 1 and Fig. 2. We observed an increase 
in the growing season concentrations of TN, TP, and Chl a with 
decreasing lake depth, and the difference between shallow, transitional 
and deep lakes were statistically significant (Permutation-test, p < 
0.0001). Even when a lake had the same trophic status, the concentra-
tions of TN, TP, and Chl a in the shallow lakes were highest among the 
three lake groups. Although a higher mean Chl a concentration was 
related to higher mean TN and TP concentrations in all groups, lake 
depth seems to play an important role for the algal biomass. 

We explored the role of lake depth for the nutrient-Chl a relationship 
using the results of established BNs model for the probabilities of Chl a 
trophic status under different combinations of TN and TP trophic states 
(Fig. 3). We found that 27.0% of the shallow lakes were classified as 
eutrophic or hypereutrophic when the nutrient state was oligo- 
mesotrophic, while 25.1% of the transitional lakes and 17.9% of the 
deep lakes were in belonged to these categories (Fig. 3(a)). Moreover, 
when the trophic status of TN and TP changes from oligo-mesotrophic to 
eutrophic or hypereutrophic, the probability of Chl a trophic status 
being eutrophic or hypereutrophic increased sharply in all lake groups. 
Among the three groups, 82.6% of the shallow lakes, 84.4% of the 
transitional lakes, and 80.7% of the deep lakes were now eutrophic or 
hypereutrophic state when the nutrients reached the eutrophic state, 
while 95.0% of the shallow lakes, 88.7% of the transitional lakes, and 

86.2% of the deep lakes were eutrophic or hypereutrophic when the 
nutrients reached a hypereutrophic state (Fig. 3(a), 3(e), and 3(i)). These 
results showed that the increase in TN and TP concentrations in lakes 
induces an increase in the Chl a concentration at macroscale, being most 
pronounced in shallow lakes. 

3.2. The role of TP and TN in differential trophic status lakes 

Comparing Chl a trophic status with one nutrient fixed and one 
variable allowed us to explore the relative effect of nutrients on Chl a. As 
shown in Fig. 3(a), 3(b), and 3(c), an oligo-mesotrophic TN trophic state 
that changes the TP state from oligo-mesotrophic to eutrophic or 
hypereutrophic resulted in a decrease in the probability of Chl a being 
oligo-mesotrophic for all lakes (probability of a decline 0.65, 0.60, and 
0.64 for shallow, transitional, and deep lakes, respectively, when TP is 
eutrophic) and an increase in the probability of Chl a tropic status being 
eutrophic and hypereutrophic. In contrast, when the constant TP trophic 
state was oligo-mesotrophic, and the TN state changed from oligo- 
mesotrophic to eutrophic or hypereutrophic, there was a relatively 
small decrease in the probability of Chl a trophic status being oligo- 
mesotrophic. For instance, a shift in TN from oligo-mesotrophic to 
hypereutrophic led to a 26.3% (0.73 – 0.47) shift of shallow lakes from 
an oligo-mesotrophic to a eutrophic or hypereutrophic state, which is 
smaller than the transfers resulting from a shift in TP (64.6%, 0.73 – 
0.08). These results show that while both TN and TP influence Chl a, TP 
seems to overall play a more important role. Consistent with the above- 
mentioned results, when TP and TN trophic statuses are hypereutrophic 
and oligo-mesotrophic, respectively, the probability of Chl a being 
eutrophic or hypereutrophic was as high as 0.92 (shallow lakes), 0.85 
(transitional lakes), and 0.82 (deep lakes) (Fig. 3(c)). However, when 
the TP trophic status was oligo-mesotrophic and the TN status was 
hypereutrophic, the probability of Chl a trophic status being eutrophic 
or hypereutrophic was relatively low (Fig. 3(g)). Changing the TP tro-
phic status from oligo-mesotrophic to eutrophic or hypereutrophic led to 
an increase in Chl a trophic status to mainly eutrophic or hypereutrophic 
(Fig. 3(g), 3(h), and 3(i)). These results demonstrate that TP generally 
plays a more important role than TN in determining Chl a trophic status, 
both for shallow lakes and for deep lakes. However, TN may play an 
important role in some situations. As displayed in Fig. 3(a) and 3(c), 
with the change in TN trophic status from oligo-mesotrophic to hyper-
eutrophic when the TP status is oligo-mesotrophic, the trophic status of 
Chl a being hypereutrophic in shallow lakes increases more than in 
transitional and deep lakes. Similarly, changing TN trophic status from 
oligo-mesotrophic to hypereutrophic when the TP status is 

Fig. 4. Model fits (R squared (R2), Root mean square error (RMSE), and Absolute mean error (AME)) of the Bayesian hierarchical linear regression model (BHM) for 
three lake groups: (a) shallow lakes, (b) transitional lakes, and (c) deep lakes. The blue scatter plots represent the observed log transformation of chlorophyll a 
(Observed Log(Chla)) vs. the predicted log transformation of the 50th percentile chlorophyll a (Predicted Log(Chla)). See Fig. 1 for explanations of the categorization 
of lakes according lake depth. 
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hypereutrophic led to an increase in Chl a trophic status as hyper-
eutrophic in all lakes. These results demonstrate that TN may have a 
more significant interactive impact on the Chl a status in shallow lakes 
when the TP trophic status is hypereutrophic. 

3.3. Response of Chl a to nutrients based on posterior predictive 
simulation of BHM 

Having explored the potential effects of TP and TN on Chl a with 
variable lake depth based on the BNs model, we used the BHM to 
quantify the Chl a nutrient response. Taking advantage of the simplicity 
and flexibility of BHM is useful for eutrophication management (Malve 
and Qian, 2006; Mellios et al., 2020). To evaluate the model accuracy, 
we plotted the log transformation of observed versus predicted Chl a in 
the three lake groups. As shown in Fig. 4, the BHM performed rather well 
for all lake groups; the R2, RMSE, and AME were 0.68, 0.71, and 0.53 for 
shallow lakes; 0.66, 0.65, and 0.47 for transitional lakes; and 0.68, 0.67, 

and 0.51 for deep lakes, respectively. The accuracy of the established 
BHM provided reliable results and corresponding posterior prediction. 
Table 2 lists the 50th percentile posterior distribution parameters of 
BHM for the three lake groups. The coefficient of TN (β2) is smaller than 
the coefficient of TP (β1) in all lake depth groups, which enforces that TP 
is the more influential than TN on Chl a. 

Given the possible collinearity of TP and TN, it is difficult to deter-
mine their effects on Chl a only on the coefficients estimated, the effect 
of TP or TN on the nutrient-Chl a response curve was further investi-
gated by using one nutrient that varied within the 5th to 95th percentile 
range of the observed data (dataset including all lake groups) and 
another nutrient that remained constant (25th percentile, threshold for 
oligo-mesotrophic, threshold for eutrophic, and 95th percentile). To 
ensure an even distribution of the data interval, the varied nutrient 
range was divided into four (5th percentile–25th percentile, 25th per-
centile–50th percentile, 50th percentile–75th percentile, 75th percen-
tile–95th percentile), and each range was discretized into 15. The results 
of the posterior predictive simulation of the effect of TP or TN on the 
nutrient-Chl a relationship are illustrated in Fig. 5. Overall, the pre-
dicted Chl a increased with TP and TN, demonstrating that both nutri-
ents can influence Chl a. However, increased TP produced a significantly 
greater increase in Chl a than TN, clearly indicating that TP plays a 
dominant role in determining the Chl a concentration across all lake 
groups and implying that algal growth is more likely limited by TP than 
by TN. Moreover, although TN influenced Chl a less than TP, the effect of 
TN on Chl a increased with increasing TP. (Fig. 5(d), 5(e), and 5(f)). 

Table 2 
The 50th percentile posterior distribution parameters of the established 
Bayesian hierarchical linear regression model for the three lake groups. See 
Table 1 for explanations of the categorization of lakes according lake depth.  

Lake Group β0 β1 β2 

Shallow lakes -0.131 0.591 0.084 
Transitional lakes -0.249 0.574 0.087 
Deep lakes -0.470 0.511 0.117  

Fig. 5. Chlorophyll a concentration as a function of total phosphorus (TP) and total nitrogen (TN) concentrations for shallow ((a) and (d)), transitional ((b) and (e)), 
and deep ((c) and (f)) lakes, predicted with the lake-type Bayesian hierarchical linear regression model. The colored regions represent the 10 – 90th percentile of the 
predicted chlorophyll a concentration, while the solid and dotted black lines represent the 50th percentile of the predicted chlorophyll a concentration. While one 
nutrient varied within the range of the 5th to 95th percentile of the observed data (dataset included all lake groups), another nutrient remained constant (25th 
percentile of the observed data, threshold for oligo-mesotrophic, threshold for eutrophic, and 95th percentile of the observed data). Constant TP = constant con-
centration of total phosphorus; Constant TN = constant concentration of total nitrogen. See Fig. 1 for explanations of the categorization of lakes according lake depth. 
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Additionally, at the same level of nutrient concentration, shallow lakes 
exhibited the highest Chl a concentration among all the lake groups. 
These results show a similar pattern to the inference of the BNs model, 
lending robustness to our BHM and the credence of the analysis. 

To investigate the different nutrient criteria among lake groups, 
another posterior prediction was implemented based on variations in TN 
and TP, in which the TN and TP plane within a special range was dis-
cretized into 60 × 60 grid cells, and the Chl a concentration of each 
nutrient cell was calculated for all lakes in each lake group. The method 
for nutrient discretization was the same as in the first implementation. 

The response curves of the 50th percentile Chl a to the TP and TN of the 
different lake groups were plotted as contour lines (Fig. 6), presenting a 
clear nutrient-Chl a distribution relationship for a specific lake group. 
Substantial differences in the nutrient-Chl a responses were observed 
within the lake groups and among the groups. First, when TP was <40 
μg/L, the contour lines were parallel to the y-axis. As TP increased, the 
contour lines became more parallel to the x-axis. Moreover, when the 
concentrations of TP and TN remained the same for different lake 
groups, the concentration of Chl a was the highest in the shallow lakes, 
followed by transitional lakes and deep lakes. 

Fig. 6. 50th percentile contour lines of the 
chlorophyll a concentration as a function of 
total phosphorus (TP) and total nitrogen (TN) 
concentrations for: (a) shallow lakes, (b) tran-
sitional lakes, and (c) deep lakes predicted with 
the lake-type Bayesian hierarchical linear 
regression model. TP and TN varied within the 
range of the 95th and 5th percentile of the 
observed data (dataset including all lake 
groups). Numbers are the predicted chlorophyll 
a concentrations (μg/L). See Fig. 1 for expla-
nations of the categorization of lakes according 
lake depth.   
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We further checked the robustness of the BHM and the above results 
by randomly selecting nine observations (the average number per lake) 
from the lakes with observations greater than 300 – Lake 6301 (354 
observations) and Lake 6302 (340 observations) in the LAGOS dataset, 
while the observations of other lakes remained unchanged. We found 
that the results revealed similar patterns to the BHM trained with the full 
dataset, as shown in the supplementary material (Figs. S1–S3). 

3.4. Nutrient limitation 

On the basis of TN/TP, lake tropic status and depth in our dataset, we 
found an apparent decrease of TN/TP ratio with the increase of Chl a 
concentration (the linear fitted regression in Fig. 7(a), Pearson correla-
tion coefficient (R) = -0.433, p < 0.001), and the differences of TN/TP 
ratio between oligo-mesotrophic, eutrophic and hypereutrophic lakes 
were statistically significant (Permutation-test, p < 0.0001). Meanwhile, 
we found a decrease in the TN/TP ratio with increasing Zmix/Zmean (the 
linear fitted regression in Fig. 7(c), R = -0.228, p < 0.001), and the 
differences of TN/TP ratio between shallow, transitional and deep lakes 
were statistically significant (Permutation-test, p < 0.0001). Moreover, 
as the increase of Chl a, the limiting nutrient may shift from only P 
limitation (TN/TP > 22.6, the horizontal dashed lines in Fig.7(a)) to N 
+ P co-limitation (9 ≤ TN/TP < 22.6) or only N limitation (TN/TP ≤ 9, 
the horizontal dotted lines in Fig. 7(a)). Average TN/TP ratio of oligo- 
mesotrophic, eutrophic and hypereutrophic are 35.2, 24.0 and 17.1, 
respectively. A shift from only P limitation to N + P co-limitation or only 
N limitation with decreasing lake depth was also observed (Fig. 7(c)). 

4. Discussion 

Our analyses, based on a dataset comprising 2849 lakes and 25083 
observations analyzed using Bayesian networks and Bayesian 

hierarchical linear regression models, showed that synergistic effects of 
TP and TN on Chl a occurred in all three lake types studied. TP played a 
dominant role in determining Chl a, while TN particularly contributed 
when the lake TP concentration was high, and especially in shallow 
lakes. Lake depth played an important role in determining nutrient 
sensitivity, and shallow lakes are those most likely to become eutro-
phicated, followed by transitional lakes, and then deep lakes. 

4.1. In-lake dynamics controlling the nutrient-Chl a relationship 

Several morphological features such as the proportion of the lake 
area where the sediment is in direct contact with the water, hypolimnion 
depth (if any hypolimnion), and the proportion of littoral zones suitable 
for macrophyte growth vary markedly among shallow, transitional, and 
deep lakes, and this can profoundly affect the nutrient processes (Diehl, 
2002; Genkai-Kato and Carpenter, 2005; Søndergaard et al., 2017). 
Several model exercises and enclosure experiments have shown that 
lake morphological characteristics, especially lake depth and mixed 
depth, play critical roles in regulating the nutrient supply from the 
sediment, denitrification at the water-sediment interface, and phyto-
plankton growth (Cantin et al., 2011; Diehl, 2002; Diehl et al., 2002; 
Genkai-Kato and Carpenter, 2005; Longhi and Beisner, 2009), and such 
differences may explain why we found different nutrient-Chl a rela-
tionship for shallow, transitional, and deep lakes. In shallow lakes, 
which have close sediment contact with the water column and are most 
frequently disturbed by wind, phytoplankton growth may be particu-
larly supported by additional P and N from the sediment (Søndergaard 
et al., 2003). Different proportion of littoral zones suitable for macro-
phyte growth may be another factor affecting variable nutrient-Chl a 
relationship between shallow and deep lakes. In general, through 
several mechanisms, e.g. stabilizing sediments and further decreasing 
the rate of nutrient cycling, providing refuge for zooplankton and 

Fig. 7. The relationship between Log(TN/TP) and Log(Chla) (a), Log(Zmix/Zmean) and Log(Chla) (c) for lakes in our dataset. Solid black lines represent the fitted 
regression line ((a): Pearson correlation coefficient (R) = -0.433, p < 0.001; (c): R = -0.228, p < 0.001), horizontal dashed lines indicate the threshold of P limitation 
on Loge scale, horizontal dotted lines indicate the threshold of N limitation on Loge scale. Boxplots and scatterplots depicting the variability and distribution of Log 
(TN/TP) for: (b) three lake trophic status group, (d) three lake depth groups. Lake trophic status was determined according to the threshold values of chlorophyll a 
proposed by USEPA (oligo-mesotrophic: Chl a ≤ 7 μg/L, eutrophic: 7 < Chl a ≤ 30 μg/L, hypereutrophic: Chl a > 30 μg/L) (USEPA, 2009). Olig_meso = oligo--
mesotrophic, Eutro = eutrophic, Hyper = hypereutrophic, Shallow = shallow lakes, Transitional = transitional lakes, Deep = deep lakes, Chla = chlorophyll a, TN =
total nitrogen, TP = total phosphorus, Zmix = mixing depth of lake, Zmean = mean depth of lake. See Fig. 1 for explanations of the categorization of lakes according 
lake depth. See Fig. 2 for further explanation of the box plots. 
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further enhancing the top-down regulation of phytoplankton by 
zooplankton (Genkai-Kato and Carpenter, 2005; Jeppesen, et al., 2007; 
Søndergaard et al., 2017), shallow lakes with abundant macrophytes are 
considered more resilient to the pressure of nutrient loading and keep 
low phytoplankton biomass. However, the loss of macrophyte induced 
by external or internal drivers (Phillips et al., 2016; Søndergaard et al., 
2017; Zhang et al., 2017), e.g. enrichment of nutrients, severe fluctua-
tion of water level, increase of benthivorous fish biomass, can lead to 
shallow lakes experiencing more internal loading of P and higher 
phytoplankton growth compared to deep lakes. In contrast to shallow 
lakes, deep lakes have less macrophytes, lower contact between sedi-
ment and the productive epilimnion layer and higher mixing depth 
(meaning potentially less light availability) (Diehl, 2002; Diehl et al., 
2002; Dubourg et al., 2015; Yang et al., 2023; Zhao et al., 2021), which 
all may result in lower phytoplankton growth. Similar to other studies 
(Phillips et al., 2008), our dataset unfortunately did not contain infor-
mation on presence/absence of macrophytes, but it is reasonable to 
assume based on data from numerous Danish lakes (Søndergaard et al., 
2017), that a shift from a macrophyte to a phytoplankton state with 
increasing nutrients concentration explain why the shallow lakes 
showed a more sensitive response of Chl a to enrichment of nutrients 
than the deep lakes in our dataset. 

Key processes leading to higher importance of N for phytoplankton 
growth in eutrophic lakes are denitrification and P release from the 
sediment and the feedback between high phytoplankton biomass and 
the two processes (Muller et al., 2021; Qin et al., 2020; Saunders and 
Kalff, 2001). An increase in the denitrification rate with increasing 
trophic status has been widely observed (Muller et al., 2021; Wu et al., 
2019). As trophic status increases, settled phytoplankton accumulates 
and decays in the sediment, providing labile organic matter for deni-
trification and favoring sediment denitrification and thus N removal. 
Especially in shallow lakes, turbulence may produce oxic conditions in 
the water-sediment interface and lead to nitrification. This favors the 
coupled nitrification-denitrification process and thus accelerates the loss 
of N (Zhu et al., 2021). Moreover, high accumulation of organic matter 
in the sediment promotes P release from the sediment to the water 
column, especially in shallow lakes (Søndergaard et al., 2003), 
increasing the potential for N limitation (Diehl, 2002; Diehl et al., 2002; 
Kolzau et al., 2014; Qin et al., 2019, 2020). 

The role of N in nutrient-rich lakes, not least the shallow ones, is also 
evident from several previous lake-specific or multi-lake studies. For 
example, a study conducted in four German lakes revealed that N was 
more limiting in summer in shallow lakes; the limiting nutrient alter-
nated between P and N during summer in a deep stratified lake (Kolzau 
et al., 2014). In Lake Erie, USA, which is a well-documented eutrophic 
deep lake, phytoplankton biomass was co-limited by P and N in August 
to October in the central basin (Jessica and Hunter, 2007), and in 
Maumee Bay (located in the southwest end of Lake Erie and the moni-
toring site having a depth of 2.5 m), the limiting nutrient of phyto-
plankton biomass shifted from P to N during the summer season 
(Chaffin et al., 2014). Moreover, a multi-lake study based on observa-
tions of 817 Danish lakes revealed that in both deep and shallow lakes, 
Chl a was more strongly related to TP than to TN; however, TN 
accounted for more of the variability in Chl a than TP when TP con-
centrations were high (Søndergaard et al., 2017). A study of seasonal 
variation in limiting factors for Chl a, biomass of total phytoplankton 
biomass and cyanobacteria in 503 Danish lakes revealed an overall 
dominance of P limitation during winter, early spring and late autumn, 
while the role of N increased in summer, not least in shallow lakes 
(Jeppesen et al., 2021). Downing and McCauley (1992) summarized 
published observations from 221 lakes in 14 countries and concluded 
that N limitation is significantly more frequent in lakes when TP is 
greater than 30 μg/L. This finding is similar to our result showing that 
when TP > 40 μg/L, the role of TN determining Chl a increased. Because 
our analysis comprised a dataset covering a broad spatial scale using a 
robust analytical framework, our findings have the potential to provide 

more general insight into the nutrient-Chl a relationship and the role of 
trophic status and lake depth in determining the relationship than ob-
tained in previous studies. Although lake-specific strategies are most 
effective in controlling eutrophication, for many lakes no or only scarce 
data are available, which makes it difficult to establish a proper eutro-
phication control strategy. In such cases, our developed models may be a 
helpful tool. 

To obtain simple relationships, we did not include water temperature 
as an explanatory variable, but recent studies suggest that the yield Chl a 
/ (TP or TN) might differ among climate regions, partly because the 
changes in top-down control of phytoplankton are more pronounced in 
lakes located in colder regions as a result of lower fish predation on 
zooplankton (Jeppesen et al., 2020, 2021). Further studies, including 
data from different climate zones (ours are mainly from north temperate 
lakes), are needed to elucidate whether inclusion of water temperature 
can reduce the uncertainties of the relationships presented. 

TN and TP were used here as the nutrients indicators in determining 
the relationship between nutrients and phytoplankton due to data 
availability, which guarantee a dataset covering a great nutrient 
gradient and a wide range of ecological conditions, and a more general 
insight. Meanwhile, TN and TP were also the most widely used nutrients 
indicators in determining nutrients limitation of phytoplankton and for 
eutrophication control (Jeppesen et al., 2020, 2021; Liang et al., 2020; 
Maberly et al., 2020; Malve and Qian, 2006; Mellios et al., 2020; Phillips 
et al., 2008; Qin et al., 2020). However, phytoplankton often contains an 
important part of TN and TP in the water, making TN and TP not fully 
independent variables, and some studies, therefore, suggest that dis-
solved inorganic nitrogen (DIN) would be a better predictor for available 
nitrogen of phytoplankton growth than total nitrogen, partly because 
luxury uptake of N is negligible, and DIN : TP seems the best indicator for 
nutrient limitation (Morris and Lewis, 1988; Ptacnik et al., 2010). A 
dataset including different forms of nitrogen and phosphorus, such as 
DIN, dissolved organic nitrogen (DON), dissolved inorganic phosphorus 
(DIP) and dissolved organic phosphorus (DOP), is needed to investigate 
whether inorganic nitrogen forms can predict phytoplankton growth 
better and reduce the uncertainties of the relationships presented. We 
concentrated on the most critical summer period with typical high 
phytoplankton biomasses, but future studies should also include other 
seasons as the results may differ from those based on summer data only 
(Jeppesen et al., 2021). 

4.2. N vs P limitation and implication for eutrophication control 

As the responses of lake ecosystem to nutrients reduction include 
many slow, long-term changes to nutrients fluxes, nutrients that provide 
long-term controls on phytoplankton biomass can be termed as ultimate 
limiting nutrients (Schindler, 2012), which should be deduced by 
long-term ecosystem-scale observations and/or macroscale observa-
tions. Our results based on datasets across broad spatial scales, trophic 
status gradient and lake depth showed that P is dominant in determining 
Chl a and the role of N is secondary, but important in eutrophic lakes, 
especially the shallow ones. Although our findings cannot be general-
ized to all lakes, it provides an important and insightful prior informa-
tion for lake eutrophication management. First, solely P reduction is 
effective in migrating eutrophication especially in deep lakes, but dual N 
and P would likely be more advantageous and should be a more effective 
strategy in shallow eutrophic lakes. In shallow lakes, the enrichment of 
N reduces the resilience of lake ecosystem, e.g. by imposing high risk of 
loss of submerged macrophytes (Gonzalez Sagrario, et al., 2005; Olsen 
et al., 2015; Phillips et al., 2016) which, in turn, increases the risk of 
algae blooms, and this may delay the re-establishment of oligotrophic or 
mesotrophic status. Second, given the need for different approaches and 
related costs, local evaluations are recommended to identify the limiting 
nutrient of phytoplankton growth and to specify appropriate nutrient 
criteria for target Chl a concentration. Finally, our results clearly show 
that an adaptive strategy for nutrient control should be taken which 
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target nutrient is not fixed but should be identified according to the 
trophic status and type of the lake. 

4.3. Implications of the lake-specific BHM for eutrophication control 

As demonstrated by Malve and Qian (2006) and Mellios et al. (2020), 
BHM can provide information at various hierarchy levels of lakes, e.g. all 
lakes included, specific lake types and specific lakes depending on data 
available so as to minimize the uncertainty and bias associated with 
lake-specific prediction. In addition, the established BHM based on 
multi-lake observations can function as a powerful tool for eutrophica-
tion control by setting lake-specific nutrient criteria that may require 
driver-response predictions outside the observational range. To illus-
trate this further, we implemented posterior predictions for three lakes 
(Lake Dianchi, shallow lake; Lake Erhai, transitional lake; Lake 6302, a 
lake in the LAGOS dataset (deep lake)) to demonstrate how the BHM can 
be used to drive lake-specific nutrient criteria. Table 3 lists the 

morphometric and chemical characteristics of the selected lakes. 
The lake-specific BHM showed variable accuracy: R2, RMSE, and 

AME were 0.45, 0.35, and 0.27 for Lake Dianchi, 0.31, 0.38, and 0.32 for 
Lake Erhai, and 0.62, 0.66, and 0.47 for Lake LAGOS 6302. Although the 
performance of the lake-specific BHM had higher bias than the lake type 
BHM, they showed high accuracy considering the limited number of 
observations. We simulated posterior probabilities of Chl a for a range of 
TN and TP values (the range between the 5th and 95th percentiles of all 
data; TN and TP were discretized into 100 × 100 grids) for these three 
specific lakes. The surface of the simulated 50th percentile Chl a relative 
to variable TN and TP is plotted in Fig. 8. These surface plots provide 
clear lake-specific nutrient-Chl a response curves, which can be easily 
understood and used for setting nutrient criteria. Meanwhile, even if the 
nutrient ranges (TN: 203–2610 μg/L, TP: 5.0–168 μg/L) used for simu-
lation are outside the observational range for the specific lake, reason-
able extrapolation can help determine target TP and/or TN values. 
Moreover, the predicted probabilistic distribution of Chl a obtained 

Table 3 
Mean depth (MED), maximum depth (MAD), surface area (SA), number of observed data, mean concentration (±standard deviation) of observed chlorophyll a (Chl a), 
total phosphorus (TP) and total nitrogen (TN) of three selected lakes predicted by the established Bayesian hierarchical linear regression model.  

Lake name MED (m) MAD (m) SA (km2) Mean TN (μg/L) Mean TP (μg/L) Mean Chl a (μg/L) Number of 
observed data 

Lake Dianchi 2.9 5.9 298 2331.8 (±446.2) 153.2 (±61.8) 81.3 (±37.0) 25 
Lake Erhai 10.2 25.3 249 567.3 (±59.1) 29.7 (±6.7) 11.2 (±4.9) 45 
Lake LAGOS 6302 22.9 64 182 629.7 (±377.8) 32.3 (±33.6) 19.2 (±22.7) 341  

Fig. 8. The 50th percentile response surface of chlorophyll a concentrations relative to a combination of total phosphorus (TP) and total nitrogen (TN) concen-
trations for: (a) Lake Dianchi (shallow), (b) Lake Erhai (transitional), and (c) Lake Lagos 6302 (deep) predicted with the lake-specific Bayesian hierarchical linear 
regression model. TP and TN varied within the range of the 95th and 5th percentile of the observed data (dataset including all lake groups). Please refer to Table 3 for 
the morphometric and chemical characteristics of the three lakes. 
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provides more information than can be obtained by the traditional 
regression models and are therefore better tools to make decisions 
within a risk assessment framework. For instance, if we need to balance 
the financial expenditure and restoration target, the nutrient response of 
the 50th percentile Chl a may be an appropriate choice. If we need to 
minimize the risk of exceeding a given Chl a concentration with no 
financial considerations, a cautionary decision may be adopted by the 
decision maker, and the corresponding nutrient target to the 90th 
percentile Chl a can be used. 

5. Conclusions 

A dataset spanning thousands of lakes across broad spatial scales, 
trophic status gradient and lake depth was analyzed applying an 
established Bayesian analytical framework. The dataset was grouped 
according to lake depth and mixing depth to explore the effects of lake 
depth and trophic status on the nutrient-Chl a relationship. The infer-
ence of BNs and subsequent simulation of the BHM both showed that TP 
played a dominant role in determining Chl a concentration in both 
shallow and deep lakes, while TN overall played a secondary role, 
though depending on lake type. The effect of TN on Chl a tends to be 
more important when the lake TP is >40 μg/L. Subsequent simulations 
of the BHM with variable TP and TN ranges revealed variable sensitivity 
of the Chl a response to nutrients between shallow lakes, transitional 
lakes, and deep lakes. Deep lakes had the lowest yield Chl a per unit of 
nutrient, following transitional lakes, and shallow lakes were the high-
est. These results demonstrated that reduction of phosphorus is the most 
important way to mitigate eutrophication but a dual N and P reduction 
may be more effective in eutrophic lake, especially in shallow lakes. Our 
study showed that the lake-type nutrient-Chl a or lake-specific nutrient- 
Chl a relationship is to be preferred in eutrophication management. 
Categorization of lake according to their depth and trophic status can 
help lake managers specifying better targeted control objectives and 
effective measures to minimize the risk of eutrophication. Our estab-
lished BHM based on cross-sectional data provides a flexible and reliable 
risk assessment framework for driving the TP and TN targets required for 
meeting a target Chl a concentration required for abating eutrophication 
at the level of lake type or for specific lakes. When using these models 
care should be taken giving that TN and TP are not fully independent 
predictors of phytoplankton biomass. 
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