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Abstract
The increasing production, use and emission of synthetic chemicals into the environment 
represents a major driver of global change. The large number of synthetic chemicals, lim-
ited knowledge on exposure patterns and effects in organisms and their interaction with 
other global change drivers hamper the prediction of effects in ecosystems. However, 
recent advances in biomolecular and computational methods are promising to improve 
our capacity for prediction. We delineate three idealised perspectives for the prediction 
of chemical effects: the suborganismal, organismal and ecological perspective, which are 
currently largely separated. Each of the outlined perspectives includes essential and com-
plementary theories and tools for prediction but captures only part of the phenomenon 
of chemical effects. Links between the perspectives may foster predictive modelling of 
chemical effects in ecosystems and extrapolation between species. A major challenge 
for the linkage is the lack of data sets simultaneously covering different levels of bio-
logical organisation (here referred to as biological levels) as well as varying temporal and 
spatial scales. Synthesising the three perspectives, some central aspects and associated 
types of data seem particularly necessary to improve prediction. First, suborganism- and 
organism-level responses to chemicals need to be recorded and tested for relationships 
with chemical groups and organism traits. Second, metrics that are measurable at many 
biological levels, such as energy, need to be scrutinised for their potential to integrate 
across levels. Third, experimental data on the simultaneous response over multiple bio-
logical levels and spatiotemporal scales are required. These could be collected in nested 
and interconnected micro- and mesocosm experiments. Lastly, prioritisation of pro-
cesses involved in the prediction framework needs to find a balance between simplifi-
cation and capturing the essential complexity of a system. For example, in some cases, 
eco-evolutionary dynamics and interactions may need stronger consideration. Prediction 
needs to move from a static to a real-world eco-evolutionary view.

K E Y W O R D S
adverse outcome pathway, environmental change, evolution, forecasting, metacommunity, 
pollution, scale, toxicants
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1  |  INTRODUC TION

Studies around the globe have established associations of chemical 
groups of concern, for example, pesticides, pharmaceuticals and indus-
trial chemicals, with population decline and biodiversity loss (Beketov 
et al., 2013; Brodin et al., 2013; Desforges et al., 2018; Kidd et al., 2007; 
Oaks et al., 2004; Rundlöf et al., 2015). Since 1970, synthetic chemical 
production has increased at a higher rate than other drivers of global 
change, such as CO2 emissions or anthropogenic land-use change 
(Bernhardt et al., 2017). A recent study estimated more than 350,000 
chemicals to be registered for production and use (Wang et al., 2020). 
In the environment, a wide range of chemicals of urban, agricultural 
and industrial origin can be detected, in particular in aquatic ecosys-
tems that typically drain landscapes with diverse land use (Bradley 
et al., 2019; Moschet et al., 2014). For example, more than 400 chem-
icals with approximately 30 different modes of action (MoA) were 
found in three Central European rivers (Busch et al., 2016). A study on 
19 agricultural streams in Eastern Europe found up to 50 pesticides in a 
single water sample (Schreiner et al., 2021). Simultaneous exposure to 
multiple chemicals can cause additive or synergistic effects compared 
with individual exposure (Cedergreen, 2014) depending on their MoA 
and interaction type. For example, mixtures including cholinesterase 
inhibitors or azole fungicides, both interfering with the metabolisation 
of other chemicals, tend to induce synergism (Cedergreen, 2014). Thus, 
predicting the effect of chemicals on ecosystems requires consider-
ation of potential mixture effects and, consequently, knowledge on 
all chemicals occurring in an ecosystem. However, most studies focus 
on target chemicals, i.e. chemicals of concern. These often explained 
only a minor fraction of the total measured effect in in vitro bioassays, 
suggesting that relevant chemicals might be missed by the current tar-
geted chemical analysis (Escher et al., 2020). Non-target chemical anal-
ysis can cover a wider range of chemicals (Brack et al., 2019). However, 
even if the full spectrum of chemicals was detected and quantified, 
predicting their ecological effects would be hampered by the absence 
of ecotoxicological data for many chemicals (Posthuma et al.,  2019; 
Schäfer et al., 2013; Wang et al., 2020). Overall, the large number of 
synthetic chemicals in the environment combined with limited knowl-
edge on their occurrence and effects in organisms compromise our 
ability to predict chemical effects in ecosystems. This in turn hampers 
ecosystem management and conservation and may contribute to un-
derestimating chemicals as one of the drivers of biodiversity loss (Groh 
et al., 2022; Schäfer et al., 2019).

Predicting the impacts of chemicals in ecosystems is the key topic 
of the scientific discipline of ecotoxicology. Similarly, chemical reg-
ulation, operationalised as risk assessment and management, aims 
at protecting ecosystems from unacceptable impacts of chemicals. 
Protection goals typically target populations, communities, food 
webs and ecosystems (EFSA Scientific Committee,  2016; Forbes 
& Galic, 2016; Raimondo et al., 2019). However, ecotoxicology and 
chemical regulation have traditionally relied on summary statistics, 
so-called (no observed) effect concentrations ([NO]EC), derived from 
quantitative concentration–effect relationships established with 
single taxa and chemicals under controlled laboratory settings with 

optimal conditions for the test species (Forbes et al., 2017). The ef-
fect is typically measured as mortality compared with a control (also 
called lethal concentration killing x % of the test organisms, LCx) but 
can also relate to sublethal measures such as growth or reproduction 
(called effect concentration, ECx). For such data, simple mathemati-
cal models have demonstrated high predictability of toxic effects of 
mixtures (Kortenkamp & Faust, 2018). However, extrapolating such 
results to non-tested species and using them to predict impacts on 
spatiotemporally heterogeneous ecosystems remains a major chal-
lenge, which has recently been rated among the most important cur-
rent research questions in ecotoxicology (Van den Brink et al., 2018). 
This challenge is due to organisms in nature being influenced by a 
range of environmental factors (e.g. pH, light) and multiple additional 
stressors (e.g. climate change, habitat degradation) (Birk et al., 2020; 
Côté et al., 2016) as well as complex eco-evolutionary dynamics in 
ecosystems driven by species dispersal, adaptation and species in-
teractions such as predation or facilitation (Cadotte & Tucker, 2017; 
Govaert et al., 2021; Schäfer, 2019; Schiesari et al., 2018). Ecological 
studies have often dealt with such complexity by seeking to es-
tablish links between stressors and ecological responses based on 
field studies. Adopting this approach for chemicals is hampered by 
their sheer amount and potential interactions between chemicals in 
mixtures as well as with other environmental factors and stressors 
(Posthuma et al., 2020). Conversely, the reliance of chemical regu-
lation on parameters such as experimentally derived (NO)ECs from 
few laboratory test species, coupled with a lack of mechanistic in-
sight into the chemical MoA and ecosystem dynamics, has repeat-
edly led to ecological surprises in terms of unforeseen effects in 
ecosystems (Oaks et al., 2004; Rundlöf et al., 2015; Tian et al., 2021).

Here, we delineate three idealised perspectives that substan-
tially contribute to date to prediction and cross-species extrapola-
tion (Figure 1): (1) The suborganismal perspective, (2) the organismal 
perspective and (3) the ecological perspective. The suborganismal 
perspective uses molecular, cellular and biochemical information 
to predict chemical effects at the suborganism level, rarely result-
ing in robust links to organism-level responses (Section 2; Kramer 
et al., 2011). The organismal perspective mainly focusses on effects 
at the organism and population level and also attempts to integrate 
chemical absorption (here uptake), distribution, metabolism and ex-
cretion (ADME) processes (Section 3). The ecological perspective 
provides concepts to predict the consequences of organism- or 
population-level effects in complex ecosystems, focussing on pro-
cesses and underlying mechanisms in populations, communities, 
food webs and ecosystems (Section 4). We describe the perspec-
tives, highlight challenges and identify links between the perspec-
tives that may foster prediction and cross-species extrapolation in 
the following sections. We focus on process-based and mechanis-
tic approaches and pay only limited attention to approaches based 
on data-driven (e.g. based on statistics and machine learning) re-
lationships, for example, interspecies correlation estimates (Dyer 
et al., 2006) or estimates based on species relatedness (van den Berg 
et al.,  2021). In addition, our main focus is the prediction of eco-
logical effects using biological approaches, whereas chemical-driven 
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    |  23SCHNEEWEISS et al.

approaches, such as quantitative structure–activity relationships 
that rely on the chemical structure and physicochemical substance 
properties for prediction (Barron et al., 2015), are certainly also in-
teresting and relevant but beyond our scope.

2  |  SUBORGANISMAL PERSPEC TIVE

Although higher biological level effects are of ultimate interest in 
research and chemical regulation, they are always triggered by sub-
organismal processes such as a molecular initiating event (MIE). 
Responses to chemicals at the suborganismal level are largely consid-
ered as early warning signs of exposure or effects (Clements, 2000; 
Hagger et al., 2006). Although data from this level including single 
sensitive biomarkers are generally insufficient for robust effect pre-
diction at the ecosystem level, they are pivotal for understanding 
mechanisms underlying chemical effects and represent a critical 
element of prediction and extrapolation. Since the early 2000s, a 
research area has emerged that relies on mechanistic understand-
ing for the prediction of chemical effects through the use of emerg-
ing molecular, cellular and biochemical tools (de Nadal et al., 2011; 
Ouborg & Vriezen, 2007; Reusch & Wood, 2007).

2.1  |  Adverse outcome pathways for prediction

In this context, adverse outcome pathways (AOPs, Figure 2) repre-
sent an important concept that structures toxicological knowledge 

originating from individual biomarkers as well as omics (e.g. genom-
ics, transcriptomics, proteomics, lipidomics, metabolomics), thereby 
improving mechanistic understanding of all steps following chemical 
exposure from receptor to cell over organ to the whole organism 
(Ankley et al., 2010; OECD, 2013). AOPs describe the chain and net-
work of events initiated by a chemical in an organism from triggering 
an MIE, cascading via key events to a physiological effect (Figure 2). 
Recent advances, such as in vitro testing, high-throughput screen-
ing, next-generation sequencing and omics-technologies, have sim-
plified the identification of molecular target sites of chemicals, for 
example, DNA, membrane or specific receptors and enable simul-
taneous testing of many effects at cellular and tissue level (LaLone 
et al., 2018; López-Osorio & Wurm, 2020; Villeneuve et al., 2019). 
Statistical tools can help increase the interpretability and applicabil-
ity of omics-based data for prediction, whereas multi-level analysis 
approaches may enable the integration of such data from multiple 
biological levels (see Murphy et al., 2018b).

However, only if (causal) relationships of suborganismal re-
sponses (e.g. MIEs) with apical organism responses (e.g. survival or 
reproduction success) (Kramer et al.,  2011) or with physiological 
MoA (pMoA) as defined in bioenergetic models (Section 3, Murphy 
et al.,  2018a, 2018b), can be established, AOPs can contribute to 
predicting effects at higher biological levels, for example, popula-
tion, community, food-web or ecosystem level. Given the consid-
erable efforts required, only a few such relationships have been 
established to date. For example, the relationship between effects 
on the vitellogenesis and fecundity (eggs/female/day) in oviparous 
fish enabled population-level predictions for endocrine-disrupting 

F I G U R E  1  Simplified representation of the interrelationship between the different perspectives to predict the effects of chemicals on 
ecosystems. The dashed boxes illustrate associated approaches and tools.
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24  |    SCHNEEWEISS et al.

chemicals (Miller et al.,  2007; for further examples see Kramer 
et al., 2011). However, these relationships need to be quantitative 
to predict effects at higher biological levels. Dose and time data on 
initial and maximum induction, adaptation and recovery is required 
from low to high biological level responses to build quantitative links 
(Wu et al., 2005). For example, molecular and biochemical responses 
seem frequently similarly rapidly induced as physiological, cytologi-
cal or behavioural responses (Wu et al., 2005). Longer recovery time 
has often been found for population and community responses (Wu 
et al., 2005). Regarding the dose, for baseline toxicants, for example, 
cellular—and organismal effects occurred at similar critical concen-
trations (Escher et al., 2019; Lee et al., 2021). Quantitative relation-
ships can differ by several orders of magnitude between chemicals 
(Kimber et al., 2011; Sewell et al., 2018), species and environmental 
contexts. Moving from the current mainly qualitative scope of AOPs 
to quantitative AOPs (qAOPs) requires the incorporation of dose and 
time information into thresholds triggering MIEs and the sequence 
of key events (Sewell et al., 2018). To date, only a few probabilistic 
and mechanistic qAOP models were developed for effect predic-
tion, with divergent characteristics and outcomes (reviewed in Spinu 
et al., 2020), and a need for guidance on the development and eval-
uation of qAOP models remains, particularly for application in a reg-
ulatory context (Spinu et al., 2020). Generally, improved databases, 

data-sharing initiatives, bioinformatics, data-mining tools as well as 
the use of standardised terminology will support the development 
of qAOPs based on existing data (Sewell et al., 2018) and the com-
putational prediction of AOPs (Bell et al.,  2016; Oki et al.,  2016). 
qAOPs might allow the use of cellular-level data, which can be ob-
tained efficiently from high-throughput assays, for the prediction of 
organism- and population-level effects (Ankley et al., 2010; Kramer 
et al., 2011; Villeneuve et al., 2019). In human toxicology, major de-
velopments are underway to use data from high-throughput assays 
as a robust anchor for higher-level (organ or organism) responses 
by establishing quantitative in vitro to in vivo relationships (Bell 
et al., 2020; Wetmore, 2015). Mammalian data can partly be extrap-
olated to other species with closely conserved pathways (see next 
Section 2.2), but generally the development of species-specific path-
ways in additional vertebrates, invertebrates and plants is needed 
(Villeneuve et al., 2019).

2.2  |  Molecular cross-species extrapolation

Molecular cross-species extrapolation (MCSE, Figure  2) can help 
extrapolate chemical sensitivity across species by comparing mo-
lecular target sites of chemicals, e.g. receptor protein sequence 

F I G U R E  2  Main processes related to the suborganismal perspective. The box delineated by the solid black line depicts the main focus 
of the suborganismal perspective. Boxes in light grey provide more detailed information on terms. Arrows connect biological levels, 
whereas brackets indicate the processes and levels associated with the concepts of adverse outcome pathways illustrated based on Ankley 
et al. (2010) and molecular cross-species extrapolation and the other perspectives.
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    |  25SCHNEEWEISS et al.

and conformation similarity among species. MCSE assumes that 
evolutionary conservation of molecular target sites implies chemi-
cal sensitivity (Gunnarsson et al.,  2008). Where the structure and 
function of molecular target sites are similar across species, at least 
building blocks of (q)AOPs can be reused, which enables more ef-
ficient AOP development for new species (Ashauer & Jager, 2018). 
Unfortunately, information on structure and function is rarely avail-
able (LaLone et al.,  2016), but advances in sequencing technolo-
gies and molecular methods may rapidly expand the available data. 
Moreover, advances in web-based tools for MCSE such as the US 
EPA Sequence Alignment to Predict Across Species Susceptibility 
(SeqAPASS) tool already enable the inclusion of some structural 
data of proteins (e.g. conserved functional domains and individual 
amino acid residue positions, Figure 2) (LaLone et al., 2013, 2016). 
Furthermore, a low degree of similarity in molecular target sites 
across species (e.g. using the tool SeqAPASS; LaLone et al., 2016) 
can already guide the selection of species for further laboratory 
tests (LaLone et al., 2013, 2018).

2.3  |  Major challenges and current developments

Despite major advances, the suborganismal perspective remains 
insufficient to predict the effects of chemicals in ecosystems. The 
steps from chemical uptake to reaching a molecular target site 
(termed toxicokinetic [TK] process, i.e. ADME) and the adaptive ca-
pacity of an organism before an MIE is initiated are not considered by 
AOPs or MCSE and remain a main focus of the organismal perspec-
tive. To close this gap, different approaches have been suggested, 
such as high-throughput physiologically based TK models in human 
toxicology (Breen et al.,  2021), the aggregate exposure pathway 
framework (Teeguarden et al., 2016), the combined measurements 
of external and internal concentrations (i.e. circumvent TK processes; 
van den Berg et al., 2021) and linking AOPs with bioenergetic models 
(Section 3, Kramer et al., 2011; Murphy et al., 2018a, 2018b).

Furthermore, suborganismal responses are usually recorded 
under standardised and simplified laboratory conditions, but the 
conditions in real systems can influence these responses. AOPs and 
MCSE consider usually a single chemical effect as independent of 
remaining physiological processes (Murphy et al.,  2018a, 2018b). 
However, depending on resource availability and other moderat-
ing factors, energy can be allocated differently, which influences 
the overall response. Energy trade-offs between physiological pro-
cesses, such as maintenance (including metabolisation of chemicals), 
growth and reproduction, for instance under the impact of multiple 
stressors, are not considered. This limitation of AOPs could poten-
tially be alleviated through integration with the organismal perspec-
tive (Section 3, Murphy et al., 2018a, 2018b).

In addition, both chemical effect prediction and extrapolation 
across species should consider that chemicals can have multiple and 
non-specific target sites. Besides, a single MIE can result in multi-
ple outcomes and common key events can be involved in multiple 
AOPs resulting in non-linear, branching AOPs (Sewell et al., 2018), 

with a high potential of reusing (q)AOP building-blocks. Finally, even 
if organism-level effects could be reliably predicted, prediction of 
higher-level effects up to the ecosystem level requires including 
ecological and evolutionary processes theoretically and empirically 
(Sections 4–6).

3  |  ORGANISMAL PERSPEC TIVE

Bioenergetic models, such as dynamic energy budget (DEB) models 
can extend the prediction from the suborganism level to the organ-
ism and population level and at the same time provide the necessary 
background on ADME processes when integrated into toxicokinetic–
toxicodynamic (TKTD) models (Figure 3). They allow one to predict 
the effects of realistic time-varying exposures in the field based on 
responses recorded under constant exposure conditions in the labo-
ratory (Sherborne et al., 2020). At the same time, they can translate 
complex exposure patterns into effects at medium biological levels 
(e.g. organism, population), thereby providing an important element 
of effect prediction (Ashauer et al., 2011, 2016).

3.1  |  TKTD models for prediction

Toxicokinetic–toxicodynamic models have a TK part that reflects the 
ADME processes of chemicals to predict a total internal concentra-
tion of a chemical in an organism (Figure 3). TK models can be mod-
elled as one compartment (whole organism), multiple compartments 
(i.e. internal entities such as organs) or based on physiology (Grech 
et al., 2017) and are driven by chemical-specific (e.g. octanol–water 
partitioning coefficient) as well as organism-specific (e.g. lipid con-
tent) parameters. TD models focus on the effect of the concentration 
at a molecular target site on apical responses at the organism level, 
such as mortality, growth or reproduction (Figure 3). Here the derived 
TD model parameters can reflect biological processes and organism 
traits (Ashauer & Jager,  2018; Rubach et al.,  2011). TKTD models 
allow for different complexities (e.g. include damage recovery) de-
pending on the scope of prediction and data availability (Jager, 2020). 
This potential for different complexity has led to the emergence of a 
wide range of TKTD models. However, at least for the survival end-
point, they have been unified in the Generalized Unified Threshold 
model for Survival (GUTS), which models time-to-event or survival 
data (Jager et al., 2011). GUTS can be adapted to the available input 
data and to mechanistic assumptions when used to predict survival in 
a population. For example, the reduced GUTS (GUTS-RED), directly 
connects an external concentration to the scaled damage, without 
the need for internal concentrations (Jager, 2020; Jager et al., 2011).

3.2  |  DEB models for prediction

A commonly used bioenergetic model framework is based on DEB 
theory (Jager, 2020; Kooijman, 2009). The DEB theory consists of 
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26  |    SCHNEEWEISS et al.

assumptions specifying how organisms obtain energy and matter 
from their environment to fuel their life cycle. The theory treats 
organisms as dynamic systems with explicit energy balances and 
can be applied to all species (Nisbet et al., 2000). Different vari-
ants of DEB models exist in ecotoxicology, which are coined under 
the term DEBtox or, according to a more recent publication, DEB-
TKTD (Sherborne et al.,  2020). Recent developments include 
a unified and simple DEB approach for practitioners (EFSA PPR 
et al., 2018; Jager, 2020; Sherborne et al., 2020). Generally, DEB-
TKTD combines biological parameters of organisms (e.g. growth, 
feeding and maintenance) and chemical exposure over time (Jager 
et al., 2006). The modelling of bioenergetic processes allows one to 
capture (sub)lethal effects of chemicals on life-history traits of in-
dividuals. Structurally, the DEB-TKTD model consists of TK and TD 
parts. The TK part is similar to other TKTD models discussed above 
(Figure  3). By contrast, the TD part differs from TKTD models. 

DEB-TKTD predicts the effects of a chemical inside an organism 
as stress costs of one of usually four pMoA (Figure  3), namely, 
assimilation, growth, maintenance, and reproduction (Ashauer & 
Jager, 2018), representing assimilation of energy from food, ener-
getic costs for growing new body tissue, maintaining body func-
tions including mitigating hazardous effects as well as producing 
offspring (Kooijman & Bedaux, 1996). Similar to GUTS, a reduced 
version (DEBkiss) of a full DEB-TKTD model has been developed, 
which simplifies bioenergetic processes and in turn requires fewer 
state variables and parameters (Jager et al., 2013). Another impor-
tant simplification within the DEB-TKTD model framework is the 
introduction of ‘compound parameters’ (comDEB[kiss]), such as 
maximum length, which replace hard-to-measure ‘primary param-
eters’ (priDEB[kiss]) based on simplified model assumptions, for 
example, a constant ratio between size and maturity (Sherborne 
et al.,  2020). For the simplest model variant (comDEBkiss), each 

F I G U R E  3  Main processes related to the organismal perspective. The large box delineated by the solid black line depicts the main focus 
of the organismal perspective. Boxes in light grey provide more detailed information on terms. Arrows connect processes or biological levels, 
whereas brackets indicate the processes and levels associated with each approach and the other perspectives.
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    |  27SCHNEEWEISS et al.

parameter relates to a measurable variable, and it can be fully pa-
rameterised based on standard laboratory tests, where growth 
and reproduction are measured over time (Jager, 2020; Sherborne 
et al.,  2020). Generally, recent studies highlight the relevance of 
mechanistic understanding in DEB model parameters and processes 
for reliable prediction. If model parameters and processes have no 
phenomenological counterpart in the real world, they represent 
abstractions with unknown interpretability (Murphy et al., 2018a, 
2018b) and uncertainty. For instance, population-level responses 
can differ strongly depending on the suborganismal mechanisms 
involved (Martin et al., 2014). One way to alleviate this might be 
to incorporate AOPs in DEB models (Murphy et al., 2018a, 2018b). 
For example, AOP key event responses could be integrated into a 
damage term that translates to DEB rates (Murphy et al., 2018a, 
2018b). As mentioned in Section 2, AOPs and gene expression data 
could thereby gain higher predictive applicability.

3.3  |  Major challenges and current developments

As outlined above, for both, TKTD and DEB models, simplified 
model variants have been introduced to achieve practical applicabil-
ity for non-experts. However, it is challenging to find a compromise 
between depicting reality and keeping the model complexity (i.e. 
number of model parameters) and the data requirements computa-
tionally manageable. This compromise builds on assumptions, such 
as the constant ratio between size and maturity or the neglect of a 
reserve, ageing, body shape differences and starvation (Sherborne 
et al., 2020). For species or chemical MoAs where an assumption is 
not plausible, the model needs to be extended at the cost of simplic-
ity (Sherborne et al., 2020).

Besides, another main challenge remains: For many taxa, key 
model parameter estimates required to build the model are lack-
ing. Obtaining those by direct measurements in laboratory experi-
ments after field sampling of the new species is resource-intensive 
and inappropriate for rare and endangered species (Petersen 
et al.,  2008). Methods to reduce resource requirements in labo-
ratory testing or to indirectly obtain key parameters for a model, 
such as parameter borrowing, pattern-oriented and artificial evo-
lution approaches, are described elsewhere (Petersen et al., 2008). 
DEB model parameters have already been collected for more than 
3200 species in the Add-my-Pet database (AmP, 2022), covering 
all major phyla (Lavaud et al., 2021). For species sharing the same 
receptor and pathway and compounds sharing the same MoA, 
model parameters should be the same and could be used for effect 
extrapolation to untested chemicals and species based on internal 
molar concentrations (Gergs et al., 2019; Jager & Kooijman, 2009). 
However, also the bioconcentration factor and the target site in-
teraction efficiency of a chemical can make a difference in the 
outcome (Gergs et al.,  2019; Jager & Kooijman,  2009), informa-
tion that is rarely available. In addition, the actual internal concen-
tration at the target site is difficult to measure for many species 
and the aggregation of ADME data for additional vertebrates, 

invertebrates and plants, as realised for mammals/humans, is still 
pending (Villeneuve et al., 2019). Finally, extrapolation of chemi-
cal effect concentrations to untested species has so far only been 
done for survival data based on GUTS (Gergs et al.,  2019), but 
not for sublethal responses (Sherborne et al.,  2020). The cross-
species parameter correlation method used in this extrapolation 
enabled the prediction of chemical effects for new species, how-
ever, its predictive capability at the population level involving an 
individual-based model was still insufficient and underestimated 
the actual effect (Gergs et al., 2019).

Starting in 1994 many studies with TKTD and DEBtox mod-
elling applied a rigorous approach to the estimation of model pa-
rameters and their uncertainty by likelihood profiling (Bedaux & 
Kooijman, 1994; Kooijman & Bedaux, 1996). However, a more fun-
damental challenge was the propagation of uncertainty to the model 
outputs and subsequent predictions (Charles et al.,  2022; Trijau 
et al., 2021). For the most common TKTD and DEB models, frequen-
tist and Bayesian software packages have been developed in the last 
few years to solve this problem (Charles et al., 2022; Jager, 2021; 
Trijau et al.,  2021). However, this remains a common challenge in 
community and ecosystem models (with some exceptions, e.g. 
Streambugs) (Mondy & Schuwirth,  2017; Schuwirth et al.,  2015), 
which are required to extend chemical effect prediction to the com-
munity or ecosystem level.

Overall, TKTD and DEB models can strongly improve our under-
standing and capacity for prediction, but they are largely limited to 
the organism or population level in laboratory settings. Even perfect 
knowledge at the associated level would be insufficient to reliably 
predict chemical effects on populations in real-world ecosystems 
and necessitates an ecological perspective, outlined below.

4  |  ECOLOGIC AL PERSPEC TIVE

A major aim of ecotoxicology and chemical risk assessment is to pre-
dict chemical effects at higher biological levels such as communities, 
food webs and ecosystems or biodiversity per se, which are gener-
ally within the domain of ecology. A rich but heterogeneous body of 
ecological theory has been developed to explain community, food 
web and biodiversity patterns and related processes at different 
spatial and temporal scales (Scheiner & Willig, 2011). In the last dec-
ade, generalising and unifying frameworks have emerged integrating 
previously separated lines of theory. Vellend's Theory of Ecological 
Communities identifies four processes that underly community dy-
namics (Vellend, 2010, 2016) (Figure 4):

1.	 Selection, which consists of a) environmental selection through 
environmental conditions including chemical pollution, and b) 
biotic selection through processes such as competition, preda-
tion or facilitation, that determine the occurrence and growth 
of a species in a habitat patch.

2.	 Dispersal, which determines the recruitment to and from habitat 
patches.
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3.	 Drift, in terms of stochastic processes that influence the develop-
ment of populations and communities.

4.	 Speciation, i.e. formation of a new biological species, although 
mainly relevant on longer time scales.

4.1  |  Chemicals and ecological processes

Many studies demonstrated that the first three processes are 
highly relevant for predicting chemical effects on ecological sys-
tems (Figure 4). Direct chemical effects constitute a form of (envi-
ronmental) selection. In addition, environmental conditions such as 
temperature, moisture or pH, besides potentially modifying chemi-
cal concentrations and interactions, determine the occurrence of a 
biological species in a habitat patch exposed to a chemical and its fit-
ness (Laskowski et al., 2010; Niinemets et al., 2017). Biotic processes 
such as competition or predation/cannibalism have also been shown 
to increase the effect of chemicals or to delay recovery (Kattwinkel 
& Liess,  2014; Liess & Foit,  2010; Viaene et al.,  2015). Dispersal 
contributes to recovery from chemical effects via recolonisation 
(Trekels et al.,  2011), but can also lead to a transfer of chemicals 
between food webs and propagate effects to non-polluted habitat 
patches (Richmond et al., 2018; Schäfer et al., 2017; Schneeweiss 
et al., 2022). Only few studies have specifically examined the rele-
vance of stochastic ecological drift for chemical effects. However, a 
modelling study demonstrated that incorporating stochasticity im-
proved the prediction of experimental data (Erickson et al., 2014). 

Moreover, stochasticity can profoundly modulate ecological dy-
namics (Shoemaker et al.,  2020). Although the fourth process, 
speciation, is mainly relevant on longer time scales, evolutionary 
processes at the population level (e.g. natural selection, gene flow, 
genetic drift and mutation) can already occur at similar temporal 
and spatial scales as ecological processes (Govaert et al., 2021). This 
phenomenon is often termed ‘rapid evolution’ and its ecological and 
functional significance has been shown already several decades 
ago (e.g. Gorokhova et al., 2002; Reznick et al., 1997). With respect 
to pesticide impacts, multiple studies found evidence for rapid 
evolutionary adaptation and lower sensitivity (Bass et al.,  2015; 
Hawkins et al., 2019; Lucas et al., 2015; Palumbi, 2001; Powles & 
Yu, 2010). This adaptation can lead to co-tolerance against similar 
stressors—but it may also result in higher sensitivity of species to 
other stressors due to performance trade-offs (Luijckx et al., 2017; 
Orr et al., 2021). Theory, experiments and prediction should, there-
fore, consider eco-evolutionary dynamics (Govaert et al.,  2021), 
which would allow to move from a static to a dynamic prediction 
framework. Furthermore, genetic intraspecific variability, for ex-
ample, cryptic lineages, showed differential sensitivity (Becker & 
Liess,  2015; Feckler et al.,  2014; Sturmbauer et al.,  1999), which 
hampers the transferability of experimental results based on in-
dividual clones or low-diversity laboratory populations to natural 
populations. Overall, the Theory of Ecological Communities pro-
vides the key ecological processes that need to be considered when 
predicting the effects of chemicals in ecosystems, yet the approach 
is abstract and makes no prediction on the relevance of each of 

F I G U R E  4  Main processes related to the ecological perspective. The large box delineated by the solid black line depicts the components 
of the ecological perspective in a metaecosystem. Triangles represent metacommunities, the left triangle zooms into an idealised aquatic 
metacommunity, represented as trophic pyramid. Arrows depict a bi- or unidirectional exchange in materials, chemicals and energy (black) or 
impact (red). Brackets indicate the processes associated with the other perspectives.

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  29SCHNEEWEISS et al.

the processes for a specific ecosystem or species. A different amal-
gamating framework is provided by the Metacommunity Theory 
(Leibold et al., 2004). This explains and predicts patterns of commu-
nity composition in connected habitat patches at local and regional 
spatial scales. Three of the processes (selection, drift, dispersal) 
outlined above are integrated with different weights into four non-
exclusive paradigms of community organisation (for details see 
Leibold et al., 2004). Through the consideration of biogeochemical 
flows and complex food webs, this theory has been expanded to 
metaecosystems and meta food webs (Gounand et al., 2018; Loreau 
et al., 2003; Ryser et al., 2021) (Figure 4). However, this theory also 
rather provides predictions of general patterns from assumptions 
of the relevance of the individual paradigms than predictions of the 
community composition in a specific habitat patch or region. With 
respect to chemicals, this theory has been applied to establish a 
conceptual framework for chemical effects across ecosystems and 
to explain patterns observed in experiments (e.g. Peng et al., 2018; 
Schiesari et al., 2018).

4.2  |  Use of traits in ecotoxicology

The trait-based approach, rooted in the so-called Assembly and 
Response Rule Framework (Keddy,  1992), has been most widely 
applied for explaining and predicting chemical effects in ecosys-
tems. Loosely defined, traits are measurable characteristics of an 
individual (cf. Violle et al., 2007) and trait-based approaches aim at 
linking traits, instead of species, to environmental conditions at vari-
able scales. Although it remains a challenge for ecologists to predict 
the specific set of species occurring in a habitat patch, trait-based 
approaches successfully predicted the trait composition of com-
munities from environmental conditions (Shipley,  2010; Shipley 
et al., 2006). In the context of predicting the effects of chemicals, 
the sensitivity of a species to a chemical can be considered a trait. 
This trait forms the backbone of many applications in the context 
of ecotoxicology and risk assessment. For example, the sensitivity 
distribution across species, called SSD, is used to derive acceptable 
environmental concentrations of chemicals (Smetanová et al., 2014) 
and has been successfully linked to chemical effects in ecosystems 
(Posthuma & de Zwart, 2012). However, data on chemical sensitivity 
is lacking for most species. Hence, several approaches have aimed 
at predicting the chemical sensitivity trait, either by other traits (e.g. 
body size), phylogenetic relatedness or using tools related to the 
other two perspectives, i.e. suborganismal or organismal approaches 
(Malaj et al., 2016; Rubach et al., 2012; van den Berg et al., 2019, 
2021). Although useful for filling data gaps, these approaches often 
depend themselves on input data that is scarce or associated with 
high uncertainty. Although not related to physiological sensitivity, 
several other traits can be used to assess the vulnerability of taxa 
(Figure 4; De Lange et al., 2009). Examples of such traits are habitat 
preference (determining exposure), dispersal capacity (determining 
recolonisation and avoidance of chemical exposure) and growth rate 
(determining recovery). Several studies used a combination of traits 

to establish links between chemical pollution and species occur-
rence or community change (Badry et al., 2020; Delhaye et al., 2020; 
Kjær et al., 2021; Schäfer & Liess, 2013). Moreover, if links between 
traits that respond to environmental (including chemical) selection, 
so-called response traits, and traits that describe the effect of a spe-
cies on ecosystem functioning, so-called effect traits, can be estab-
lished, then these allow to predict changes in ecosystem functioning 
(e.g. Schäfer et al., 2012). Although trait-based approaches are valu-
able to identify vulnerable taxa and predict the trait composition of 
species in a habitat, their capacity to quantitatively predict the re-
sponse to chemicals is hampered by data availability and insufficient 
consideration of eco-evolutionary dynamics.

Regarding data availability, traits with a strong mechanistic link 
to chemical effects, such as the capacity for production of heat 
shock proteins or the content of energy storage molecules (e.g. 
lipid, glycogen or proteins), average biomass or body size have rarely 
been measured for many organism groups that are particularly at 
risk from chemical effects such as invertebrates or fungi (Rubach 
et al., 2011). Measuring such traits would require major coordinated 
efforts, though the other perspectives might aid in predicting traits 
(Gergs et al., 2019; Pecquerie et al., 2011). Finally, intraspecific trait 
variation can be important (see for example De Laender et al., 2014) 
but, depending on the organism group, is often ignored due to a 
lack of data. Regarding eco-evolutionary dynamics, the trait-based 
approach is currently static in many respects. First, traits may vary 
over the lifetime of a species (Lancaster & Downes, 2010). Second, 
the average trait of a population may change with environmental 
conditions, which includes adaptation processes to chemicals (Dinh 
et al., 2016; Shahid et al., 2018), whereby the future response to the 
same or other stressors is moderated (Orr et al., 2021; Vinebrooke 
et al.,  2004). Third, biotic selection and dispersal are often in-
sufficiently accounted for in trait-based approaches (Cadotte & 
Tucker, 2017).

4.3  |  Statistical and process-based models

A wide range of statistical and process-based models have been 
developed, rooted in a variety of ecological concepts and theories, 
that can predict the effects of chemicals. Joint species distribution 
models (JSDMs) are a group of statistical models that have attracted 
wide attention in ecology (Ovaskainen & Abrego,  2020). If larger 
monitoring data sets with measurements of species and chemicals 
as well as all relevant environmental factors are available, JSDMs can 
quantify the relevance of chemicals for the species distribution and 
predict the occurrence of species in non-measured patches in the 
landscape (Brown et al., 2018; Ovaskainen et al., 2017). The model-
ling requires knowledge on ecological processes such as biological 
interactions, which can be estimated from the data, though such es-
timates may not be reliable (Dormann et al., 2017, 2018). As larger 
field data sets are required, JSDMs are unsuitable for novel chemi-
cals that have not been authorised for use. Many process-based 
models have been developed and used to predict the response of 
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populations, communities and ecosystems to chemicals (see reviews 
by: Galic et al., 2010; Rohr et al., 2016; Schmolke et al., 2010). Most 
of these models derive from classical ecological models and consider 
individuals as the smallest unit, thereby ignoring suborganismal pro-
cesses related to the MoA (Accolla et al., 2020; Rohr et al., 2016). 
Notwithstanding, process-based models have successfully been 
used to quantitatively predict the responses of populations, com-
munities and food webs to chemicals (Kattwinkel et al.,  2016; Lei 
et al., 2008; Mondy & Schuwirth, 2017; Topping et al., 2003). The 
main challenge for process-based modelling remains model valida-
tion and the spatially explicit modelling of communities and food 
webs, which still faces conceptual, practical and partly computa-
tional constraints.

4.4  |  The challenge of multiple stressors

Chemical stressors often co-occur with other stressors (Holmstrup 
et al., 2010; Schäfer et al., 2016) and stressors can interact resulting 
in additive, antagonistic or synergistic effects (Piggott et al., 2015b). 
This represents a challenge to most ecological approaches. A link 
to the other perspectives may aid in predicting multiple stressor 
effects. For example, combining analytical and bioanalytical tools 
(e.g. in vitro bioassays) provides the opportunity to analyse mix-
tures of chemicals found in the environment for their combined 
risk and to identify risk drivers retrospectively (Escher et al., 2020). 
Furthermore, knowledge about a chemical's MoA and species sen-
sitivity traits can guide model selection when trying to unravel 
mixture effects (Spurgeon et al.,  2020). A few qAOPs assessed 
mixture effects and considered additional stressors (Chu,  2018; 
Spinu et al., 2020). Also bioenergetic models can incorporate mix-
ture toxicity (Ashauer et al., 2007, 2015; Bart et al., 2021) includ-
ing chemical interactions (e.g. synergism, antagonism) (Cedergreen 
et al., 2017) and provide a framework to deal with multiple stressors 
through the inclusion of other physical (e.g. temperature) or biologi-
cal stressors (Galic et al., 2018; Goussen et al., 2020). However, data 
for relevant stressors, such as pH, nutrients or habitat degradation 
are largely lacking (Goussen et al., 2020). Finally, to reliably predict 
multiple stressor effects our understanding of the relative impor-
tance of stressors must improve (Goussen et al., 2020) including the 

development of theoretical concepts (De Laender, 2018; Schäfer & 
Piggott, 2018).

5  |  THE SCOPE OF PREDIC TION—A 
QUESTION OF SC ALE

Prediction can have different scopes including biological levels, 
environmental contexts, as well as spatial and temporal scales (see 
scenario-based guide to prediction in the Supplementary Data, 
Text S1; Figure S1). The three perspectives focus on different bio-
logical levels, which typically imply a certain spatial and temporal 
scale (Figure  5). The suborganism level is rather associated with 
small spatial and short temporal scales. Changes in populations, 
organisms or in parts of organisms, which is the focus of the or-
ganismal perspective, typically cover larger (mm to m) and longer 
(hours to weeks) scales. Community, foodweb and ecosystem lev-
els usually cover large spatial and long temporal scales (Figure  5). 
However, the scale is also influenced by the type of organism and 
chemical. For example, microorganisms have much shorter genera-
tion times than macroorganisms. Thus, chemical-driven changes in 
an individual mammal can persist longer than changes in (meta-)
communities of microorganisms. Accordingly, temporal and spatial 
scales of (eco)toxicological test methods, of species traits and of 
stressors are interrelated, resulting in several species groups being 
underrepresented in certain test methods (Schuijt et al., 2021). For 
example, in vitro bioassays have been realised mainly for mammalian 
cell lines, whereas whole organism tests as well as biomarkers mainly 
for selected fish and invertebrate species (Schuijt et al., 2021). To 
assess the effect of chemicals on underrepresented species groups 
(e.g. fungi), extrapolation approaches (e.g. MCSE, trait-based) are 
certainly fruitful, but further test systems still need to be devel-
oped. Similarly for chemicals, test systems (e.g. high-throughput in 
vitro tests) for several major MoA still need to be developed (Schuijt 
et al., 2021; Villeneuve et al., 2019). Overall, prediction for larger spa-
tial and temporal scales (e.g. regional level over months to decades), 
for example with larger-scale process-based models, is particularly 
challenging because empirical data on chemical effects often origi-
nates from experiments on much smaller spatial and temporal scales 
(Schneider, 2001). This means that calibration and parameterisation 

F I G U R E  5  The expression of spatial and temporal scales varies between the biological levels and is also influenced by the type of 
organism and chemical. This illustration is simplified.
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may be biased. Simultaneous recording data at multiple biological 
levels and over large and long scales may provide empirical relation-
ships on which models can be built (see Section 6).

6  |  DATA AND E XPERIMENTAL ADVANCES 
TO IMPROVE PREDIC TION

Each of the three perspectives provides essential elements for the 
prediction of chemical effects in ecosystems. Strengthening the links 
between these perspectives would considerably foster predictive 
modelling of chemical effects in ecosystems and effect extrapola-
tion between species. A major prerequisite is data that simultane-
ously cover different biological levels as well as spatial and temporal 
scales. Below, we outline promising approaches and associated 
types of data that would strengthen the links between the perspec-
tives as well as focus and coordinate the effort in data collection:

First, record suborganism- and organism-level responses to chemi-
cals and test for relationships with chemical groups and traits of organ-
isms (Figure 6[1]). Traits have been relevant predictors of variability 
in chemical sensitivity at the level of organisms or populations (van 
den Berg et al., 2021; Wiberg-Larsen et al., 2016). Yet, suborganis-
mal processes involved in chemical uptake, transformation and ef-
fects may also relate to organism traits (Gergs et al., 2015, 2019). 
Moreover, expression profile data (omics), which are important for 
constructing the cellular portion of AOPs, might vary in tissues 
as a function of chemical MoA and selected organism traits (e.g. 
metabolic rate) and grasping such relationships would contribute 
to a fundamental understanding of toxic effects (López-Osorio & 
Wurm, 2020). Although trait data has increasingly become available 
for various taxa, substantial work remains to standardise trait data 
(Gallagher et al., 2020) and data on traits that are likely mechanisti-
cally involved in chemical effects are still scarce. Prioritising traits 
and potential relationships with (sub-)organismal responses based 
on expert knowledge for a specific ecosystem type (e.g. marine, 
terrestrial), chemical MoA and organism group, would limit the re-
quired measuring effort (Kearney et al., 2021; McGill et al., 2006). 
Pioneering studies have focussed on easily measurable traits such 
as body mass that is strongly related to the metabolic rate (Baas 
& Kooijman,  2015; Gergs et al.,  2015; Ryser et al.,  2021). Even 
purely correlative relationships between (sub-)organism responses 
with chemical MoA and traits would foster our predictive capacity 
(Kramer et al., 2011; Murphy et al., 2018a, 2018b) and extrapolations 
across species. Studies recording responses to chemicals at different 
(sub-)organism levels would ideally be done under variable spatio-
temporal and environmental conditions to evaluate the generality 
of potential relationships, including with traits (McGill et al., 2006).

Second, scrutinise metrics that are measurable at many biologi-
cal levels such as energy for their potential to integrate across levels 
(Figure  6[2]). Analysis of bioenergetics has been suggested as a 
common currency to integrate across biological levels given that 
generic energy flow rules apply universally and that bioenergetics 
is involved in the regulation of structural and functional responses 

at all levels (Fischer et al.,  2013; Forbes et al.,  2017; Forbes & 
Galic, 2016; Segner et al., 2014; Sokolova, 2021). At the suborgan-
ism level, proteins associated with the protection from stress (e.g. 
heat shock proteins), antioxidant, pro- and anti-apoptotic proteins 
may indicate stress-induced bioenergetic state transitions (Reusch & 
Wood, 2007; Sokolova, 2013). Similarly, biomarkers such as the aer-
obic scope (difference between maximum and basal metabolic rate), 
energy reserves, energy uptake, mitochondrial capacity or cellular 
energy allocation can be measured (Goodchild et al., 2018; Schuijt 
et al., 2021; Sokolova, 2021). At the organism level, the investment in 
growth or reproduction may indicate bioenergetic stress responses 
(Schuijt et al., 2021; Segner et al., 2014), whereas on the population 
level population growth rate, density, age structure and biomass are 
potential candidate metrics (Forbes et al., 2017; Schuijt et al., 2021). 
At the community level, the measurement of energy budgets of a 
representative sample of individuals requires a high replication 
in experiments due to the invasiveness of the method. However, 
this could allow the use of energy budgets in process-based com-
munity models, thereby establishing links between the organismal 
and the ecological perspective. At this level, energy fluxes could be 
measured as biomass flux, directly (e.g. trapping organisms and or-
ganic matter) or indirectly using trophic relations established with 
stoichiometry and stable isotope measurements (Graf et al., 2020;  
Kato et al., 2004; Paetzold et al., 2005). The latter would prohibit 
downscaling to the energy budget of individuals. Structural metrics  
such as species abundance, diversity and biomass or the trophic 
organisation are usually assigned to the community level, while 
functional metrics such as primary production and element cy-
cling rates are assigned to the ecosystem level (Schuijt et al., 2021). 
The bioenergetic-AOP framework quantitatively links energetic  
responses across biological levels (Goodchild et al., 2018). Thereby, 
correlations have been found between cellular energy allocation and 
whole-organism growth, metabolic rate and the scope for growth 
as well as with the non-traditional response of locomotion, enabling 
the incorporation of suborganismal insights into bioenergetic mod-
els. Further relationships (preferably causal, quantitative) between  
energetic responses from different biological levels could strengthen 
predictive ecotoxicology.

Third, conduct complex experiments to simultaneously study re-
sponses to chemicals at different biological levels and spatiotemporal 
scales. The ultimate challenge is to evaluate if and how low-level 
responses manifest themselves in higher-level responses. A com-
bination of micro- and mesocosm experiments, covering a range 
of environmental and biotic selection factors would help to link 
different biological levels. For instance, different biological levels 
over time and space could be manipulated. Such experiments in-
clude nested designs that contain experimental subunits from dif-
ferent biological levels, by e.g. including single species subunits in 
multi-species mesocosm experiments to quantify the effects of a 
chemical in the absence of interspecific interactions (Figure  6[3]). 
Species for such subunits could be selected to cover a wide range 
of traits. The results could also foster cross-species extrapolation 
based on traits (van den Berg et al., 2021). Single and multispecies 
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micro- and mesocosm experiments have been proven to be valuable 
tools to understand the response to a perturbation within a local 
spatial scale (Beermann, Elbrecht, et al.,  2018; Beermann, Zizka, 
et al., 2018; Piggott, Salis, et al., 2015; Piggott et al., 2015a). To link 
local processes to a landscape context, another experimental de-
sign represented by linked experimental units has been successfully 
implemented in the laboratory using vial microcosms for aquatic 
(Altermatt et al., 2015) and terrestrial (Gilarranz et al., 2017) units 
(Figure 6[3]). These designs can be further extended, theoretically 
and empirically, to include cross-habitat exchanges that enable to 
monitor flows of energy, material and organisms (dispersal) as well 
as changes in the genetic and trait composition of patches, simu-
lating real-world meta-community or -ecosystem dynamics (Harvey 
et al., 2020; Ryser et al., 2021). Furthermore, repeated experiments 
could highlight consistency or changes in chemical effects over 
time and space (Belanger et al., 1994; Schreiner et al., 2018). Finally, 
disentangling eco-evolutionary dynamics and interactions, as men-
tioned in the following aspect of this section, will require large, col-
laborative experiments such as described in Govaert et al. (2021).

Within these experimental designs, a wide range of data from dif-
ferent biological levels can be collected allowing to screen for links 
between the perspectives. For example, omics data can be collected 
in experiments of most levels of complexity (i.e. ranging from single-
species laboratory to multi-species mesocosm experiments), but also 
in field surveys (Van Aggelen et al., 2010; Williams et al., 2011). Data 
from complex experiments with multiple factors of environmental 
and biotic selection or from field surveys covering a wide range of 

conditions allow to evaluate, how these higher levels influence the 
suborganismal response (Figure 6[3]). The sampling plan should be 
informed by the scale of the response and may require high tem-
poral resolution sampling of suborganismal responses (Figure  5). 
Recorded response data should be supplemented by detailed infor-
mation on the test organisms (e.g. age, size, sex, origin) as well as on 
the experimental conditions (e.g. pH, temperature) to enable a wide 
range of predictions and modelling. Finally, experiments would be 
most informative if following a gradient design with a high number of 
chemical concentrations to establish robust concentration-response 
curves (Kramer et al., 2011; Kreyling et al., 2018).

Fourth, identify those processes most critical in light of the biolog-
ical level and spatiotemporal scale of prediction, as well as in light of 
the taxa, chemicals and potentially characteristics of the (eco)system 
under scrutiny (Figure  6[4]). Important processes and missing data 
might be identified and prioritised, respectively, in a collaborative 
effort, for example in workshops with participants from multidisci-
plinary backgrounds (Forbes et al.,  2020). Also novel data science 
tools including artificial intelligence might strongly expand our prior-
itisation capacity in future (Pichler et al., 2020; Scowen et al., 2021). 
For example, the AOP framework should aim at ‘informed sim-
plicity’, i.e. capture the essential, measurable events that lead to a 
relevant organism-level toxicity endpoint rather than a comprehen-
sive description of all biological aspects involved (Knapen,  2021). 
Similarly, depending on the application, reduced DEB and TKTD 
variants, that can easily be applied, may be sufficient. For the eco-
logical perspective, several approaches allow to prioritise critical 
processes and, if necessary, to simplify (e.g. aggregation; for details, 
see Supplementary Data, Text S1). An example of a process that has 
rarely been considered within any of the perspectives, but can be 
relevant at all biological levels and may provide links between them, 
is evolutionary adaptation. An example of such a link are potential 
relationships between genes responsible for adaptation and fitness-
related phenotype metrics such as shifted survival time, time to 
first brood or total number of offspring (Kramer et al., 2011). Novel 
evolutionary genomic techniques, such as restriction site-associated 
DNA sequencing (RADseq), shotgun population variation profiling 
(PoolSeq), transcriptome sequencing (RNAseq) or whole-genome 
resequencing, can identify genetic locations of adaptation even for 
non-model species, which lack prior genomic information (Weigand 
& Leese, 2018). Specific traits may help identify species with high 
adaptation potential, such as high de novo mutation rates, as mu-
tations may emerge faster in species with large populations, short 
generation times and regular exposure (Doria et al., 2022; Hawkins 
et al.,  2019). In addition, CRISPR-Cas9-based reverse genetic ap-
proaches in conjunction with in vitro metabolism and genome scans 
enable to test the relevance of certain genes for resistance (Denecke 
et al., 2017; Douris et al., 2020; Wang et al., 2018). Adaptation data 
from the (sub-)organism level may be further linked to changes in 
the diversity and frequency of species on the community and eco-
system level. DEB models have the potential to analyse the evolution 
of organismic traits and to identify adaptations including underlying 
mechanisms (Beaudouin et al., 2012; Goussen et al., 2015). If there 

F I G U R E  6  Overview of the four main aspects to improve 
prediction of chemical effects in ecosystems.
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is strong indication of rapid adaptation of specific taxa to selected 
chemicals in the environment under focus, eco-evolutionary dynam-
ics and interactions should be quantified and integrated into the pre-
diction framework, otherwise they may be neglected. Ultimately, the 
challenge is to reduce the uncertainty in predicting chemical effects 
in ecosystems while maintaining or making feasible the data collec-
tion effort and model complexity.

7  |  CONCLUSION

Ideally, a prediction framework would trace the chemical from its 
uptake into an organism and its transformation, over the triggering 
of biochemical reactions inside the organism to physiological ef-
fects and the propagation to the population, community, food web 
and ecosystem level (Figure 1). Yet, each idealised perspective cap-
tures only a part of this framework (Figure 1). The perspectives are 
complementary and rather reflect different phenomenological ap-
proaches than scientific disciplines but still have own scientific con-
cepts and communities. Each of the perspectives has its own scale, 
which also delineates its limitations for comprehensive prediction 
(Figure 5). Our predictive capacity for effects of chemicals gener-
ally decreases with increasing biological levels, given the emergent 
dynamics inherent to ecological systems at the level of communi-
ties, food webs and ecosystems. Predictions seem feasible on a 
rather coarse level when focussing on organism groups, traits, com-
pound groups and qualitative responses (e.g. sensitivity categories) 
(Bracewell et al., 2019; Halstead et al., 2014; Rumschlag et al., 2020). 
However, quantitative predictions (e.g. of densities) become almost 
impossible when dealing with specific organisms (intraspecific trait 
variation) and chemicals in a complex system, a circumstance that 
is shared with ecology (Ovaskainen & Abrego, 2020). Overall, a bal-
ance has to be found between simplification and capturing the es-
sential complexity of a system, aiming at ‘informed simplicity’ for 
modelling complex systems (Knapen, 2021). The effort in data col-
lection must be focused and coordinated. In this context, novel data 
science tools including artificial intelligence might strongly expand 
our capacity in future (Pichler et al., 2020; Scowen et al., 2021). We 
emphasise that the three idealised perspectives that substantially 
contribute to date to the prediction of chemical effects and effect 
extrapolation across species are still largely separated. We see the 
potential that theoretical and empirical links between the subor-
ganismal, organismal and ecological perspective could enhance 
predictive modelling of chemical effects in ecosystems and extrap-
olation between species.

AUTHOR CONTRIBUTIONS
This review was produced in group work. Anke Schneeweiss and Ralf 
B. Schäfer wrote the main part of the original draft and incorporated 
the reviewers' suggestions. All authors contributed to the general 
conceptual development, writing of selected parts and reviewing of 
the manuscript.

ACKNOWLEDG EMENT
Open Access funding enabled and organized by Projekt DEAL.

CONFLIC T OF INTERE S T
The authors declare that they have no competing interests.

DATA AVAIL ABILIT Y S TATEMENT
No data were collected or analysed as part of this study.

ORCID
Anke Schneeweiss   https://orcid.org/0000-0003-1282-4552 
Noël P. D. Juvigny-Khenafou   https://orcid.
org/0000-0002-8001-8782 
Stephen Osakpolor   https://orcid.org/0000-0002-8977-3020 
Andreas Scharmüller   https://orcid.org/0000-0002-9290-3965 
Sebastian Scheu   https://orcid.org/0000-0002-7444-2595 
Verena C. Schreiner   https://orcid.org/0000-0001-8732-3766 
Roman Ashauer   https://orcid.org/0000-0002-9579-8793 
Beate I. Escher   https://orcid.org/0000-0002-5304-706X 
Florian Leese   https://orcid.org/0000-0002-5465-913X 
Ralf B. Schäfer   https://orcid.org/0000-0003-3510-1701 

R E FE R E N C E S
Accolla, C., Vaugeois, M., Grimm, V., Moore, A. P., Rueda-Cediel, P., 

Schmolke, A., & Forbes, V. E. (2020). A review of key features 
and their implementation in unstructured, structured, and agent-
based population models for ecological risk assessment. Integrated 
Environmental Assessment and Management, 17, 521–540. https://
doi.org/10.1002/ieam.4362

Altermatt, F., Fronhofer, E. A., Garnier, A., Giometto, A., Hammes, F., 
Klecka, J., Legrand, D., Mächler, E., Massie, T. M., Pennekamp, F., 
Plebani, M., Pontarp, M., Schtickzelle, N., Thuillier, V., & Petchey, 
O. L. (2015). Big answers from small worlds: A user's guide for 
protist microcosms as a model system in ecology and evolu-
tion. Methods in Ecology and Evolution, 6(2), 218–231. https://doi.
org/10.1111/2041-210X.12312

AmP. (2022, January 16). Online database of DEB parameters, implied prop-
erties and referenced underlying data. www.bio.vu.nl/thb/deb/debla​
b/add_my_pet/

Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung,  
M. W., Johnson, R. D., Mount, D. R., Nichols, J. W., Russom, C. L., 
Schmieder, P. K., Serrrano, J. A., Tietge, J. E., & Villeneuve, D. L. 
(2010). Adverse outcome pathways: A conceptual framework to 
support ecotoxicology research and risk assessment. Environmental 
Toxicology, 29(3), 730–741.

Ashauer, R., Albert, C., Augustine, S., Cedergreen, N., Charles, S., Ducrot, 
V., Focks, A., Gabsi, F., Gergs, A., Goussen, B., Jager, T., Kramer, 
N. I., Nyman, A.-M., Poulsen, V., Reichenberger, S., Schäfer, R. B., 
Van den Brink, P. J., Veltman, K., Vogel, S., … Preuss, T. G. (2016). 
Modelling survival: Exposure pattern, species sensitivity and un-
certainty. Scientific Reports, 6, 29178.

Ashauer, R., Boxall, A. B. A., & Brown, C. D. (2007). Modeling com-
bined effects of pulsed exposure to carbaryl and chlorpyrifos on 
Gammarus pulex. Environmental Science & Technology, 41(15), 5535–
5541. https://doi.org/10.1021/es070​283w

Ashauer, R., & Jager, T. (2018). Physiological modes of action across 
species and toxicants: The key to predictive ecotoxicology. 
Environmental Science: Processes & Impacts, 20(1), 48–57. https://
doi.org/10.1039/C7EM0​0328E

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-1282-4552
https://orcid.org/0000-0003-1282-4552
https://orcid.org/0000-0002-8001-8782
https://orcid.org/0000-0002-8001-8782
https://orcid.org/0000-0002-8001-8782
https://orcid.org/0000-0002-8977-3020
https://orcid.org/0000-0002-8977-3020
https://orcid.org/0000-0002-9290-3965
https://orcid.org/0000-0002-9290-3965
https://orcid.org/0000-0002-7444-2595
https://orcid.org/0000-0002-7444-2595
https://orcid.org/0000-0001-8732-3766
https://orcid.org/0000-0001-8732-3766
https://orcid.org/0000-0002-9579-8793
https://orcid.org/0000-0002-9579-8793
https://orcid.org/0000-0002-5304-706X
https://orcid.org/0000-0002-5304-706X
https://orcid.org/0000-0002-5465-913X
https://orcid.org/0000-0002-5465-913X
https://orcid.org/0000-0003-3510-1701
https://orcid.org/0000-0003-3510-1701
https://doi.org/10.1002/ieam.4362
https://doi.org/10.1002/ieam.4362
https://doi.org/10.1111/2041-210X.12312
https://doi.org/10.1111/2041-210X.12312
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/
https://doi.org/10.1021/es070283w
https://doi.org/10.1039/C7EM00328E
https://doi.org/10.1039/C7EM00328E


34  |    SCHNEEWEISS et al.

Ashauer, R., O'Connor, I., Hintermeister, A., & Escher, B. I. (2015). Death 
dilemma and organism recovery in ecotoxicology. Environmental 
Science & Technology, 45, 10136–10146. https://doi.org/10.1021/
acs.est.5b03079

Ashauer, R., Wittmer, I., Stamm, C., & Escher, B. I. (2011). Environmental 
risk assessment of fluctuating diazinon concentrations in an urban 
and agricultural catchment using toxicokinetic–toxicodynamic 
modeling. Environmental Science & Technology, 45(22), 9783–9792. 
https://doi.org/10.1021/es202​413a

Baas, J., & Kooijman, S. A. L. M. (2015). Sensitivity of animals to chemical 
compounds links to metabolic rate. Ecotoxicology, 24(3), 657–663. 
https://doi.org/10.1007/s1064​6-014-1413-5

Badry, A., Krone, O., Jaspers, V. L. B., Mateo, R., García-Fernández, A., 
Leivits, M., & Shore, R. F. (2020). Towards harmonisation of chemical 
monitoring using avian apex predators: Identification of key species 
for pan-European biomonitoring. Science of the Total Environment, 
731, 139198. https://doi.org/10.1016/​j.scito​tenv.2020.139198

Barron, M. G., Lilavois, C. R., & Martin, T. M. (2015). MOAtox: A com-
prehensive mode of action and acute aquatic toxicity database for 
predictive model development. Aquatic Toxicology, 161, 102–107. 
https://doi.org/10.1016/j.aquat​ox.2015.02.001

Bart, S., Jager, T., Robinson, A., Lahive, E., Spurgeon, D. J., & Ashauer, 
R. (2021). Predicting mixture effects over time with toxicokinetic–
toxicodynamic models (GUTS): Assumptions, experimental testing, 
and predictive power. Environmental Science & Technology, 55(4), 
2430–2439. https://doi.org/10.1021/acs.est.0c05282

Bass, C., Denholm, I., Williamson, M. S., & Nauen, R. (2015). The global 
status of insect resistance to neonicotinoid insecticides. Pesticide 
Biochemistry and Physiology, 121, 78–87. https://doi.org/10.1016/​
j.pestbp.2015.04.004

Beaudouin, R., Dias, V., Bonzom, J. M., & Péry, A. (2012). Individual-based 
model of Chironomus riparius population dynamics over several 
generations to explore adaptation following exposure to uranium-
spiked sediments. Ecotoxicology, 21(4), 1225–1239. https://doi.
org/10.1007/s1064​6-012-0877-4

Becker, J. M., & Liess, M. (2015). Biotic interactions govern genetic ad-
aptation to toxicants. Proceedings of the Royal Society of London B: 
Biological Sciences, 282(1806), 20150071. https://doi.org/10.1098/
rspb.2015.0071

Bedaux, J. J. M., & Kooijman, S. A. L. M. (1994). Statistical analysis of 
bioassays, based on hazard modelling. Environmental and Ecological 
Statistics, 1(4), 303–314. https://doi.org/10.1007/BF004​69427

Beermann, A. J., Elbrecht, V., Karnatz, S., Ma, L., Matthaei, C. D., Piggott, 
J. J., & Leese, F. (2018). Multiple-stressor effects on stream mac-
roinvertebrate communities: A mesocosm experiment manipulat-
ing salinity, fine sediment and flow velocity. Science of the Total 
Environment, 610–611, 961–971. https://doi.org/10.1016/j.scito​tenv.​
2017.08.084

Beermann, A. J., Zizka, V. M. A., Elbrecht, V., Baranov, V., & Leese, F. (2018). 
DNA metabarcoding reveals the complex and hidden responses of 
chironomids to multiple stressors. Environmental Sciences Europe, 
30(1), 26. https://doi.org/10.1186/s1230​2-018-0157-x

Beketov, M. A., Kefford, B. J., Schafer, R. B., & Liess, M. (2013). Pesticides 
reduce regional biodiversity of stream invertebrates. Proceedings of 
the National Academy of Sciences, 110(27), 11039–11043. https://
doi.org/10.1073/pnas.13056​18110

Belanger, S. E., Barnum, J. B., Woltering, D. M., Bowling, J. W., Ventullo,  
R. M., Schermerhorn, S. D., & Lowe, R. L. (1994). Algal periphyton 
structure and function in response to consumer chemicals in stream 
mesocosms. In R. L. Graney, J. H. Kennedy, & J. H. Rodgers (Eds.), 
Aquatic mesocosm studies in ecological risk assessment (pp. 263–287). 
CRC Press. https://www.taylo​rfran​cis.com/books/​e/​97810​03070016

Bell, S., Abedini, J., Ceger, P., Chang, X., Cook, B., Karmaus, A. L., Lea, I., 
Mansouri, K., Phillips, J., McAfee, E., Rai, R., Rooney, J., Sprankle, 
C., Tandon, A., Allen, D., Casey, W., & Kleinstreuer, N. (2020). An 
integrated chemical environment with tools for chemical safety 

testing. Toxicology In Vitro, 67, 104916. https://doi.org/10.1016/​
j.tiv.2020.104916

Bell, S., Angrish, M. M., Wood, C. E., & Edwards, S. W. (2016). Integrating 
publicly available data to generate computationally predicted ad-
verse outcome pathways for fatty liver. Toxicological Sciences, 
150(2), 510–520. https://doi.org/10.1093/toxsc​i/kfw017

Bernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals 
as agents of global change. Frontiers in Ecology and the Environment, 
15(2), 84–90. https://doi.org/10.1002/fee.1450

Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., 
Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioğlu, 
M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D., 
Cardoso, A. C., Couture, R.-M., Cremona, F., de Zwart, D., … Hering, 
D. (2020). Impacts of multiple stressors on freshwater biota across 
spatial scales and ecosystems. Nature Ecology & Evolution, 4, 1060–
1068. https://doi.org/10.1038/s4155​9-020-1216-4

Bracewell, S., Verdonschot, R. C. M., Schäfer, R. B., Bush, A., Lapen,  
D. R., & Van den Brink, P. J. (2019). Qualifying the effects of single 
and multiple stressors on the food web structure of Dutch drainage 
ditches using a literature review and conceptual models. Science 
of the Total Environment, 684, 727–740. https://doi.org/10.1016/​
j.scito​tenv.2019.03.497

Brack, W., Hollender, J., de Alda, M. L., Müller, C., Schulze, T., 
Schymanski, E., Slobodnik, J., & Krauss, M. (2019). High-resolution 
mass spectrometry to complement monitoring and track emerg-
ing chemicals and pollution trends in European water resources. 
Environmental Sciences Europe, 31(1), 62. https://doi.org/10.1186/
s1230​2-019-0230-0

Bradley, P. M., Journey, C. A., Berninger, J. P., Button, D. T., Clark, 
J. M., Corsi, S. R., DeCicco, L. A., Hopkins, K. G., Huffman, B. J., 
Nakagaki, N., Norman, J. E., Nowell, L. H., Qi, S. L., VanMetre,  
P. C., & Waite, I. R. (2019). Mixed-chemical exposure and predicted 
effects potential in wadeable southeastern USA streams. Science  
of the Total Environment, 655, 70–83. https://doi.org/10.1016/​
j.scito​tenv.2018.11.186

Breen, M., Ring, C. L., Kreutz, A., Goldsmith, M.-R., & Wambaugh, J. F. 
(2021). High-throughput PBTK models for in vitro to in vivo extrap-
olation. Expert Opinion on Drug Metabolism & Toxicology, 17(8), 903–
921. https://doi.org/10.1080/17425​255.2021.1935867

Brodin, T., Fick, J., Jonsson, M., & Klaminder, J. (2013). Dilute concen-
trations of a psychiatric drug alter behavior of fish from natural  
populations. Science, 339(6121), 814–815. https://doi.org/10.1126/
scien​ce.1226850

Brown, L. E., Khamis, K., Wilkes, M., Blaen, P., Brittain, J. E., Carrivick, J. L., 
Fell, S., Friberg, N., Füreder, L., Gislason, G. M., Hainie, S., Hannah, 
D. M., James, W. H. M., Lencioni, V., Olafsson, J. S., Robinson,  
C. T., Saltveit, S. J., Thompson, C., & Milner, A. M. (2018). Functional 
diversity and community assembly of river invertebrates show glob-
ally consistent responses to decreasing glacier cover. Nature Ecology & 
Evolution, 2(2), 325–333. https://doi.org/10.1038/s41559-017-0426-x

Busch, W., Schmidt, S., Kühne, R., Schulze, T., Krauss, M., & Altenburger, 
R. (2016). Micropollutants in European rivers: A mode of action 
survey to support the development of effect-based tools for water 
monitoring. Environmental Toxicology and Chemistry, 35(8), 1887–
1899. https://doi.org/10.1002/etc.3460

Cadotte, M. W., & Tucker, C. M. (2017). Should environmental filtering be 
abandoned? Trends in Ecology & Evolution, 32(6), 429–437. https://
doi.org/10.1016/j.tree.2017.03.004

Cedergreen, N. (2014). Quantifying synergy: A systematic review of mix-
ture toxicity studies within environmental toxicology. PLoS One, 
9(5), 1–12. https://doi.org/10.1371/journ​al.pone.0096580

Cedergreen, N., Dalhoff, K., Li, D., Gottardi, M., & Kretschmann, A. C. 
(2017). Can toxicokinetic and toxicodynamic modeling be used to 
understand and predict synergistic interactions between chem-
icals? Environmental Science & Technology, 51(24), 14379–14389. 
https://doi.org/10.1021/acs.est.7b02723

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1021/acs.est.5b03079
https://doi.org/10.1021/acs.est.5b03079
https://doi.org/10.1021/es202413a
https://doi.org/10.1007/s10646-014-1413-5
https://doi.org/10.1016/j.scitotenv.2020.139198
https://doi.org/10.1016/j.aquatox.2015.02.001
https://doi.org/10.1021/acs.est.0c05282
https://doi.org/10.1016/j.pestbp.2015.04.004
https://doi.org/10.1016/j.pestbp.2015.04.004
https://doi.org/10.1007/s10646-012-0877-4
https://doi.org/10.1007/s10646-012-0877-4
https://doi.org/10.1098/rspb.2015.0071
https://doi.org/10.1098/rspb.2015.0071
https://doi.org/10.1007/BF00469427
https://doi.org/10.1016/j.scitotenv.2017.08.084
https://doi.org/10.1016/j.scitotenv.2017.08.084
https://doi.org/10.1186/s12302-018-0157-x
https://doi.org/10.1073/pnas.1305618110
https://doi.org/10.1073/pnas.1305618110
https://www.taylorfrancis.com/books/e/9781003070016
https://doi.org/10.1016/j.tiv.2020.104916
https://doi.org/10.1016/j.tiv.2020.104916
https://doi.org/10.1093/toxsci/kfw017
https://doi.org/10.1002/fee.1450
https://doi.org/10.1038/s41559-020-1216-4
https://doi.org/10.1016/j.scitotenv.2019.03.497
https://doi.org/10.1016/j.scitotenv.2019.03.497
https://doi.org/10.1186/s12302-019-0230-0
https://doi.org/10.1186/s12302-019-0230-0
https://doi.org/10.1016/j.scitotenv.2018.11.186
https://doi.org/10.1016/j.scitotenv.2018.11.186
https://doi.org/10.1080/17425255.2021.1935867
https://doi.org/10.1126/science.1226850
https://doi.org/10.1126/science.1226850
https://doi.org/10.1038/s41559-017-0426-x
https://doi.org/10.1002/etc.3460
https://doi.org/10.1016/j.tree.2017.03.004
https://doi.org/10.1016/j.tree.2017.03.004
https://doi.org/10.1371/journal.pone.0096580
https://doi.org/10.1021/acs.est.7b02723


    |  35SCHNEEWEISS et al.

Charles, S., Ratier, A., Baudrot, V., Multari, G., Siberchicot, A., Wu, D., 
& Lopes, C. (2022). Taking full advantage of modelling to better 
assess environmental risk due to xenobiotics—The all-in-one facil-
ity MOSAIC. Environmental Science and Pollution Research, 29(20), 
29244–29257. https://doi.org/10.1007/s1135​6-021-15042​-7

Chu, V. R. (2018). Assessing the effects of chemical mixtures using a bayes-
ian network-relative risk model (BN-RRM) integrating adverse out-
come pathways (AOPs) in four watersheds. Western Washington 
University. https://doi.org/10.25710/​KBP1-QD54

Clements, W. H. (2000). Integrating effects of contaminants across 
levels of biological organization: An overview. Journal of Aquatic 
Ecosystem Stress and Recovery, 7(2), 113–116. https://doi.org/​
10.1023/A:10099​27612391

Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among eco-
system stressors and their importance in conservation. Proceedings 
of the Royal Society B: Biological Sciences, 283(1824), 20152592. 
https://doi.org/10.1098/rspb.2015.2592

De Laender, F. (2018). Community- and ecosystem-level effects of mul-
tiple environmental change drivers: Beyond null model testing. 
Global Change Biology, 24(11), 5021–5030. https://doi.org/10.1111/
gcb.14382

De Laender, F., Melian, C. J., Bindler, R., Van den Brink, P. J., Daam, M., 
Roussel, H., Juselius, J., Verschuren, D., & Janssen, C. R. (2014). 
The contribution of intra- and interspecific tolerance variability to 
biodiversity changes along toxicity gradients. Ecology Letters, 17(1), 
72–81. https://doi.org/10.1111/ele.12210

De Lange, H. J., Lahr, J., der Pol, J. J. C. V., Wessels, Y., & Faber, J. H. 
(2009). Ecological vulnerability in wildlife: An expert judgment 
and multicriteria analysis tool using ecological traits to assess rel-
ative impact of pollutants. Environmental Toxicology and Chemistry, 
28(10), 2233–2240. https://doi.org/10.1897/08-626.1

de Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expres-
sion in response to stress. Nature Reviews Genetics, 12(12), 833–
845. https://doi.org/10.1038/nrg3055

Delhaye, G., Bauman, D., Séleck, M., Ilunga wa Ilunga, E., Mahy, G., & Meerts, 
P. (2020). Interspecific trait integration increases with environmental 
harshness: A case study along a metal toxicity gradient. Functional 
Ecology, 34(7), 1428–1437. https://doi.org/10.1111/1365-2435.13570

Denecke, S., Fusetto, R., Martelli, F., Giang, A., Battlay, P., Fournier-Level, 
A., O'Hair, R. A., & Batterham, P. (2017). Multiple P450s and vari-
ation in neuronal genes underpins the response to the insecticide 
imidacloprid in a population of Drosophila melanogaster. Scientific 
Reports, 7(1), 11338. https://doi.org/10.1038/s4159​8-017-11092​-5

Desforges, J.-P., Hall, A., McConnell, B., Rosing-Asvid, A., Barber,  
J. L., Brownlow, A., De Guise, S., Eulaers, I., Jepson, P. D., Letcher, 
R. J., Levin, M., Ross, P. S., Samarra, F., Víkingson, G., Sonne, C., & 
Dietz, R. (2018). Predicting global killer whale population collapse 
from PCB pollution. Science, 361(6409), 1373–1376. https://doi.
org/10.1126/scien​ce.aat1953

Dinh, K. V., Janssens, L., Therry, L., Gyulavári, H. A., Bervoets, L., & 
Stoks, R. (2016). Rapid evolution of increased vulnerability to an 
insecticide at the expansion front in a poleward-moving damselfly. 
Evolutionary Applications, 9(3), 450–461. https://doi.org/10.1111/
eva.12347

Doria, H. B., Hannappel, P., & Pfenninger, M. (2022). Whole genome se-
quencing and RNA-seq evaluation allowed to detect Cd adaptation 
footprint in Chironomus riparius. Science of the Total Environment, 
819, 152843. https://doi.org/10.1016/j.scito​tenv.2021.152843

Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, 
H., Moretti, M. D., Pagel, J., Pinkert, S., Schleuning, M., Schmidt,  
S. I., Sheppard, C. S., Steinbauer, M. J., Zeuss, D., & Kraan, C. (2018). 
Biotic interactions in species distribution modelling: 10 questions to 
guide interpretation and avoid false conclusions. Global Ecology and 
Biogeography, 27(9), 1004–1016. https://doi.org/10.1111/geb.12759

Dormann, C. F., Fründ, J., & Schaefer, H. M. (2017). Identifying causes 
of patterns in ecological networks: Opportunities and limitations. 

Annual Review of Ecology, Evolution, and Systematics, 48(1), 559–584. 
https://doi.org/10.1146/annur​ev-ecols​ys-11031​6-022928

Douris, V., Denecke, S., Van Leeuwen, T., Bass, C., Nauen, R., & Vontas, 
J. (2020). Using CRISPR/Cas9 genome modification to understand 
the genetic basis of insecticide resistance: Drosophila and beyond. 
Pesticide Biochemistry and Physiology, 167, 104595. https://doi.
org/10.1016/j.pestbp.2020.104595

Dyer, S. D., Versteeg, D. J., Belanger, S. E., Chaney, J. G., & Mayer,  
F. L. (2006). Interspecies correlation estimates predict protective 
environmental concentrations. Environmental Science & Technology, 
40(9), 3102–3111. https://doi.org/10.1021/es051​738p

EFSA Panel on Plant Protection Products and their Residues (PPR), 
Ockleford, C., Adriaanse, P., Berny, P., Brock, T., Duquesne, S., 
Grilli, S., Hernandez-Jerez, A. F., Bennekou, S. H., Klein, M., Kuhl, 
T., Laskowski, R., Machera, K., Pelkonen, O., Pieper, S., Smith, R. H., 
Stemmer, M., Sundh, I., Tiktak, A., … Teodorovic, I. (2018). Scientific 
Opinion on the state of the art of Toxicokinetic/Toxicodynamic 
(TKTD) effect models for regulatory risk assessment of pesticides 
for aquatic organisms. EFSA Journal, 16(8), e05377. https://doi.
org/10.2903/j.efsa.2018.5377

EFSA Scientific Committee. (2016). Guidance to develop specific protec-
tion goals options for environmental risk assessment at EFSA, in 
relation to biodiversity and ecosystem services. EFSA Journal, 14(6), 
4499. https://doi.org/10.2903/j.efsa.2016.4499

Erickson, R. A., Cox, S. B., Oates, J. L., Anderson, T. A., Salice, C. J., & Long, 
K. R. (2014). A Daphnia population model that considers pesticide 
exposure and demographic stochasticity. Ecological Modelling, 275, 
37–47. https://doi.org/10.1016/j.ecolm​odel.2013.12.015

Escher, B. I., Glauch, L., König, M., Mayer, P., & Schlichting, R. (2019). 
Baseline toxicity and volatility cutoff in reporter gene assays used 
for high-throughput screening. Chemical Research in Toxicology, 32(8), 
1646–1655. https://doi.org/10.1021/acs.chemr​estox.9b00182

Escher, B. I., Stapleton, H. M., & Schymanski, E. L. (2020). Tracking com-
plex mixtures of chemicals in our changing environment. Science, 
367(6476), 388–392. https://doi.org/10.1126/scien​ce.aay6636

Feckler, A., Zubrod, J. P., Thielsch, A., Schwenk, K., Schulz, R., & 
Bundschuh, M. (2014). Cryptic species diversity: An overlooked 
factor in environmental management? Journal of Applied Ecology, 
51, 958–967. https://doi.org/10.1111/1365-2664.12246

Fischer, B. B., Pomati, F., & Eggen, R. I. L. (2013). The toxicity of chem-
ical pollutants in dynamic natural systems: The challenge of inte-
grating environmental factors and biological complexity. Science of  
the Total Environment, 449, 253–259. https://doi.org/10.1016/​
j.scito​tenv.2013.01.066

Forbes, V. E., Agatz, A., Ashauer, R., Butt, K. R., Capowiez, Y., Duquesne, 
S., Ernst, G., Focks, A., Gergs, A., Hodson, M. E., Holmstrup, M., 
Johnston, A. S., Meli, M., Nickisch, D., Pieper, S., Rakel, K. J., Reed, 
M., Roembke, J., Schäfer, R. B., … Roeben, V. (2020). Mechanistic 
effect modeling of earthworms in the context of pesticide risk 
assessment: Synthesis of the FORESEE workshop. Integrated 
Environmental Assessment and Management, 17(2), 352–363. https://
doi.org/10.1002/ieam.4338

Forbes, V. E., & Galic, N. (2016). Next-generation ecological risk assess-
ment: Predicting risk from molecular initiation to ecosystem ser-
vice delivery. Environment International, 91, 215–219. https://doi.
org/10.1016/j.envint.2016.03.002

Forbes, V. E., Salice, C. J., Birnir, B., Bruins, R. J. F., Calow, P., Ducrot, V., 
Galic, N., Garber, K., Harvey, B. C., Jager, H., Kanarek, A., Pastorok, 
R., Railsback, S. F., Rebarber, R., & Thorbek, P. (2017). A framework 
for predicting impacts on ecosystem services from (sub)organismal 
responses to chemicals. Environmental Toxicology and Chemistry, 
36(4), 845–859. https://doi.org/10.1002/etc.3720

Galic, N., Hommen, U., Baveco, J. M., & Van den Brink, P. J. (2010). 
Potential application of population models in the European ecolog-
ical risk assessment of chemicals: II. Review of models and their 
potential to address environmental protection aims. Integrated 

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s11356-021-15042-7
https://doi.org/10.25710/KBP1-QD54
https://doi.org/10.1023/A:1009927612391
https://doi.org/10.1023/A:1009927612391
https://doi.org/10.1098/rspb.2015.2592
https://doi.org/10.1111/gcb.14382
https://doi.org/10.1111/gcb.14382
https://doi.org/10.1111/ele.12210
https://doi.org/10.1897/08-626.1
https://doi.org/10.1038/nrg3055
https://doi.org/10.1111/1365-2435.13570
https://doi.org/10.1038/s41598-017-11092-5
https://doi.org/10.1126/science.aat1953
https://doi.org/10.1126/science.aat1953
https://doi.org/10.1111/eva.12347
https://doi.org/10.1111/eva.12347
https://doi.org/10.1016/j.scitotenv.2021.152843
https://doi.org/10.1111/geb.12759
https://doi.org/10.1146/annurev-ecolsys-110316-022928
https://doi.org/10.1016/j.pestbp.2020.104595
https://doi.org/10.1016/j.pestbp.2020.104595
https://doi.org/10.1021/es051738p
https://doi.org/10.2903/j.efsa.2018.5377
https://doi.org/10.2903/j.efsa.2018.5377
https://doi.org/10.2903/j.efsa.2016.4499
https://doi.org/10.1016/j.ecolmodel.2013.12.015
https://doi.org/10.1021/acs.chemrestox.9b00182
https://doi.org/10.1126/science.aay6636
https://doi.org/10.1111/1365-2664.12246
https://doi.org/10.1016/j.scitotenv.2013.01.066
https://doi.org/10.1016/j.scitotenv.2013.01.066
https://doi.org/10.1002/ieam.4338
https://doi.org/10.1002/ieam.4338
https://doi.org/10.1016/j.envint.2016.03.002
https://doi.org/10.1016/j.envint.2016.03.002
https://doi.org/10.1002/etc.3720


36  |    SCHNEEWEISS et al.

Environmental Assessment and Management, 6(3), 338–360. https://
doi.org/10.1002/ieam.68

Galic, N., Sullivan, L. L., Grimm, V., & Forbes, V. E. (2018). When things 
don't add up: Quantifying impacts of multiple stressors from indi-
vidual metabolism to ecosystem processing. Ecology Letters, 21(4), 
568–577. https://doi.org/10.1111/ele.12923

Gallagher, R. V., Falster, D. S., Maitner, B. S., Salguero-Gómez, R., 
Vandvik, V., Pearse, W. D., Schneider, F. D., Kattge, J., Poelen,  
J. H., Madin, J. S., Ankenbrand, M. J., Penone, C., Feng, X., Adams,  
V. M., Alroy, J., Andrew, S. C., Balk, M. A., Bland, L. M., Boyle, B. L., … 
Enquist, B. J. (2020). Open Science principles for accelerating trait-
based science across the Tree of Life. Nature Ecology & Evolution, 4(3), 
294–303. https://doi.org/10.1038/s41559-020-1109-6

Gergs, A., Kulkarni, D., & Preuss, T. G. (2015). Body size-dependent tox-
icokinetics and toxicodynamics could explain intra- and interspe-
cies variability in sensitivity. Environmental Pollution, 206, 449–455. 
https://doi.org/10.1016/j.envpol.2015.07.045

Gergs, A., Rakel, K. J., Liesy, D., Zenker, A., & Classen, S. (2019). 
Mechanistic effect modeling approach for the extrapolation of spe-
cies sensitivity. Environmental Science & Technology, 53(16), 9818–
9825. https://doi.org/10.1021/acs.est.9b01690

Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J., & 
Gonzalez, A. (2017). Effects of network modularity on the spread 
of perturbation impact in experimental metapopulations. Science, 
357(6347), 199–201. https://doi.org/10.1126/scien​ce.aal4122

Goodchild, C. G., Simpson, A. M., Minghetti, M., & DuRant, S. E. (2018). 
Bioenergetics-adverse outcome pathway: Linking organismal and sub-
organismal energetic endpoints to adverse outcomes. Environmental 
Toxicology and Chemistry, 38, 27–45. https://doi.org/10.1002/etc.4280

Gorokhova, E., Dowling, T. E., Weider, L. J., Crease, T. J., & Elser, J. J. 
(2002). Functional and ecological significance of rDNA intergenic 
spacer variation in a clonal organism under divergent selection for 
production rate. Proceedings of the Royal Society of London Series B: 
Biological Sciences, 269(1507), 2373–2379. https://doi.org/10.1098/
rspb.2002.2145

Gounand, I., Harvey, E., Little, C. J., & Altermatt, F. (2018). Meta-
ecosystems 2.0: Rooting the theory into the field. Trends in Ecology & 
Evolution, 33(1), 36–46. https://doi.org/10.1016/j.tree.2017.10.006

Goussen, B., Péry, A. R. R., Bonzom, J.-M., & Beaudouin, R. (2015). 
Transgenerational adaptation to pollution changes energy allocation 
in populations of nematodes. Environmental Science & Technology, 
49(20), 12500–12508. https://doi.org/10.1021/acs.est.5b03405

Goussen, B., Rendal, C., Sheffield, D., Butler, E., Price, O. R., & Ashauer, 
R. (2020). Bioenergetics modelling to analyse and predict the joint 
effects of multiple stressors: Meta-analysis and model corrobo-
ration. Science of the Total Environment, 749, 141509. https://doi.
org/10.1016/j.scito​tenv.2020.141509

Govaert, L., Altermatt, F., De Meester, L., Leibold, M. A., McPeek, M. 
A., Pantel, J. H., & Urban, M. C. (2021). Integrating fundamental 
processes to understand eco-evolutionary community dynamics 
and patterns. Functional Ecology, 35(10), 2138–2155. https://doi.
org/10.1111/1365-2435.13880

Graf, N., Battes, K. P., Cimpean, M., Entling, M. H., Frisch, K., Link, M., 
Scharmüller, A., Schreiner, V. C., Szöcs, E., Zubrod, J. P., & Schäfer, 
R. B. (2020). Relationship between agricultural pesticides and the 
diet of riparian spiders in the field. Environmental Sciences Europe, 
32(1), 1. https://doi.org/10.1186/s1230​2-019-0282-1

Grech, A., Brochot, C., Dorne, J.-L., Quignot, N., Bois, F. Y., & Beaudouin, 
R. (2017). Toxicokinetic models and related tools in environmental 
risk assessment of chemicals. Science of the Total Environment, 578, 
1–15. https://doi.org/10.1016/j.scito​tenv.2016.10.146

Groh, K., Vom Berg, C., Schirmer, K., & Tlili, A. (2022). Anthropogenic 
chemicals as underestimated drivers of biodiversity loss: Scientific 
and societal implications. Environmental Science & Technology, 56, 
707–710. https://doi.org/10.1021/acs.est.1c08399

Gunnarsson, L., Jauhiainen, A., Kristiansson, E., Nerman, O., & Larsson, 
D. G. J. (2008). Evolutionary conservation of human drug targets in 
organisms used for environmental risk assessments. Environmental 
Science & Technology, 42(15), 5807–5813. https://doi.org/10.1021/
es800​5173

Hagger, J. A., Jones, M. B., Leonard, D. P., Owen, R., & Galloway,  
T. S. (2006). Biomarkers and integrated environmental risk as-
sessment: Are there more questions than answers? Integrated 
Environmental Assessment and Management, 2(4), 312–329. https://
doi.org/10.1002/ieam.56300​20403

Halstead, N. T., McMahon, T. A., Johnson, S. A., Raffel, T. R., Romansic,  
J. M., Crumrine, P. W., & Rohr, J. R. (2014). Community ecology the-
ory predicts the effects of agrochemical mixtures on aquatic biodi-
versity and ecosystem properties. Ecology Letters, 17(8), 932–941. 
https://doi.org/10.1111/ele.12295

Harvey, E., Gounand, I., Fronhofer, E. A., & Altermatt, F. (2020). 
Metaecosystem dynamics drive community composition in exper-
imental, multi-layered spatial networks. Oikos, 129(3), 402–412. 
https://doi.org/10.1111/oik.07037

Hawkins, N. J., Bass, C., Dixon, A., & Neve, P. (2019). The evolutionary 
origins of pesticide resistance: The evolutionary origins of pesti-
cide resistance. Biological Reviews, 94(1), 135–155. https://doi.
org/10.1111/brv.12440

Holmstrup, M., Bindesbol, A. M., Oostingh, G. J., Duschl, A., Scheil, V., 
Köhler, H. R., Loureiro, S., Soares, A. M., Ferreira, A. L., Kienle, C., 
Gerhardt, A., Laskowski, R., Kramarz, P. E., Bayley, M., Svendsen, 
C., & Spurgeon, D. J. (2010). Interactions between effects of envi-
ronmental chemicals and natural stressors: A review. Science of the 
Total Environment, 408(18), 3746–3762. https://doi.org/10.1016/​
j.scito​tenv.2009.10.067

Jager, T. (2020). Revisiting simplified DEBtox models for analysing ec-
otoxicity data. Ecological Modelling, 416, 108904. https://doi.
org/10.1016/j.ecolm​odel.2019.108904

Jager, T. (2021). Robust likelihood-based approach for automated opti-
mization and uncertainty analysis of toxicokinetic-toxicodynamic 
models. Integrated Environmental Assessment and Management, 
17(2), 388–397. https://doi.org/10.1002/ieam.4333

Jager, T., Albert, C., Preuss, T. G., & Ashauer, R. (2011). General unified 
threshold model of survival—A toxicokinetic-toxicodynamic frame-
work for ecotoxicology. Environmental Science & Technology, 45(7), 
2529–2540. https://doi.org/10.1021/Es103​092a

Jager, T., Heugens, E. H. W., & Kooijman, S. A. L. M. (2006). Making 
sense of ecotoxicological test results: Towards application of 
process-based models. Ecotoxicology, 15(3), 305–314. https://doi.
org/10.1007/s1064​6-006-0060-x

Jager, T., & Kooijman, S. A. L. M. (2009). A biology-based approach 
for quantitative structure-activity relationships (QSARs) in eco-
toxicity. Ecotoxicology, 18(2), 187–196. https://doi.org/10.1007/
s10646-008-0271-4

Jager, T., Martin, B. T., & Zimmer, E. I. (2013). DEBkiss or the quest for the 
simplest generic model of animal life history. Journal of Theoretical 
Biology, 328, 9–18. https://doi.org/10.1016/j.jtbi.2013.03.011

Kato, C., Iwata, T., & Wada, E. (2004). Prey use by web-building spiders: 
Stable isotope analyses of trophic flow at a forest-stream ecotone: 
Stream subsidies to riparian spiders. Ecological Research, 19(6), 633–
643. https://doi.org/10.1111/j.1440-1703.2004.00678.x

Kattwinkel, M., & Liess, M. (2014). Competition matters: Species inter-
actions prolong the long-term effects of pulsed toxicant stress on 
populations. Environmental Toxicology and Chemistry, 33(7), 1458–
1465. https://doi.org/10.1002/etc.2500

Kattwinkel, M., Reichert, P., Rüegg, J., Liess, M., & Schuwirth, N. (2016). 
Modeling macroinvertebrate community dynamics in stream me-
socosms contaminated with a pesticide. Environmental Science 
& Technology, 50(6), 3165–3173. https://doi.org/10.1021/acs.
est.5b04068

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/ieam.68
https://doi.org/10.1002/ieam.68
https://doi.org/10.1111/ele.12923
https://doi.org/10.1038/s41559-020-1109-6
https://doi.org/10.1016/j.envpol.2015.07.045
https://doi.org/10.1021/acs.est.9b01690
https://doi.org/10.1126/science.aal4122
https://doi.org/10.1002/etc.4280
https://doi.org/10.1098/rspb.2002.2145
https://doi.org/10.1098/rspb.2002.2145
https://doi.org/10.1016/j.tree.2017.10.006
https://doi.org/10.1021/acs.est.5b03405
https://doi.org/10.1016/j.scitotenv.2020.141509
https://doi.org/10.1016/j.scitotenv.2020.141509
https://doi.org/10.1111/1365-2435.13880
https://doi.org/10.1111/1365-2435.13880
https://doi.org/10.1186/s12302-019-0282-1
https://doi.org/10.1016/j.scitotenv.2016.10.146
https://doi.org/10.1021/acs.est.1c08399
https://doi.org/10.1021/es8005173
https://doi.org/10.1021/es8005173
https://doi.org/10.1002/ieam.5630020403
https://doi.org/10.1002/ieam.5630020403
https://doi.org/10.1111/ele.12295
https://doi.org/10.1111/oik.07037
https://doi.org/10.1111/brv.12440
https://doi.org/10.1111/brv.12440
https://doi.org/10.1016/j.scitotenv.2009.10.067
https://doi.org/10.1016/j.scitotenv.2009.10.067
https://doi.org/10.1016/j.ecolmodel.2019.108904
https://doi.org/10.1016/j.ecolmodel.2019.108904
https://doi.org/10.1002/ieam.4333
https://doi.org/10.1021/Es103092a
https://doi.org/10.1007/s10646-006-0060-x
https://doi.org/10.1007/s10646-006-0060-x
https://doi.org/10.1007/s10646-008-0271-4
https://doi.org/10.1007/s10646-008-0271-4
https://doi.org/10.1016/j.jtbi.2013.03.011
https://doi.org/10.1111/j.1440-1703.2004.00678.x
https://doi.org/10.1002/etc.2500
https://doi.org/10.1021/acs.est.5b04068
https://doi.org/10.1021/acs.est.5b04068


    |  37SCHNEEWEISS et al.

Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. L. M., & 
Chown, S. L. (2021). Where do functional traits come from? The 
role of theory and models. Functional Ecology, 35(7), 1385–1396. 
https://doi.org/10.1111/1365-2435.13829

Keddy, P. A. (1992). Assembly and response rules: Two goals for pre-
dictive community ecology. Journal of Vegetation Science, 3(2), 
157–164.

Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., 
Lazorchak, J. M., & Flick, R. W. (2007). Collapse of a fish population 
after exposure to a synthetic estrogen. Proceedings of the National 
Academy of Sciences of the United States of America, 104(21), 8897–
8901. https://doi.org/10.1073/pnas.06095​68104

Kimber, I., Basketter, D. A., Gerberick, G. F., Ryan, C. A., & Dearman, R. J. 
(2011). Chemical allergy: Translating biology into hazard character-
ization. Toxicological Sciences, 120(Suppl 1), S238–S268. https://doi.
org/10.1093/toxsc​i/kfq346

Kjær, C., Sørensen, P. B., Wiberg-Larsen, P., Bak, J., Bruus, M., Strandberg, 
B., Larsen, S. E., Rasmussen, J. J., & Strandberg, M. (2021). 
Vulnerability of aquatic insect species to insecticides, depending 
on their flight period and adult life span. Environmental Toxicology 
and Chemistry, 40, 1778–1787. https://doi.org/10.1002/etc.5025

Knapen, D. (2021). Adverse outcome pathways and the paradox of com-
plex simplicity. Environmental Toxicology and Chemistry, 40(11), 
2950–2952. https://doi.org/10.1002/etc.5205

Kooijman, B. (2009). Dynamic energy budget theory for metabolic organisa-
tion (3rd ed.). Cambridge University Press. https://doi.org/10.1017/
CBO97​80511​805400

Kooijman, S. A. L. M., & Bedaux, J. J. M. (1996). The analysis of aquatic 
toxicity data. VU University Press.

Kortenkamp, A., & Faust, M. (2018). Regulate to reduce chemical mixture 
risk. Science, 361(6399), 224–226. https://doi.org/10.1126/scien​ce.​
aat9219

Kramer, V. J., Etterson, M. A., Hecker, M., Murphy, C. A., Roesijadi, G., 
Spade, D. J., Spromberg, J. A., Wang, M., & Ankley, G. T. (2011). 
Adverse outcome pathways and ecological risk assessment: 
Bridging to population-level effects. Environmental Toxicology and 
Chemistry, 30(1), 64–76. https://doi.org/10.1002/etc.375

Kreyling, J., Schweiger, A. H., Bahn, M., Ineson, P., Migliavacca, M., 
Morel-Journel, T., Christiansen, J. R., Schtickzelle, N., & Larsen, K. S. 
(2018). To replicate, or not to replicate – that is the question: How 
to tackle nonlinear responses in ecological experiments. Ecology 
Letters, 21(11), 1629–1638. https://doi.org/10.1111/ele.13134

LaLone, C. A., Villeneuve, D. L., Burgoon, L. D., Russom, C. L., Helgen,  
H. W., Berninger, J. P., Tietge, J. E., Severson, M. N., Cavallin, J. E., & 
Ankley, G. T. (2013). Molecular target sequence similarity as a basis 
for species extrapolation to assess the ecological risk of chemicals 
with known modes of action. Aquatic Toxicology, 144, 141–154.

LaLone, C. A., Villeneuve, D. L., Doering, J. A., Blackwell, B. R., Transue, 
T. R., Simmons, C. W., Swintek, J., Degitz, S. J., Williams, A. J., & 
Ankley, G. T. (2018). Evidence for cross species extrapolation 
of mammalian-based high-throughput screening assay results. 
Environmental Science & Technology, 52(23), 13960–13971. https://
doi.org/10.1021/acs.est.8b04587

LaLone, C. A., Villeneuve, D. L., Lyons, D., Helgen, H. W., Robinson,  
S. L., Swintek, J. A., Saari, T. W., & Ankley, G. T. (2016). Editor's high-
light: Sequence Alignment to Predict Across Species Susceptibility 
(SeqAPASS): A web-based tool for addressing the challenges of 
cross-species extrapolation of chemical toxicity. Toxicological 
Sciences, 153(2), 228–245. https://doi.org/10.1093/toxsc​i/kfw119

Lancaster, J., & Downes, B. J. (2010). Linking the hydraulic world of indi-
vidual organisms to ecological processes: Putting ecology into eco-
hydraulics. River Research and Applications, 26(4), 385–403. https://
doi.org/10.1002/rra.1274

Laskowski, R., Bednarska, A. J., Kramarz, P. E., Loureiro, S., Scheil, V., 
Kudlek, J., & Holmstrup, M. (2010). Interactions between toxic 
chemicals and natural environmental factors—A meta-analysis and 

case studies. Science of the Total Environment, 408(18), 3763–3774. 
https://doi.org/10.1016/J.Scito​tenv.2010.01.043

Lavaud, R., Filgueira, R., & Augustine, S. (2021). The role of dynamic en-
ergy budgets in conservation physiology. Conservation Physiology, 
9(1), coab083. https://doi.org/10.1093/conph​ys/coab083

Lee, J., Braun, G., Henneberger, L., König, M., Schlichting, R., Scholz, S., 
& Escher, B. I. (2021). Critical membrane concentration and mass-
balance model to identify baseline cytotoxicity of hydrophobic 
and ionizable organic chemicals in mammalian cell lines. Chemical 
Research in Toxicology, 34(9), 2100–2109. https://doi.org/10.1021/
acs.chemr​estox.1c00182

Lei, B., Huang, S., Qiao, M., Li, T., & Wang, Z. (2008). Prediction of the 
environmental fate and aquatic ecological impact of nitrobenzene 
in the Songhua River using the modified AQUATOX model. Journal 
of Environmental Sciences, 20(7), 769–777. https://doi.org/10.1016/
S1001​-0742(08)62125​-7

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., 
Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, 
M., & Gonzalez, A. (2004). The metacommunity concept: A frame-
work for multi-scale community ecology. Ecology Letters, 7(7), 601–
613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

Liess, M., & Foit, K. (2010). Intraspecific competition delays recovery of 
population structure. Aquatic Toxicology, 97, 15–22.

López-Osorio, F., & Wurm, Y. (2020). Healthy pollinators: Evaluating pes-
ticides with molecular medicine approaches. Trends in Ecology & 
Evolution, 35(5), 380–383. https://doi.org/10.1016/​j.tree.2019.12.012

Loreau, M., Mouquet, N., & Holt, R. D. (2003). Meta-ecosystems: A the-
oretical framework for a spatial ecosystem ecology. Ecology Letters, 
6(8), 673–679. https://doi.org/10.1046/j.1461-0248.2003.00483.x

Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of 
fungicide resistance. Advances in Applied Microbiology, 90, 29–92. 
https://doi.org/10.1016/bs.aambs.2014.09.001

Luijckx, P., Ho, E. K. H., Gasim, M., Chen, S., Stanic, A., Yanchus, C., Kim, 
Y. S., & Agrawal, A. F. (2017). Higher rates of sex evolve during ad-
aptation to more complex environments. Proceedings of the National 
Academy of Sciences, 114(3), 534–539. https://doi.org/10.1073/
pnas.16040​72114

Malaj, E., Guénard, G., Schäfer, R. B., & von der Ohe, P. C. (2016). 
Evolutionary patterns and physicochemical properties explain mac-
roinvertebrate sensitivity to heavy metals. Ecological Applications, 
26(4), 1249–1259. https://doi.org/10.1890/15-0346.1

Martin, B., Jager, T., Nisbet, R. M., Preuss, T. G., & Grimm, V. (2014). 
Limitations of extrapolating toxic effects on reproduction to the 
population level. Ecological Applications, 24(8), 1972–1983. https://
doi.org/10.1890/14-0656.1

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding 
community ecology from functional traits. Trends in Ecology & 
Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.​02.002

Miller, D. H., Jensen, K. M., Villeneuve, D. L., Kahl, M. D., Makynen,  
E. A., Durhan, E. J., & Ankley, G. T. (2007). Linkage of biochemical 
responses to population-level effects: A case study with vitello-
genin in the fathead minnow (Pimephales promelas). Environmental 
Toxicology Chemistry: An International Journal, 26(3), 521–527.

Mondy, C. P., & Schuwirth, N. (2017). Integrating ecological theories and 
traits in process-based modeling of macroinvertebrate community 
dynamics in streams. Ecological Applications, 27(4), 1365–1377. 
https://doi.org/10.1002/eap.1530

Moschet, C., Wittmer, I., Simovic, J., Junghans, M., Piazzoli, A., Singer, 
H., Stamm, C., Leu, C., & Hollender, J. (2014). How a complete pes-
ticide screening changes the assessment of surface water quality. 
Environmental Science & Technology, 48(10), 5423–5432. https://doi.
org/10.1021/es500​371t

Murphy, C. A., Nisbet, R. M., Antczak, P., Garcia-Reyero, N., Gergs, A., Lika, K., 
Mathews, T., Muller, E. B., Nacci, D., Peace, A., Remien, C. H., Schultz, 
I. R., Stevenson, L. M., & Watanabe, K. H. (2018a). Incorporating 
suborganismal processes into dynamic energy budget models for 

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/1365-2435.13829
https://doi.org/10.1073/pnas.0609568104
https://doi.org/10.1093/toxsci/kfq346
https://doi.org/10.1093/toxsci/kfq346
https://doi.org/10.1002/etc.5025
https://doi.org/10.1002/etc.5205
https://doi.org/10.1017/CBO9780511805400
https://doi.org/10.1017/CBO9780511805400
https://doi.org/10.1126/science.aat9219
https://doi.org/10.1126/science.aat9219
https://doi.org/10.1002/etc.375
https://doi.org/10.1111/ele.13134
https://doi.org/10.1021/acs.est.8b04587
https://doi.org/10.1021/acs.est.8b04587
https://doi.org/10.1093/toxsci/kfw119
https://doi.org/10.1002/rra.1274
https://doi.org/10.1002/rra.1274
https://doi.org/10.1016/J.Scitotenv.2010.01.043
https://doi.org/10.1093/conphys/coab083
https://doi.org/10.1021/acs.chemrestox.1c00182
https://doi.org/10.1021/acs.chemrestox.1c00182
https://doi.org/10.1016/S1001-0742(08)62125-7
https://doi.org/10.1016/S1001-0742(08)62125-7
https://doi.org/10.1111/j.1461-0248.2004.00608.x
https://doi.org/10.1016/j.tree.2019.12.012
https://doi.org/10.1046/j.1461-0248.2003.00483.x
https://doi.org/10.1016/bs.aambs.2014.09.001
https://doi.org/10.1073/pnas.1604072114
https://doi.org/10.1073/pnas.1604072114
https://doi.org/10.1890/15-0346.1
https://doi.org/10.1890/14-0656.1
https://doi.org/10.1890/14-0656.1
https://doi.org/10.1016/j.tree.2006.02.002
https://doi.org/10.1002/eap.1530
https://doi.org/10.1021/es500371t
https://doi.org/10.1021/es500371t


38  |    SCHNEEWEISS et al.

ecological risk assessment. Integrated Environmental Assessment and 
Management, 14(5), 615–624. https://doi.org/​10.1002/ieam.4063

Murphy, C. A., Nisbet, R. M., Antczak, P., Garcia-Reyero, N., Gergs, A., 
Lika, K., Mathews, T., Muller, E. B., Nacci, D., Peace, A., Remien, 
C. H., Schultz, I. R., & Watanabe, K. H. (2018b). Linking adverse 
outcome pathways to dynamic energy budgets: A conceptual 
model. In N. Garcia-Reyero & C. A. Murphy (Eds.), A systems biol-
ogy approach to advancing adverse outcome pathways for risk assess-
ment (pp. 281–302). Springer International Publishing. https://doi.
org/10.1007/978-3-319-66084​-4_14

Niinemets, Ü., Kahru, A., Mander, Ü., Nõges, P., Nõges, T., Tuvikene, A., & 
Vasemägi, A. (2017). Interacting environmental and chemical stresses 
under global change in temperate aquatic ecosystems: Stress re-
sponses, adaptation, and scaling. Regional Environmental Change, 
17(7), 2061–2077. https://doi.org/10.1007/s10113-017-1196-3

Nisbet, R. M., Muller, E. B., Lika, K., & Kooijman, S. A. L. M. (2000). From 
molecules to ecosystems through dynamic energy budget models. 
Journal of Animal Ecology, 69, 913–926.

Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., 
Rideout, B. A., Shivaprasad, H. L., Ahmed, S., Iqbal Chaudhry,  
M. J., Arshad, M., Mahmood, S., Ali, A., & Ahmed Khan, A. (2004). 
Diclofenac residues as the cause of vulture population decline in 
Pakistan. Nature, 427(6975), 630–633. https://doi.org/10.1038/
natur​e02317

OECD. (2013). Guidance document on developing and assessing adverse 
outcome pathways. (ENV/JM/MONO(2013)6). Environment, Health 
and Safety Publications, Series on Testing and Assessment.

Oki, N. O., Nelms, M. D., Bell, S. M., Mortensen, H. M., & Edwards,  
S. W. (2016). Accelerating adverse outcome pathway development 
using publicly available data sources. Current Environmental Health 
Reports, 3(1), 53–63. https://doi.org/10.1007/s4057​2-016-0079-y

Orr, J. A., Luijckx, P., Arnoldi, J., Jackson, A. L., & Piggott, J. J. (2021). 
Rapid evolution generates synergism between multiple stressors: 
Linking theory and an evolution experiment. Global Change Biology, 
28, 1740–1752. https://doi.org/10.1111/gcb.15633

Ouborg, N. J., & Vriezen, W. H. (2007). An ecologist's guide to ecog-
enomics. Journal of Ecology, 95(1), 8–16. https://doi.org/10.1111/
j.1365-2745.​2006.01197.x

Ovaskainen, O., & Abrego, N. (2020). Joint species distribution modelling: 
With applications in R. Cambridge University Press.

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, 
L., Dunson, D., Roslin, T., & Abrego, N. (2017). How to make more 
out of community data? A conceptual framework and its imple-
mentation as models and software. Ecology Letters, 20(5), 561–576. 
https://doi.org/10.1111/ele.12757

Paetzold, A., Schubert, C., & Tockner, K. (2005). Aquatic terrestrial link-
ages along a braided-river: Riparian arthropods feeding on aquatic 
insects. Ecosystems, 8(7), 748–759. https://doi.org/10.1007/
s10021-005-0004-y

Palumbi, S. R. (2001). Humans as the world's greatest evolutionary force. 
Science, 293(5536), 1786–1791.

Pecquerie, L., Johnson, L. R., Kooijman, S. A. L. M., & Nisbet, R. M. 
(2011). Analyzing variations in life-history traits of Pacific salmon 
in the context of Dynamic Energy Budget (DEB) theory. Journal 
of Sea Research, 66(4), 424–433. https://doi.org/10.1016/j.seares.​
2011.07.005

Peng, H., Xiong, W., & Zhan, A. (2018). Fine-scale environmental gradi-
ents formed by local pollutants largely impact zooplankton com-
munities in running water ecosystems. Aquatic Biology, 27, 43–53.

Petersen, J. H., DeAngelis, D. L., & Paukert, C. P. (2008). An overview 
of methods for developing bioenergetic and life history models for 
rare and endangered species. Transactions of the American Fisheries 
Society, 137(1), 244–253. https://doi.org/10.1577/T05-045.1

Pichler, M., Boreux, V., Klein, A., Schleuning, M., & Hartig, F. (2020). 
Machine learning algorithms to infer trait-matching and predict 

species interactions in ecological networks. Methods in Ecology and 
Evolution, 11(2), 281–293. https://doi.org/10.1111/2041-210X.13329

Piggott, J. J., Salis, R. K., Lear, G., Townsend, C. R., & Matthaei, C. D. 
(2015). Climate warming and agricultural stressors interact to de-
termine stream periphyton community composition. Global Change 
Biology, 21(1), 206–222. https://doi.org/10.1111/gcb.12661

Piggott, J. J., Townsend, C. R., & Matthaei, C. D. (2015a). Climate warm-
ing and agricultural stressors interact to determine stream mac-
roinvertebrate community dynamics. Global Change Biology, 21(5), 
1887–1906. https://doi.org/10.1111/gcb.12861

Piggott, J. J., Townsend, C. R., & Matthaei, C. D. (2015b). Reconceptualizing 
synergism and antagonism among multiple stressors. Ecology and 
Evolution, 5(7), 1538–1547. https://doi.org/10.1002/ece3.1465

Posthuma, L., & de Zwart, D. (2012). Predicted mixture toxic pressure re-
lates to observed fraction of benthic macrofauna species impacted 
by contaminant mixtures. Environmental Toxicology and Chemistry, 
31(9), 2175–2188. https://doi.org/10.1002/etc.1923

Posthuma, L., van Gils, J., Zijp, M. C., van de Meent, D., & de Zwart, D. 
(2019). Species sensitivity distributions for use in environmental 
protection, assessment and management of aquatic ecosystems for 
12,386 chemicals. Environmental Toxicology and Chemistry, 38, 905–
917. https://doi.org/10.1002/etc.4373

Posthuma, L., Zijp, M. C., De Zwart, D., Van de Meent, D., Globevnik, L., 
Koprivsek, M., Focks, A., Van Gils, J., & Birk, S. (2020). Chemical 
pollution imposes limitations to the ecological status of European 
surface waters. Scientific Reports, 10(1), 14825. https://doi.
org/10.1038/s4159​8-020-71537​-2

Powles, S. B., & Yu, Q. (2010). Evolution in action: Plants resistant to 
herbicides. Annual Review of Plant Biology, 61(1), 317–347. https://
doi.org/10.1146/annur​ev-arpla​nt-04280​9-112119

Raimondo, S., Sharpe, L., Oliver, L., McCaffrey, K. R., Purucker, S. T., 
Sinnathamby, S., & Minucci, J. M. (2019). A unified approach for pro-
tecting listed species and ecosystem services in isolated wetlands using 
community-level protection goals. Science of the Total Environment, 663, 
465–478. https://doi.org/10.1016/j.scito​tenv.2019.​01.153

Reusch, T. B. H., & Wood, T. E. (2007). Molecular ecology of global change: 
Molecular ecology of global change. Molecular Ecology, 16(19), 
3973–3992. https://doi.org/10.1111/j.1365-294X.2007.03454.x

Reznick, D. N., Shaw, F. H., Rodd, F. H., & Shaw, R. G. (1997). Evaluation of 
the rate of evolution in natural populations of guppies (Poecilia re-
ticulata). Science, 275(5308), 1934–1937. https://doi.org/10.1126/
scien​ce.275.5308.1934

Richmond, E. K., Rosi, E. J., Walters, D. M., Fick, J., Hamilton, S. K., Brodin, T., 
Sundelin, A., & Grace, M. R. (2018). A diverse suite of pharmaceuticals 
contaminates stream and riparian food webs. Nature Communications, 
9(1), 4491. https://doi.org/10.1038/s4146​7-018-06822​-w

Rohr, J. R., Salice, C. J., & Nisbet, R. M. (2016). The pros and cons of 
ecological risk assessment based on data from different levels of bi-
ological organization. Critical Reviews in Toxicology, 46(9), 756–784. 
https://doi.org/10.1080/10408​444.2016.1190685

Rubach, M. N., Ashauer, R., Buchwalter, D. B., De Lange, H. J., Hamer, 
M., Preuss, T. G., Töpke, K., & Maund, S. J. (2011). Framework for 
traits-based assessment in ecotoxicology. Integrated Environmental 
Assessment and Management, 7(2), 172–186. https://doi.org/​
10.1002/ieam.105

Rubach, M. N., Baird, D. J., Boerwinkel, M. C., Maund, S. J., Roessink, I., 
& Van den Brink, P. J. (2012). Species traits as predictors for intrin-
sic sensitivity of aquatic invertebrates to the insecticide chlorpy-
rifos. Ecotoxicology, 21(7), 2088–2101. https://doi.org/10.1007/
s10646-012-0962-8

Rumschlag, S. L., Mahon, M. B., Hoverman, J. T., Raffel, T. R., Carrick, 
H. J., Hudson, P. J., & Rohr, J. R. (2020). Consistent effects of pes-
ticides on community structure and ecosystem function in fresh-
water systems. Nature Communications, 11(1), 6333. https://doi.
org/10.1038/s4146​7-020-20192​-2

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/ieam.4063
https://doi.org/10.1007/978-3-319-66084-4_14
https://doi.org/10.1007/978-3-319-66084-4_14
https://doi.org/10.1007/s10113-017-1196-3
https://doi.org/10.1038/nature02317
https://doi.org/10.1038/nature02317
https://doi.org/10.1007/s40572-016-0079-y
https://doi.org/10.1111/gcb.15633
https://doi.org/10.1111/j.1365-2745.2006.01197.x
https://doi.org/10.1111/j.1365-2745.2006.01197.x
https://doi.org/10.1111/ele.12757
https://doi.org/10.1007/s10021-005-0004-y
https://doi.org/10.1007/s10021-005-0004-y
https://doi.org/10.1016/j.seares.2011.07.005
https://doi.org/10.1016/j.seares.2011.07.005
https://doi.org/10.1577/T05-045.1
https://doi.org/10.1111/2041-210X.13329
https://doi.org/10.1111/gcb.12661
https://doi.org/10.1111/gcb.12861
https://doi.org/10.1002/ece3.1465
https://doi.org/10.1002/etc.1923
https://doi.org/10.1002/etc.4373
https://doi.org/10.1038/s41598-020-71537-2
https://doi.org/10.1038/s41598-020-71537-2
https://doi.org/10.1146/annurev-arplant-042809-112119
https://doi.org/10.1146/annurev-arplant-042809-112119
https://doi.org/10.1016/j.scitotenv.2019.01.153
https://doi.org/10.1111/j.1365-294X.2007.03454.x
https://doi.org/10.1126/science.275.5308.1934
https://doi.org/10.1126/science.275.5308.1934
https://doi.org/10.1038/s41467-018-06822-w
https://doi.org/10.1080/10408444.2016.1190685
https://doi.org/10.1002/ieam.105
https://doi.org/10.1002/ieam.105
https://doi.org/10.1007/s10646-012-0962-8
https://doi.org/10.1007/s10646-012-0962-8
https://doi.org/10.1038/s41467-020-20192-2
https://doi.org/10.1038/s41467-020-20192-2


    |  39SCHNEEWEISS et al.

Rundlöf, M., Andersson, G. K. S., Bommarco, R., Fries, I., Hederström, 
V., Herbertsson, L., Jonsson, O., Klatt, B. K., Pedersen, T. R., 
Yourstone, J., & Smith, H. G. (2015). Seed coating with a neonico-
tinoid insecticide negatively affects wild bees. Nature, 521(7550), 
77–80. https://doi.org/10.1038/natur​e14420

Ryser, R., Hirt, M. R., Häussler, J., Gravel, D., & Brose, U. (2021). Landscape 
heterogeneity buffers biodiversity of simulated meta-food-webs 
under global change through rescue and drainage effects. Nature 
Communications, 12(1), 4716. https://doi.org/10.1038/s4146​7-021-
24877​-0

Schäfer, R. B. (2019). Responses of freshwater macroinvertebrates to pes-
ticides: Insights from field studies. Current Opinion in Environmental 
Science & Health, 11, 1–7. https://doi.org/10.1016/j.coesh.2019.06.001

Schäfer, R. B., Gerner, N., Kefford, B. J., Rasmussen, J. J., Beketov, M. A., 
de Zwart, D., Liess, M., & Von der Ohe, P. C. (2013). How to char-
acterize chemical exposure to predict ecologic effects on aquatic 
communities? Environmental Science & Technology, 47(14), 7996–
8004. https://doi.org/10.1021/es401​4954

Schäfer, R. B., Kühn, B., Hauer, L., & Kattwinkel, M. (2017). Assessing 
recovery of stream insects from pesticides using a two-patch meta-
population model. Science of the Total Environment, 609, 788–798. 
https://doi.org/10.1016/j.scito​tenv.2017.07.222

Schäfer, R. B., Kühn, B., Malaj, E., König, A., & Gergs, R. (2016). 
Contribution of organic toxicants to multiple stress in river ecosys-
tems. Freshwater Biology, 61(12), 2116–2128.

Schäfer, R. B., & Liess, M. (2013). Species at risk (SPEAR) biomonitoring 
indicators. In J. Férard & C. Blaise (Eds.), Encyclopedia of aquatic ec-
otoxicology (pp. 1063–1073). Springer.

Schäfer, R. B., Liess, M., Altenburger, R., Filser, J., Hollert, H., Roß-
Nickoll, M., Schäffer, A., & Scheringer, M. (2019). Future pesticide 
risk assessment – narrowing the gap between intention and real-
ity. Environmental Sciences Europe, 31, 21. https://doi.org/10.1186/
s1230​2-019-0203-3

Schäfer, R. B., & Piggott, J. J. (2018). Advancing understanding and pre-
diction in multiple stressor research through a mechanistic basis for 
null models. Global Change Biology, 24(5), 1817–1826. https://doi.
org/10.1111/gcb.14073/​full

Schäfer, R. B., von der Ohe, P., Rasmussen, J., Kefford, J. B., Beketov, M., 
Schulz, R., & Liess, M. (2012). Thresholds for the effects of pesti-
cides on invertebrate communities and leaf breakdown in stream 
ecosystems. Environmental Science & Technology, 46(9), 5134–5142. 
https://doi.org/10.1021/es203​9882

Scheiner, S. M., & Willig, M. R. (2011). The theory of ecology. The University 
of Chicago Press.

Schiesari, L., Leibold, M. A., & Burton, G. A. (2018). Metacommunities, 
metaecosystems and the environmental fate of chemical contam-
inants. Journal of Applied Ecology, 55(3), 1553–1563. https://doi.
org/10.1111/1365-2664.13054

Schmolke, A., Thorbek, P., Chapman, P., & Grimm, V. (2010). Ecological 
models and pesticide risk assessment: Current modeling practice. 
Environmental Toxicology and Chemistry, 29(4), 1006–1012. https://
doi.org/10.1002/etc.120

Schneeweiss, A., Schreiner, V. C., Reemtsma, T., Liess, M., & Schäfer,  
R. B. (2022). Potential propagation of agricultural pesticide expo-
sure and effects to upstream sections in a biosphere reserve. Science  
of the Total Environment, 836, 155688. https://doi.org/10.1016/​
j.scito​tenv.2022.155688

Schneider, D. C. (2001). The rise of the concept of scale in ecology. 
Bioscience, 51(7), 545. https://doi.org/10.1641/0006-3568(2001)​
051[0545:TROTC​O]2.0.CO;2

Schreiner, V. C., Feckler, A., Fernández, D., Frisch, K., Muñoz, K., Szöcs, 
E., Zubrod, J. P., Bundschuh, M., Rasmussen, J. J., Kefford, B. J., 
Axelsen, J., Cedergreen, N., & Schäfer, R. B. (2018). Similar recov-
ery time of microbial functions from fungicide stress across bio-
geographical regions. Scientific Reports, 8(1), 17021. https://doi.
org/10.1038/s4159​8-018-35397​-1

Schreiner, V. C., Link, M., Kunz, S., Szöcs, E., Scharmüller, A., Vogler, B., Beck, 
B., Battes, K. P., Cimpean, M., Singer, H. P., Hollender, J., & Schäfer,  
R. B. (2021). Paradise lost? Pesticide pollution in a European region 
with considerable amount of traditional agriculture. Water Research, 
188, 116528. https://doi.org/10.1016/j.watres.2020.116528

Schuijt, L. M., Peng, F.-J., van den Berg, S. J. P., Dingemans, M. M. L., & 
Van den Brink, P. J. (2021). (Eco)toxicological tests for assessing im-
pacts of chemical stress to aquatic ecosystems: Facts, challenges, 
and future. Science of The Total Environment, 795, 148776. https://
doi.org/10.1016/j.scito​tenv.2021.148776

Schuwirth, N., Dietzel, A., & Reichert, P. (2015). The importance of biotic 
interactions for the prediction of macroinvertebrate communities 
under multiple stressors. Functional Ecology, 30, 974–984. https://
doi.org/10.1111/1365-2435.12605

Scowen, M., Athanasiadis, I. N., Bullock, J. M., Eigenbrod, F., & Willcock, 
S. (2021). The current and future uses of machine learning in eco-
system service research. Science of the Total Environment, 799, 
149263. https://doi.org/10.1016/j.scito​tenv.2021.149263

Segner, H., Schmitt-Jansen, M., & Sabater, S. (2014). Assessing the impact 
of multiple stressors on aquatic biota: The receptor's side matters. ACS 
Publications.

Sewell, F., Gellatly, N., Beaumont, M., Burden, N., Currie, R., de Haan, L., 
Hutchinson, T. H., Jacobs, M., Mahony, C., Malcomber, I., Mehta, J., 
Whale, G., & Kimber, I. (2018). The future trajectory of adverse out-
come pathways: A commentary. Archives of Toxicology, 92(4), 1657–
1661. https://doi.org/10.1007/s0020​4-018-2183-2

Shahid, N., Becker, J. M., Krauss, M., Brack, W., & Liess, M. (2018). 
Adaptation of Gammarus pulex to agricultural insecticide contam-
ination in streams. Science of the Total Environment, 621, 479–485. 
https://doi.org/10.1016/j.scito​tenv.2017.11.220

Sherborne, N., Galic, N., & Ashauer, R. (2020). Sublethal effect modelling for 
environmental risk assessment of chemicals: Problem definition, model 
variants, application and challenges. Science of the Total Environment, 
745, 141027. https://doi.org/10.1016/j.scito​tenv.2020.141027

Shipley, B. (2010). From plant traits to vegetation structure: Chance and selection 
in the assembly of ecological communities. Cambridge University Press.

Shipley, B., Vile, D., & Garnier, E. (2006). From plant traits to plant 
communities: A statistical mechanistic approach to biodiversity. 
Science, 314, 812–814.

Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams,  
R. J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, 
A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., 
Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, 
T., … Abbott, K. C. (2020). Integrating the underlying structure of 
stochasticity into community ecology. Ecology, 101(2), e02922. 
https://doi.org/10.1002/ecy.2922

Smetanová, S., Bláha, L., Liess, M., Schäfer, R. B., & Beketov, M. A. 
(2014). Do predictions from species sensitivity distributions match 
with field data? Environmental Pollution, 189, 126–133. https://doi.
org/10.1016/j.envpol.2014.03.002

Sokolova, I. (2021). Bioenergetics in environmental adaptation and stress 
tolerance of aquatic ectotherms: Linking physiology and ecology 
in a multi-stressor landscape. The Journal of Experimental Biology, 
224(Suppl 1), jeb236802. https://doi.org/10.1242/jeb.236802

Sokolova, I. M. (2013). Energy-limited tolerance to stress as a conceptual 
framework to integrate the effects of multiple stressors. Integrative 
and Comparative Biology, 53(4), 597–608. https://doi.org/10.1093/
icb/ict028

Spinu, N., Cronin, M. T. D., Enoch, S. J., Madden, J. C., & Worth, A. P. 
(2020). Quantitative adverse outcome pathway (qAOP) models for 
toxicity prediction. Archives of Toxicology, 94(5), 1497–1510. https://
doi.org/10.1007/s0020​4-020-02774​-7

Spurgeon, D., Lahive, E., Robinson, A., Short, S., & Kille, P. (2020). 
Species sensitivity to toxic substances: Evolution, ecology and ap-
plications. Frontiers in Environmental Science, 8, 588380. https://doi.
org/10.3389/fenvs.2020.588380

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/nature14420
https://doi.org/10.1038/s41467-021-24877-0
https://doi.org/10.1038/s41467-021-24877-0
https://doi.org/10.1016/j.coesh.2019.06.001
https://doi.org/10.1021/es4014954
https://doi.org/10.1016/j.scitotenv.2017.07.222
https://doi.org/10.1186/s12302-019-0203-3
https://doi.org/10.1186/s12302-019-0203-3
https://doi.org/10.1111/gcb.14073/full
https://doi.org/10.1111/gcb.14073/full
https://doi.org/10.1021/es2039882
https://doi.org/10.1111/1365-2664.13054
https://doi.org/10.1111/1365-2664.13054
https://doi.org/10.1002/etc.120
https://doi.org/10.1002/etc.120
https://doi.org/10.1016/j.scitotenv.2022.155688
https://doi.org/10.1016/j.scitotenv.2022.155688
https://doi.org/10.1641/0006-3568(2001)051%5B0545:TROTCO%5D2.0.CO;2
https://doi.org/10.1641/0006-3568(2001)051%5B0545:TROTCO%5D2.0.CO;2
https://doi.org/10.1038/s41598-018-35397-1
https://doi.org/10.1038/s41598-018-35397-1
https://doi.org/10.1016/j.watres.2020.116528
https://doi.org/10.1016/j.scitotenv.2021.148776
https://doi.org/10.1016/j.scitotenv.2021.148776
https://doi.org/10.1111/1365-2435.12605
https://doi.org/10.1111/1365-2435.12605
https://doi.org/10.1016/j.scitotenv.2021.149263
https://doi.org/10.1007/s00204-018-2183-2
https://doi.org/10.1016/j.scitotenv.2017.11.220
https://doi.org/10.1016/j.scitotenv.2020.141027
https://doi.org/10.1002/ecy.2922
https://doi.org/10.1016/j.envpol.2014.03.002
https://doi.org/10.1016/j.envpol.2014.03.002
https://doi.org/10.1242/jeb.236802
https://doi.org/10.1093/icb/ict028
https://doi.org/10.1093/icb/ict028
https://doi.org/10.1007/s00204-020-02774-7
https://doi.org/10.1007/s00204-020-02774-7
https://doi.org/10.3389/fenvs.2020.588380
https://doi.org/10.3389/fenvs.2020.588380


40  |    SCHNEEWEISS et al.

Sturmbauer, C., Opadiya, G. B., Niederstatter, H., Riedmann, A., & Dallinger, 
R. (1999). Mitochondrial DNA reveals cryptic oligochaete species dif-
fering in cadmium resistance. Molecular Biology and Evolution, 16(7), 
967–974. https://doi.org/10.1093/oxfor​djour​nals.molbev.a026186

Teeguarden, J. G., Tan, Y.-M., Edwards, S. W., Leonard, J. A., Anderson,  
K. A., Corley, R. A., Kile, M. L., Simonich, S. M., Stone, D., Tanguay,  
R. L., Waters, K. M., Harper, S. L., & Williams, D. E. (2016). 
Completing the link between exposure science and toxicology for 
improved environmental health decision making: The aggregate 
exposure pathway framework. Environmental Science & Technology, 
50(9), 4579–4586. https://doi.org/10.1021/acs.est.5b05311

Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C., Hu, X., 
Prat, J., Mudrock, E., Hettinger, R., Cortina, A. E., Biswas, R. G., 
Kock, F. V. C., Soong, R., Jenne, A., Du, B., Hou, F., He, H., Lundeen, 
R., … Kolodziej, E. P. (2021). A ubiquitous tire rubber–derived chem-
ical induces acute mortality in coho salmon. Science, 371(6525), 
185–189. https://doi.org/10.1126/scien​ce.abd6951

Topping, C. J., Hansen, T. S., Jensen, T. S., Jepsen, J. U., Nikolajsen, F., & 
Odderskær, P. (2003). ALMaSS, an agent-based model for animals 
in temperate European landscapes. Ecological Modelling, 167(1–2), 
65–82. https://doi.org/10.1016/S0304​-3800(03)00173​-X

Trekels, H., Van de Meutter, F., & Stoks, R. (2011). Habitat isolation 
shapes the recovery of aquatic insect communities from a pesti-
cide pulse. Journal of Applied Ecology, 48(6), 1480–1489. https://doi.
org/10.1111/j.1365-2664.2011.02053.x

Trijau, M., Goussen, B., Gergs, A., & Charles, S. (2021). RDEBtktd, an 
R-package for analysis and forward-prediction of sublethal effects 
[Preprint]. https://doi.org/10.14293/​S2199​-1006.1.SOR-.PPJ7L​B5.v1

Van Aggelen, G., Ankley, G. T., Baldwin, W. S., Bearden, D. W., Benson, 
W. H., Chipman, J. K., Collette, T. W., Craft, J. A., Denslow, N. D., 
Embry, M. R., Falciani, F., George, S. G., Helbing, C. C., Hoekstra, 
P. F., Iguchi, T., Kagami, Y., Katsiadaki, I., Kille, P., Liu, L., … Yu, L. 
(2010). Integrating omic technologies into aquatic ecological risk 
assessment and environmental monitoring: Hurdles, achievements, 
and future outlook. Environmental Health Perspectives, 118(1), 1–5. 
https://doi.org/10.1289/ehp.0900985

van den Berg, S. J. P., Baveco, H., Butler, E., De Laender, F., Focks, A., 
Franco, A., Rendal, C., & Van den Brink, P. J. (2019). Modeling the 
sensitivity of aquatic macroinvertebrates to chemicals using traits. 
Environmental Science & Technology, 53(10), 6025–6034. https://
doi.org/10.1021/acs.est.9b00893

van den Berg, S. J. P., Maltby, L., Sinclair, T., Liang, R., & Van den Brink, P. J. 
(2021). Cross-species extrapolation of chemical sensitivity. Science 
of the Total Environment, 753, 141800. https://doi.org/10.1016/​
j.scito​tenv.2020.141800

Van den Brink, P. J., Boxall, A. B. A., Maltby, L., Brooks, B. W., Rudd,  
M. A., Backhaus, T., Spurgeon, D., Verougstraete, V., Ajao, C., 
Ankley, G. T., Apitz, S. E., Arnold, K., Brodin, T., Cañedo-Argüelles, 
M., Chapman, J., Corrales, J., Coutellec, M.-A., Fernandes, T. F., 
Fick, J., … van Wensem, J. (2018). Toward sustainable environ-
mental quality: Priority research questions for Europe: European 
research priorities. Environmental Toxicology and Chemistry, 37(9), 
2281–2295. https://doi.org/10.1002/etc.4205

Vellend, M. (2010). Conceptual synthesis in community ecology. The 
Quarterly Review of Biology, 85(2), 183–206.

Vellend, M. (2016). The theory of ecological communities. Princeton 
University Press.

Viaene, K. P. J., De Laender, F., Rico, A., Van den Brink, P. J., Di Guardo, 
A., Morselli, M., & Janssen, C. R. (2015). Species interactions and 
chemical stress: Combined effects of intraspecific and interspecific 
interactions and pyrene on Daphnia magna population dynamics. 
Environmental Toxicology and Chemistry, 34(8), 1751–1759. https://
doi.org/10.1002/etc.2973

Villeneuve, D. L., Coady, K., Escher, B. I., Mihaich, E., Murphy, C. A., 
Schlekat, T., & Garcia-Reyero, N. (2019). High-throughput screen-
ing and environmental risk assessment: State of the science and 
emerging applications: High-throughput screening and environ-
mental risk assessment. Environmental Toxicology and Chemistry, 
38(1), 12–26. https://doi.org/10.1002/etc.4315

Vinebrooke, R. D., Cottingham, K. L., Norberg, J., Scheffer, M., Dodson, 
S. I., Maberly, S. C., & Sommer, U. (2004). Impacts of multiple 
stressors on biodiversity and ecosystem functioning: The role of 
species co-tolerance. Oikos, 104(3), 451–457.

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & 
Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 
882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x

Wang, H., Shi, Y., Wang, L., Liu, S., Wu, S., Yang, Y., Feyereisen, R., & 
Wu, Y. (2018). CYP6AE gene cluster knockout in Helicoverpa ar-
migera reveals role in detoxification of phytochemicals and insecti-
cides. Nature Communications, 9(1), 4820. https://doi.org/10.1038/
s41467-018-07226​-6

Wang, Z., Walker, G. W., Muir, D. C. G., & Nagatani-Yoshida, K. (2020). 
Toward a global understanding of chemical pollution: A first com-
prehensive analysis of national and regional chemical inventories. 
Environmental Science & Technology, 54(5), 2575–2584. https://doi.
org/10.1021/acs.est.9b06379

Weigand, H., & Leese, F. (2018). Detecting signatures of positive selec-
tion in non-model species using genomic data. Zoological Journal of 
the Linnean Society, 184(2), 528–583. https://doi.org/10.1093/zooli​
nnean/​zly007

Wetmore, B. A. (2015). Quantitative in vitro-to-in vivo extrapolation in a 
high-throughput environment. Toxicology, 332, 94–101. https://doi.
org/10.1016/j.tox.2014.05.012

Wiberg-Larsen, P., Graeber, D., Kristensen, E. A., Baattrup-Pedersen, A., 
Friberg, N., & Rasmussen, J. J. (2016). Trait characteristics determine 
pyrethroid sensitivity in nonstandard test species of freshwater mac-
roinvertebrates: A reality check. Environmental Science & Technology, 
50(10), 4971–4978. https://doi.org/10.1021/acs.est.6b00315

Williams, T. D., Turan, N., Diab, A. M., Wu, H., Mackenzie, C., Bartie,  
K. L., Hrydziuszko, O., Lyons, B. P., Stentiford, G. D., Herbert, J. M., 
Abraham, J. K., Katsiadaki, I., Leaver, M. J., Taggart, J. B., George,  
S. G., Viant, M. R., Chipman, K. J., & Falciani, F. (2011). Towards a system 
level understanding of non-model organisms sampled from the envi-
ronment: A network biology approach. PLoS Computational Biology, 
7(8), e1002126. https://doi.org/10.1371/journ​al.pcbi.1002126

Wu, R. S. S., Siu, W. H. L., & Shin, P. K. S. (2005). Induction, adaptation 
and recovery of biological responses: Implications for environmen-
tal monitoring. Marine Pollution Bulletin, 51(8–12), 623–634.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Schneeweiss, A., Juvigny-Khenafou, N. 
P. D., Osakpolor, S., Scharmüller, A., Scheu, S., Schreiner,  
V. C., Ashauer, R., Escher, B. I., Leese, F., & Schäfer, R. B. (2023). 
Three perspectives on the prediction of chemical effects in 
ecosystems. Global Change Biology, 29, 21–40. https://doi.
org/10.1111/gcb.16438

 13652486, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16438 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [19/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1093/oxfordjournals.molbev.a026186
https://doi.org/10.1021/acs.est.5b05311
https://doi.org/10.1126/science.abd6951
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1111/j.1365-2664.2011.02053.x
https://doi.org/10.1111/j.1365-2664.2011.02053.x
https://doi.org/10.14293/S2199-1006.1.SOR-.PPJ7LB5.v1
https://doi.org/10.1289/ehp.0900985
https://doi.org/10.1021/acs.est.9b00893
https://doi.org/10.1021/acs.est.9b00893
https://doi.org/10.1016/j.scitotenv.2020.141800
https://doi.org/10.1016/j.scitotenv.2020.141800
https://doi.org/10.1002/etc.4205
https://doi.org/10.1002/etc.2973
https://doi.org/10.1002/etc.2973
https://doi.org/10.1002/etc.4315
https://doi.org/10.1111/j.2007.0030-1299.15559.x
https://doi.org/10.1038/s41467-018-07226-6
https://doi.org/10.1038/s41467-018-07226-6
https://doi.org/10.1021/acs.est.9b06379
https://doi.org/10.1021/acs.est.9b06379
https://doi.org/10.1093/zoolinnean/zly007
https://doi.org/10.1093/zoolinnean/zly007
https://doi.org/10.1016/j.tox.2014.05.012
https://doi.org/10.1016/j.tox.2014.05.012
https://doi.org/10.1021/acs.est.6b00315
https://doi.org/10.1371/journal.pcbi.1002126
https://doi.org/10.1111/gcb.16438
https://doi.org/10.1111/gcb.16438

	Three perspectives on the prediction of chemical effects in ecosystems
	Abstract
	1|INTRODUCTION
	2|SUBORGANISMAL PERSPECTIVE
	2.1|Adverse outcome pathways for prediction
	2.2|Molecular cross-­species extrapolation
	2.3|Major challenges and current developments

	3|ORGANISMAL PERSPECTIVE
	3.1|TKTD models for prediction
	3.2|DEB models for prediction
	3.3|Major challenges and current developments

	4|ECOLOGICAL PERSPECTIVE
	4.1|Chemicals and ecological processes
	4.2|Use of traits in ecotoxicology
	4.3|Statistical and process-­based models
	4.4|The challenge of multiple stressors

	5|THE SCOPE OF PREDICTION—­A QUESTION OF SCALE
	6|DATA AND EXPERIMENTAL ADVANCES TO IMPROVE PREDICTION
	7|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


