ENVIRONMENTAL TOXINS

Models predict planned phosphorus load reduction will make Lake Erie more toxic

Ferdi L. Hellweger¹*, Robbie M. Martin², Falk Eigemann¹, Derek J. Smith³, Gregory J. Dick^{3,4}, Steven W. Wilhelm²*

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.

armful cyanobacteria and their toxins constitute one of the most important global environmental challenges faced by humanity, which is expected to get worse in a warmer climate (1, 2). The problem is exemplified by Microcystis, which can produce the potent hepatotoxin microcystin (MC), a class of cyclic nonribosomal peptides originally known as "fast death factor" that has already disrupted the drinking water supplies of Toledo, Ohio on Lake Erie and those of other cities (3).

In fresh waters, phytoplankton growth is often limited by the availability of phosphorous (P), and that concept has been applied in mathematical models and used to control bulk biomass-i.e., eutrophication-in many systems (4). It is also the basis for a costly binational agreement aimed at controlling toxic cyanobacteria in Lake Erie using a 40% P load reduction (5). However, this simple model does not address or explain the ecology of toxigenic versus nontoxigenic strains or the production of toxins, where nitrogen (N), temperature, and reactive oxygen species [e.g., hydrogen peroxide (H₂O₂)] are important factors (6-10). Advances in our understanding and management of cyanobacteria necessitate the development of new conceptual and quantitative models that incorporate relevant mechanisms.

production, has been extensively investigated in the laboratory, and a natural first step in the development of a next-generation model is to summarize and synthesize this information.

The biology of *Microcystis*, including toxin

We performed a broad literature meta-analysis, including 103 papers published from 1958 and totaling 708 experiments (i.e., cultures, all cataloged and discussed individually in the supplementary materials). Experiments were conducted with 67 strains using various methods. Consequently, the database is heterogeneous, but some consistent and ecologically relevant patterns emerge (Fig. 1; model results discussed subsequently). Across 20 experiments, the optimum T for MC production is not 6.3°C, it is 6.3°C less than that for growth (Fig. 1A). As expected from the chemical formula of MC, which includes ~10 N atoms per molecule, lower N availability reduces MC content (Fig. 1B). The observed MC content can be higher or lower at increased light, which is also affected by binding to proteins (Fig. 1, C and F) (9, 11). These patterns show that the catalog of observations is a useful resource, even without model analysis.

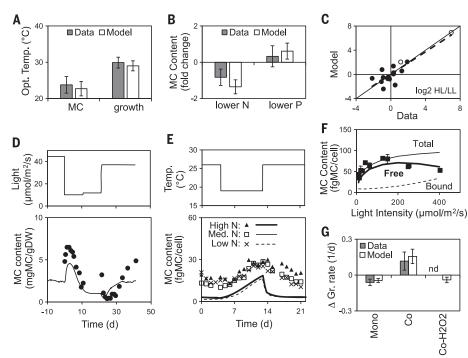
Building on this large catalog of observations and existing cyanobacteria models (12) and following a pattern-oriented modeling approach (13), we developed a dynamic, mechanistic, and molecular-level model of Microcystis growth and toxin production. The agent-based model (ABM) simulates individual cells (14), with explicit representation of select representative genes with corresponding transcripts, enzymes, and metabolite pools (Fig. 2 shows a subset of the model). For example, mcyD is used as a proxy for all 10 genes in the MC synthesis cluster. The model includes a single gene, t2prx, as a representative of all H₂O₂-degrading enzymes [e.g., katG and trxA (10, 15)]. GLU and G3P represent labile N and C pools.

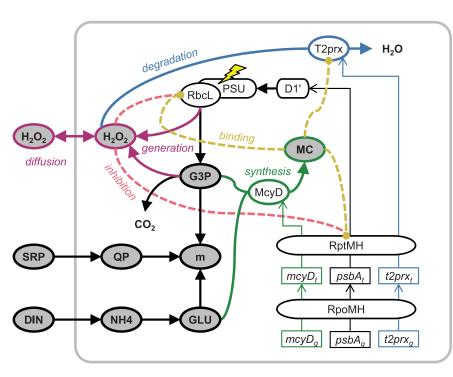
We repeated each experiment in the database in silico using the model. The ability of the model to reproduce observations is quantified using a pattern-oriented approach, where we identify patterns in the observations and compare them with the model (12) (supple-

mentary materials). In total, there are 897 patterns, and the model reproduces 87% of them. Mechanistic modeling thus provides a natural and intuitive way to summarize and interpret observations for Microcystis, as has been found for other organisms (12, 16).

The model can reproduce the relatively simple temperature optima, but also the more complex effect of N on MC content (Fig. 1B). It also predicts the decrease in free or measurable MC content at higher light intensities, which is the result of increased MC binding to proteins (9, 11). In some cases, the model proposes mechanisms underlying previously unexplained observed patterns, like the transient increase in MC content upon light downshift (Fig. 1D). In the model, this pattern is related to the dynamics of G3P and GLU, which are the limiting substrates for biomass synthesis and MC synthesis, respectively, in this experiment (fig. S109). When the light intensity decreases abruptly, photosynthesis and G3P content drop rapidly, and biomass decreases. However, N assimilation continues, and the biomass-based GLU content increases. Consequently, biomass-based MC synthesis increases. The mcyD gene is down-regulated rapidly upon light-downshift, but it takes some time for the enzyme level to respond. Once this occurs, the MC synthesis and content also decrease.

For some experiments, there can be substantial differences between observations and model predictions (Fig. 1E). This can be partially attributed to the constraint of calibrating the model with one parameter set (for each strain) to multiple datasets. There are experiments from 28 papers for this strain in the database. However, the main purpose of the model application to the database is to test its structure, i.e., mechanisms; differences in magnitude are less relevant than patterns because they can be calibrated for any field application of the model. In this example (Fig. 1E), the main observed pattern, the increase in MC content upon temperature decrease and vice versa, is reproduced by the model.


The key to understanding the differential ecology of toxigenic and nontoxigenic strains lies in the biological role of MC. There is increasing evidence that MC binds to enzymes and protects them from damage by reactive oxygen species, such as H_2O_2 (7, 9). Experiments with toxigenic wild-type and nontoxigenic $\Delta mcyB$ mutant cells show that, when H₂O₂ is added at environmentally relevant concentrations, the MC producer is less vulnerable than the non-MC-producing mutant (7) (Fig. 3). By contrast, when H₂O₂ is added at very high concentrations-levels corresponding to algicide or cyanocide treatment-the MC producer is more vulnerable (15). These observed patterns are relevant to the strainlevel ecology and test the structural realism of the model.


¹Water Quality Engineering, Technical University of Berlin, Berlin, Germany. ²Department of Microbiology, University of Tennessee, Knoxville, TN, USA. 3Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA. 4Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Ml. USA,

^{*}Corresponding author. Email: ferdi.hellweger@tu-berlin.de (F.L.H.); wilhelm@utk.edu (S.W.W.)

Fig. 1. Patterns of toxin production in Microcystis and comparison with model. (A) Temperature optima for MC production and growth (n = 20); error bars are 95% Cls. (B) MC content under lower N (n = 41) and P (n = 24) relative to control; values are log₂ ratios. (C) MC content (solid symbols) or mcy transcripts (open symbols) at high relative to low light (HL/LL) (n = 16); values are log_2 ratios. Diagonal solid line is 1:1 (indicating perfect model-data agreement), and the dashed line is linear regression; $R^2 = 0.77$. (**D** and **E**) Transient response of MC content to changes in light (D) and temperature (E) in continuous culture. Data are from (8, 27). (F) MC content versus light. Data are from (11). Symbols are data, and lines are models in (D) to (F). (G) Relative fitness of toxigenic and nontoxigenic strains in mono- and coculture under various light, temperature, and nutrient conditions (n = 13). Growth rate difference (Δ Gr. rate) indicates the toxigenic - nontoxigenic growth rate. Co-H₂O₂ is a coculture simulation with the H₂O₂ damage turned off to illustrate that the advantage of the toxigenic strain in coculture is the result of interaction through H_2O_2 . Data are from (18). nd, no data.

Fig. 2. H₂O₂ generation, damage to enzymes and protection by MC, or degradation by T2prx in the model. Only select components and processes are shown; see supplementary materials for full model details. H₂O₂ is generated by photosynthesis and respiration, diffuses across the membrane, and inhibits enzymes, including PSURbcL and RptMH (ribosome). MC is synthesized from G3P and GLU and binds to and protects enzymes. T2prx (peroxiredoxin, used as a proxy for all H₂O₂ degradation enzymes) degrades H₂O₂.

The model includes generation of $\rm H_2O_2$, damage to enzymes by $\rm H_2O_2$, and two $\rm H_2O_2$ -management systems, including protection by MC and degradation by T2prx (which represents all $\rm H_2O_2$ -degrading enzymes) (Fig. 2), and it reproduces the observations (Fig. 3). The pattern at low- $\rm H_2O_2$ levels can simply be attributed to protection by MC. The pattern at high- $\rm H_2O_2$ levels is more complex. In the model, before the $\rm H_2O_2$ addition, the wild-type strain relies on the MC system for $\rm H_2O_2$

management and has the T2prx system down-regulated. When hit with $\rm H_2O_2$, the MC system is overwhelmed. The cells express t2prx, but by this time, the ribosomes are damaged and the cells cannot synthesize T2prx enzymes and do not recover. The mutant, however, has the T2prx system active before $\rm H_2O_2$ addition and rapidly degrades the $\rm H_2O_2$ and recovers. These are the mechanisms underlying the pattern in the model, which is consistent with the observed pattern. The model thus constitutes a

viable mechanistic explanation or hypothesis for the mechanisms responsible for the observed pattern.

In the high- H_2O_2 experiment, the toxigenic strain down-regulated H_2O_2 -degrading enzymes under ambient conditions. This general strategy of protection against H_2O_2 by MC over degradation with enzymes may also be reflected in the gene repertoire of *Microcystis* strains—e.g., katG genes are less frequently found in toxigenic genotypes (10).

 ${\rm H_2O_2}$ readily diffuses across cell membranes, and the model predicts that degradation by the nontoxigenic strain leads to lower extracellular ${\rm H_2O_2}$ levels, which also benefits the toxigenic strain—like the interaction between marine cyanobacteria and heterotrophic bacteria demonstrated previously (17). This interaction mechanism can explain observations where toxigenic strains outcompete nontoxigenic strains in coculture, despite equal or lower growth rate in monoculture (18, 19) (Fig. 1G).

The success of the model in reproducing *Microcystis* biology suggests that it may provide useful insights into ecology at the field scale. To test this, we simulate the water column around the Toledo drinking water intake during the 2014 growing season, when MC was detected in the drinking water (Fig. 4A). We use a simplified approach and simulate a completely mixed box [continuous stirred tank reactor (CSTR)] with dissolved inorganic

nitrogen (DIN) and soluble reactive phosphorus (SRP) input rates estimated from observed in situ DIN, SRP, and phycocyanin (PCN) concentrations and including estimates of photochemical H_2O_2 production (20) (details in section S3). The simulation includes toxigenic and nontoxigenic strains that differ only in their H₂O₂ management strategy-i.e., the toxigenic strain has mcyD and the nontoxigenic has t2prx-so any differences in their behavior can be directly attributed to these mechanisms. The parameters of the Lake Erie strains (same for toxigenic and nontoxigenic) were calibrated within the range of the laboratory strains, except that a lower H2O2 membrane permeability is needed, which may be associated with colony formation in the field.

The succession from toxigenic to nontoxigenic strains in the model is the result of differences in $\rm H_2O_2$ management strategies that have different susceptibilities to N limitation

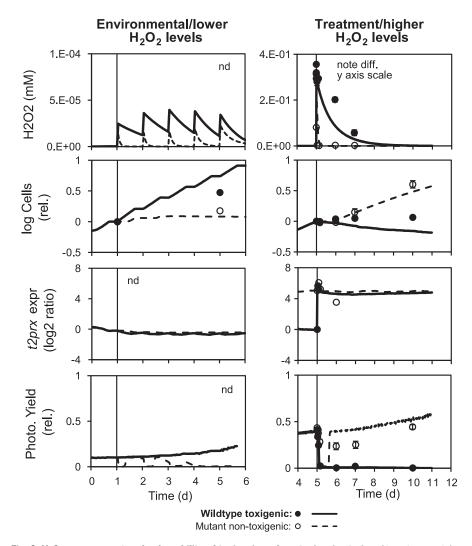
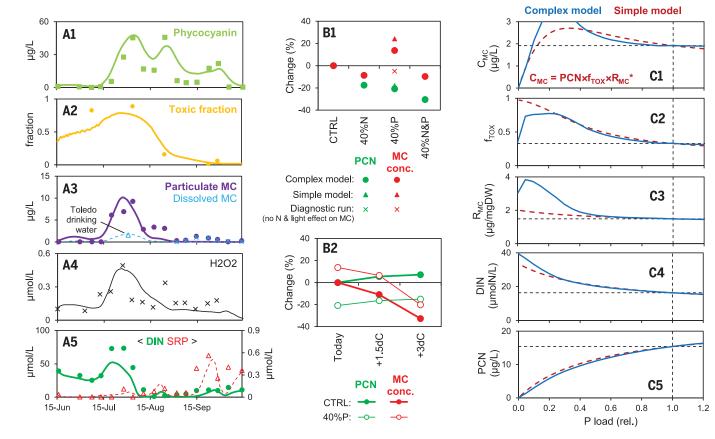


Fig. 3. H_2O_2 management and vulnerability of toxigenic and nontoxigenic strains. At environmental H_2O_2 concentrations (left), protection of enzymes by MC is advantageous. Data are from (7). At very high H_2O_2 concentrations, i.e., treatment levels (right), degradation is advantageous. Symbols are data, and lines are model. Data are from (15).

(fig. S111). In June and July, the DIN concentration is high, and the toxigenic strain can synthesize sufficient MC to protect its enzymes—it incurs less damage and outcompetes the nontoxigenic strain. In August and September, DIN is depleted, curtailing the production of MC by the toxic strain, which increases damage and lowers its growth rate. The *t2prx* system of the nontoxic strain is not affected by the lower DIN, and it outcompetes the toxic strain at that time.


Laboratory experiments show that N limitation results in lower MC levels (Fig. 1B) and that MC helps protect against $\rm H_2O_2$ at ambient concentrations (Fig. 3) (7, 9). Together, these observations (and the model) suggest that toxigenic *Microcystis* is more vulnerable to $\rm H_2O_2$ under N limitation, although that hypothesis has not yet been tested experimentally at environmental $\rm H_2O_2$ levels.

Although our model does not consider all factors expected to affect strain-level ecology and toxin production (10, 21), it is based on mechanisms and reproduces the laboratory and field observations. It therefore represents a step forward in the mechanistic understanding of toxic cyanobacteria ecology and can inform lake management.

We used the model to evaluate load reduction scenarios, including 40% reduction in N. P, and both N and P (Fig. 4B). The largest biomass decrease is predicted for the N and P scenario, but all scenarios produce a decrease and none reach 40%, pointing to N, P, and light limitation. For the P-only reduction scenario, total Microcustis biomass decreases, but the increased N and light availability increase MC synthesis by the toxigenic strain (Fig. 1, B, C, D, and F), which lowers H₂O₂ damage and increases the toxigenic fraction. The toxigenic cells have more MC, and there are more of them. These two factors counteract the decrease in biomass and lead to increased MC concentration. When the effect of N and light on MC production is removed in the model, it predicts that MC concentration will decrease also for the P-only reduction scenario (Fig. 4B, part 1). Simulations where the P load reduction is focused earlier, when P is limiting (Fig. 4A, part 5) (22), are more effective at controlling biomass but will further increase MC concentrations through the same mechanisms as those for the even reduction (fig. S117). This pattern emerges in the relatively complex model, but the causal chain is simple and is predicted using a simple calculation or model that builds on mass balance and previous models and is parameterized directly from laboratory experiments (23, 24) (Fig. 4C and section S4).

In addition to changes in nutrient loads, global warming is expected to affect the lake (I-3, 25). For present loading, the model predicts cyanobacteria biomass increases and

3 of 5

Fig. 4. Lake Erie simulation. Station W12 in 2014. (**A**) BaseCase model (lines) and data (symbols) versus time. From top to bottom, cyanobacteria biomass (PCN), toxigenic fraction, particulate and dissolved MC concentration (methanol-extractable fraction), H_2O_2 concentration, and nutrient concentrations are shown. See section S3 for additional results and discussion. Data are from this study and other sources (section S3). (**B**) Management and temperature scenarios. Shown are reductions in average PCN and observable MC relative to the current loading (CTRL) and temperature. Part 1 (top) is for present

temperature and shows all management scenarios, as well as results from the simple model and a diagnostic run to illustrate the effect of N and light. Part 2 (bottom) is for various temperature scenarios and shows current loading (CTRL) and 40% P-only reduction (40%P). (\mathbf{C}) Response of full complex and a simpler model to reductions in P loading. From top to bottom, volume-based MC concentration (C_{MC}), toxigenic fraction (f_{TOX}), biomass-based MC content (R_{MC}), DIN concentration, and cyanobacteria biomass (PCN) are shown. The asterisk indicates units converted using 0.35 gC/gDW and 89 gC/gPCN, see table S4.

MC concentration decreases with rising temperature (Fig. 4B, part 2, CTRL). These results and observations of lower temperature optima for MC synthesis (Fig. 1A) suggest that toxin concentrations will not go up with the expected increase in biomass and brightens the otherwise bleak outlook for harmful cyanobacteria blooms. The model predicts that the temperature effect superimposes those of nutrient load reductions, and for the 40%P scenario, the net effect is a reduction in MC concentration for the higher temperature increase evaluated (Fig. 4B, part 2, 40%P). However, the decrease in MC concentration for this scenario is the result of the warmer temperature and not the P load reduction-i.e., the load reduction still increases the MC concentration relative to the warmer BaseCase scenario. These results suggest that P-only management is counterproductive for reducing MC concentration under all climate sce-

narios evaluated, and they support a dual N and P management strategy.

Our results suggest that future management efforts limited to P will increase relative availability of N and light, promote toxigenic strains, and increase toxin concentrations. This mechanism may be in part responsible for the presently observed resurgence of toxic cyanobacteria after historical P load reductions to Lake Erie and many other systems (26). Lake health is endangered by climate change and can be threatened by management actions that are well intended but based on an incomplete understanding of *Microcystis* biology and biochemistry. We may presently be witnessing the consequences of both threats

REFERENCES AND NOTES

- 1. H. W. Paerl, J. Huisman, Science 320, 57-58 (2008).
- S. C. Chapra et al., Environ. Sci. Technol. 51, 8933–8943 (2017).

- 3. G. S. Bullerjahn et al., Harmful Algae **54**, 223–238 (2016).
- D. W. Schindler, S. R. Carpenter, S. C. Chapra,
 R. E. Hecky, D. M. Orihel, *Environ. Sci. Technol.* 50, 8923–8929 (2016).
- United States Environmental Protection Agency, "U.S. Action Plan for Lake Erie" (2018); https://www.epa.gov/glwqa/ us-action-plan-lake-erie.
- C. J. Gobler et al., Harmful Algae 54, 87–97 (2016).
- 7. C. Dziallas, H.-P. Grossart, PLOS ONE 6, e25569 (2011).
- R. M. Martin et al., Front. Microbiol. 11, 601864 (2020).
- 9. Y. Zilliges et al., PLOS ONE 6, e17615 (2011).
- G. J. Dick et al., Environ. Microbiol. 23, 7278-7313 (2021).
- C. Wiedner et al., Appl. Environ. Microbiol. 69, 1475–1481 (2003).
- F. L. Hellweger et al., Environ. Microbiol. 18, 2721–2731 (2016).
- 13. V. Grimm et al., Science 310, 987-991 (2005).
- F. L. Hellweger, R. J. Clegg, J. R. Clark, C. M. Plugge, J.-U. Kreft, Nat. Rev. Microbiol. 14, 461–471 (2016).
- J. M. Schuurmans et al., Harmful Algae 78, 47–55 (2018).
- D. N. Macklin et al., Science 369, eaav3751 (2020).

- J. J. Morris, Z. I. Johnson, M. J. Szul, M. Keller, E. R. Zinser, . PLOS ONE 6, e16805 (2011).
- L. Lei, C. Li, L. Peng, B.-P. Han, *Ecotoxicology* 24, 1411–1418 (2015).
- 19. D. Schatz et al., Environ. Microbiol. 7, 798-805 (2005).
- 20. R. M. Cory et al., Front. Mar. Sci. 4, 377 (2017).
- 21. S. W. Wilhelm, G. S. Bullerjahn, R. M. L. McKay, *mBio* **11**, e00529-20 (2020).
- R. P. Stumpf, T. T. Wynne, D. B. Baker, G. L. Fahnenstiel, PLOS ONE 7, e42444 (2012).
- B. M. Long, G. J. Jones, P. T. Orr, Appl. Environ. Microbiol. 67, 278–283 (2001).
- C. Vézie, J. Rapala, J. Vaitomaa, J. Seitsonen, K. Sivonen, *Microb. Ecol.* 43, 443–454 (2002).
- J. Trumpickas, B. J. Shuter, C. K. Minns, J. Great Lakes Res. 35, 454–463 (2009).
- 26. H. W. Paerl et al., Hydrobiologia **847**, 4359–4375 (2020).
- H. Utkilen, N. Gjølme, Appl. Environ. Microbiol. 58, 1321–1325 (1992).

 F. L. Hellweger, fhellweger/Microcystis: version 1, version 1.0, Zenodo (2022); https://doi.org/10.5281/ zenodo 6383659

ACKNOWLEDGMENTS

Funding: This study was supported by National Oceanographic and Atmospheric Administration (NOAA) grant NAI8NOS4780175 (to F.L.H. and S.W.W.). This is NOAA contribution no. 1018. This work was also supported by National Institute of Environmental Health Sciences grant 1P0IES028939-01 (to S.W.W.), National Science Foundation grant OCE-1840715 (to S.W.W.), NOAA grant NAI7NOS4780186 (to G.J.D.), and National Science Foundation grant OCE-1736629 (to G.J.D.), Author contributions: Conceptualization: F.L.H. Data curation: F.E. Formal analysis: F.L.H., R.M.M., D.J.S., and F. E. Funding acquisition: F.L.H., S.W.W., and G.J.D. Investigation: F.L.H., R.M.M., D.J.S., and F.E. Methodology: F.L.H. Project administration: F.L.H. and S.W.W. Resources: S.W.W. Software: F.L.H. Supervision: F.L.H. and G.J.D. Validation: F.L.H., R.M.M., D.J.S., and F.E. Visualization: F.L.H. Writing - original draft: F.L.H. Writing - review and editing: F.L.H., R.M.M., S.W.W., D.J.S., G.J.D.,

and F.E. Competing interests: The authors declare that they have no competing interests. Data and materials availability: The model code is available at Zenodo (28). The metagenomic reads used to calculate the fraction of toxic Microcystis are publicly available under NCBI BioProject no. PRJNA464361. License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abm6791 Supplementary Text Figs. S1 to S131 Tables S1 to S37 References (29–180) MDAR Reproducibility Checklist

Submitted 7 October 2021; accepted 25 March 2022 10.1126/science.abm6791

TECHNICAL COMMENT

ENVIRONMENTAL TOXINS

Comment on "Models predict planned phosphorus load reduction will make Lake Erie more toxic"

Jef Huisman¹*, Elke Dittmann², Jutta Fastner³, J. Merijn Schuurmans¹, J. Thad Scott⁴, Dedmer B. Van de Waal^{1,5}, Petra M. Visser¹, Martin Welker⁶, Ingrid Chorus³

Hellweger et al. (Reports, 27 May 2022, pp. 1001) predict that phosphorus limitation will increase concentrations of cyanobacterial toxins in lakes. However, several molecular, physiological, and ecological mechanisms assumed in their models are poorly supported or contradicted by other studies. We conclude that their take-home message that phosphorus load reduction will make Lake Erie more toxic is seriously flawed.

oxic cyanobacterial blooms cause major water quality problems across the globe. Hence, there is a need for models that can predict cyanotoxin concentrations in surface waters. Hellweger et al. (1) developed an agent-based model that can provide valuable insights in the molecular and physiological mechanisms affecting the toxicity of cyanobacterial blooms. In essence, the proposed mechanisms in Hellweger et al. (1) are: (i) High nitrogen (N) but low phosphorus (P) loads will stimulate the production of the Nrich toxin microcystin (MC). (ii) One of the key functions of MC is protection against oxidative stress. (iii) Therefore, MC-producing strains will be more resistant to natural H2O2 concentrations than non-MC-producing strains, especially under high N but low P conditions. (iv) Thus, reducing P loads without diminishing N loads will select for MC-producing strains, that will make Lake Erie "more toxic".

assumptions and predictions are poorly supported or contradicted by existing literature.

First, contrary to the claim in their title, the model of Hellweger et al. does not make pre-

Hellweger et al. suggest that these mechanisms have contributed to the observed resurgence of toxic cyanobacteria after P load reduction in Lake Erie and many other lakes, and they advocate a dual N and P management strategy. Although we agree with Hellweger et al. that high N concentrations can be an important driver of cyanobacterial growth and cyanotoxin production (2,3), several of their model dictions about toxicity. MC comprises a large class of cyanobacterial toxins, consisting of hundreds of MC congeners that vary widely in toxicity. Their model considers only the total MC concentration, but ignores changes in MC composition and therefore cannot make predictions about the toxicity of blooms. This is not merely a semantic issue, because excess N may shift the MC composition to the more N-rich variant MC-RR (2), which is one of the least toxic MC congeners.

Second, contrary to their Fig. 2, cyanobacteria produce only low amounts of H2O2 by photosynthesis. Cyanobacteria lack the Mehler reaction, which is responsible for most H₂O₂ production during high light stress in photosynthetic eukaryotes. Instead, cyanobacteria use a "Mehler-like" reaction with flavodiiron proteins to transfer their excess photosynthetic electrons to O2, which produces water without H_2O_2 formation (4).

Third, Hellweger et al. assume that the natural H₂O₂ concentrations in Lake Erie (0.1 to 0.5 µmol/L) may cause oxidative stress and induce MC binding to proteins. However, the study (5) cited by Hellweger et al. used a much higher H₂O₂ concentration of 10 µmol/L to induce MC binding to proteins. Dziallas and Grossart (6) reported significant reduction of the cellular chlorophyll-a content at environmentally relevant H_2O_2 concentrations of 0.025 to 0.1 µmol/L, but this result appears to deviate from other studies. Most controlled laboratory studies show that H₂O₂ only starts to affect the photosynthetic yield and growth of Microcystis strains at H₂O₂ concentrations that are one or more orders of magnitude higher [5 to 60 µmol/L, depending on the conditions; (e.g., 7,8)]. This is in agreement with lake treatments that require H_2O_2 concentrations of 60 to 300 μ mol/L to effectively suppress cyanobacterial blooms (8,9). We therefore question whether the natural H₂O₂ concentrations in Lake Erie are high enough to induce MC-binding to proteins and to shift the competitive balance between toxic and nontoxic Microcystis strains.

Fourth, the function of MC in cyanobacterial cells has remained elusive for decades. For example, MC has been implicated in grazing defense, allelopathic interactions, iron scavenging, protection against oxidative stress, carbonnitrogen metabolism, and cell signaling (10). Hellweger et al. adhere to the hypothesis (5) that MC binding protects proteins such as RuBisCO against oxidative stress, which would provide a selective advantage to MC-producing strains when exposed to H₂O₂. Binding of MC to proteins has indeed been unequivocally demonstrated (5). However, whether MC-producing cells are better protected against H2O2 is less clear and contradicted by other experiments (11). Recent work from the research group that originally proposed the "protection against oxidative stress hypothesis" indicates that MC binding to RuBisCO probably serves a very different function. Binding of MC appears to play a key role in the assembly and cellular localization of RuBisCO, which enables rapid acclimation of cells to CO₂-limiting conditions (12).

Fifth, which factors govern the competition between toxic and non-toxic strains? Laboratory selection experiments have shown that the MCproducing wildtype has a strong selective advantage compared to the MC-deletion mutant under CO2-limited conditions, but not under CO₂-replete conditions (13). This reinforces the recent idea (12) that MC binding to RuBisCO probably plays a role in CO2 fixation. Other selection experiments investigated the role of N and P limitation. The results showed that the MC-producing wildtype won under N limitation, while the non-toxic mutant dominated under P-limited conditions (14), which is exactly opposite to the predictions of Hellweger et al.

Sixth, the models of Hellweger et al. consider only toxic and nontoxic Microcystis strains. However, the main aim of nutrient load reduction programs is not to shift the competitive balance between Microcystis strains, but to suppress the entire cyanobacterial bloom and shift the lake to a completely different phytoplankton community. Shifts from bloom-forming cyanobacteria to (nontoxic) eukaryotic phytoplankton are often observed in response to declines in nutrient availability. Models ignoring this important ecological mechanism are therefore unlikely to make reliable predictions of how nutrient load reductions will affect cyanotoxin concentrations in surface waters.

P load reductions have successfully controlled cyanobacterial blooms in a wide variety of lakes (15), but in some lakes achieving sufficiently low P concentrations proves challenging. In these cases, bloom control by dual N and P reductions seems promising and further experience with such dual approaches is desirable. However, there are major issues with several molecular and physiological mechanisms assumed in Hellweger et al. and their models omit common ecological responses to nutrient load reduction

¹Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, Netherlands. ²Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany. ³Department of Drinking Water and Swimming Pool Hygiene, German Environment Agency, Berlin, Germany. ⁴Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, Texas, USA. 5Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands. ⁶Independent Consultant, Berlin. *Corresponding author. Email: j.huisman@uva.nl

such as shifts in phytoplankton species composition. Hence, there is insufficient support for their provocative claim that P load reduction alone will make Lake Erie and other lakes more toxic.

REFERENCES AND NOTES

- 1. F. L. Hellweger et al., Science 376, 1001-1005 (2022).
- 2. D. B. Van de Waal et al., Ecol. Lett. 12, 1326-1335 (2009).
- 3. C. J. Gobler et al., Harmful Algae 54, 87-97 (2016). 4. Y. Helman et al., Curr. Biol. 13, 230–235 (2003).
- 5. Y. Zilliges et al., PLOS ONE 6, e17615 (2011).

- 6. C. Dziallas, H. P. Grossart, PLOS ONE 6, e25569 (2011).
- M. Drábková, W. Admiraal, B. Marsálek, Environ. Sci. Technol. **41**, 309–314 (2007).
- 8. E. F. J. Weenink et al., Environ. Microbiol. 23, 2404–2419 (2021).

 9. H. C. P. Matthijs *et al.*, *Water Res.* **46**, 1460–1472 (2012).

 10. A. Holland, S. Kinnear, *Mar. Drugs* **11**, 2239–2258 (2013).

 11. J. M. Schuurmans *et al.*, *Harmful Algae* **78**, 47–55 (2018).

- 12. T. Barchewitz et al., Environ. Microbiol. 21, 4836-4851 (2019).
- 13. D. B. Van de Waal et al., ISME J. 5, 1438-1450 (2011).
- S. Suominen, V. S. Brauer, A. Rantala-Ylinen, K. Sivonen, T. Hiltunen, Aquat. Ecol. 51, 117–130 (2017).
- 15. J. Fastner et al., Aquat. Ecol. 50, 367-383 (2016).

ACKNOWLEDGMENTS

Author contributions: Conceptualization: all authors; Writing of original draft: J.H., M.W., and I.C.; Review and editing of manuscript: all authors. **Competing interests:** The authors declare that they have no competing interests. License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag. org/about/science-licenses-journal-article-reuse

Submitted 18 July 2022; accepted 12 October 2022 10.1126/science.add9959