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Abstract
Biological communities within lake surface sediments play a vital role in biogeochemical cycling and ecosys-

tem services. Knowledge on abundance-occupancy patterns and assembly processes across large spatial scales
and over multiple environmental gradients is limited, yet essential to aid in protection and restoration. In the
present study, surface sediment samples were collected from 296 lakes across a wide spatial scale and covering
multiple interacting environmental gradients including size, depth, altitude, and trophic state. A suite of physi-
cochemical parameters were used to characterize the environmental conditions and bacterial and eukaryotic
assemblages were determined using 16S and 18S rRNA metabarcoding. The majority (� 55%) of amplicon
sequence variants were only found in a single lake with eukaryotes having a more restricted distribution than
bacteria. Deterministic processes were inferred to be dominant for both bacteria (78%) and eukaryotes (51%),
with variable selection being especially important for bacteria (49%). Variation partitioning indicated that land
use in the catchment, which is strongly related to trophic state, was the most important environmental factor
in explaining the assemblage composition. This nationwide study across broad gradients provides new insights
into the ecology of bacteria and eukaryotes in lake surface sediments and a platform to better understand the
effects of multiple environmental stressors on lake sediment assemblages.

Lakes accumulate nutrients and environmental contami-
nants from the surrounding landscape and atmosphere. This
makes them especially vulnerable to anthropogenic and natu-
ral perturbations and because of this they are often considered
sentinels of environmental change (Adrian et al. 2009).
Humans have used lakes and their catchments as a resource
for millennia, exposing them to multiple stressors including
habitat degradation, pollution, and introducing non-native
species (Dudgeon et al. 2006). These stressors have had pro-
found effects on lake ecosystems leading to global declines in
their health (McCrackin et al. 2017). Understanding how the
biological communities of lakes are affected by environmental
and anthropogenic stressors and other factors is critical to

ensure appropriate protection and enable restoration where
required.

Lakes also provide a unique opportunity to study biogeo-
graphical patterns and their drivers because they are discrete
bodies of water, which are inherently connected to their sur-
rounding terrestrial habitats. However, even within reasonably
short geographic distances they can experience diverse environ-
mental conditions due to differences in parameters such as size,
depth, geomorphology, and land use and geology in their
catchment. The plankton communities of lakes have been
extensively studied (Kraemer et al. 2020; Schallenberg
et al. 2021; Pearman et al. 2022a). Work involving sediments,
has generally focused on paleolimnological studies, involving
taxa that fossilize such as diatoms (Rühland et al. 2003) and
chironomids (Irvine et al. 2012), although molecular
approaches to assess other taxa are increasing (Capo
et al. 2022).

Specific studies on communities in surface sediments have
received far less attention using molecular methods, despite
their importance in many biogeochemical processes
(Forsberg 1989). To date most studies of sediment communi-
ties have focused on one or a few lakes within a relatively
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confined geographic region (Zeng et al. 2019; Jiao et al. 2020;
Pearman et al. 2020).

Macroecological-based studies have shown that most rare
species are narrowly distributed whereas abundant species
tend to be widespread (Gaston et al. 2000). This abundance–
occupancy concept has now been applied to microbial sys-
tems where similar patterns have been observed (Shade
et al. 2018). Research indicates that deviations away from
these trends are the result of environmental variables driving
changes in community structure (Shade et al. 2018), for exam-
ple, when conditions promote phytoplankton blooms (Shade
et al. 2014).

In general, the expectation is that the structure of biologi-
cal assemblages will be determined by a balance of determinis-
tic and stochastic processes (Zhou and Ning 2017; Liu
et al. 2019; Sadeghi et al. 2021). Deterministic processes are
based on the principal that ecological selection acts on fitness
differences among taxa (Vellend 2010). Deterministic pro-
cesses can be split into two classes. If environmental condi-
tions vary spatially and/or temporally, high variation in the
community structure can exist, referred to as variable selection
(Zhou and Ning 2017). In contrast, if environmental condi-
tions are homogeneous little variation in community structure
is expected, this is known as homogeneous selection (Zhou
and Ning 2017). Abiotic factors impacting lakes include
within lake factors (e.g., pH, nutrient concentrations, tempera-
ture; Ruuskanen et al. 2018; Pearman et al. 2020) and effects
derived from the wider catchment such as land use (Kraemer
et al. 2020) and altitude (Li et al. 2017; Pearman et al. 2020).
Biotic interactions (e.g., predation and competition) can also
have deterministic effects on biological communities (Zhou
and Ning 2017). Stochastic processes can become predomi-
nant in systems where taxa are functionally equivalent and
not strongly affected by environmental variables with dis-
persal and ecological drift dominating assembly processes
(Sloan et al. 2006). Stochastic processes can be further split
into dispersal limitation and homogenizing dispersal. Limita-
tions in dispersal coupled with genetic drift can increase com-
munity variation (Stegen et al. 2015). In contrast, high levels
of dispersal result in a more homogenous community and are
referred to as homogenizing dispersal (Zhou and Ning 2017).

Over the last two decades, high-throughput sequencing
technologies have enabled in-depth investigations into the
composition of biological assemblages, facilitating new
insights into their biodiversity, distribution, and structure
(Compson et al. 2020). Most studies on lakes have focused on
the plankton including zooplankton (Duggan 2007), eukary-
otic phytoplankton (Soininen et al. 2011; Logares et al. 2018),
and planktonic bacteria (Kraemer et al. 2020; Li et al. 2020;
Schallenberg et al. 2021). Because planktonic communities are
susceptible to rapid fluctuations in environmental conditions
(e.g., weather events, Ji et al. 2019) and physical processes
such as lake mixing, regular sampling is required to obtain
insights into assemblage composition over extended, that is,

annual, time periods. In contrast, lake surface sediments incor-
porate living organisms who inhabit the sediment as well as
organisms that have sedimented from the water column pro-
viding an integrated record of past conditions within a lake.
Studies on bacterioplankton have shown that deterministic
processes and especially homogeneous selection is prevalent
(Zeng et al. 2019; Jiao et al. 2020) although stochastic pro-
cesses were shown to be important in a large-scale investiga-
tion of bacterioplankton in Canada (Kraemer et al. 2020). The
investigation of assembly processes within surface sediments
has received less attention and only been undertaken on small
scales; for example, Zeng et al. (2019) showed that variable
selection was prevalent for bacteria across 10 Chinese lakes
and Jiao et al. (2020) showed a similar response for 13 shallow
lakes in China. Knowledge on the relative importance of these
processes, not just on bacteria but also the eukaryotic compo-
nent of surface sediments, across a large number of lakes cov-
ering a wide spatial area is lacking and is vital in ensuring
appropriate mitigation actions are taken to protect or restore
these habitats.

To advance knowledge on the distribution patterns of bac-
teria and eukaryotes within surface sediments of lakes and the
processes driving these patterns, we implemented a carefully
designed sampling strategy and sampled surface sediments
from 296 lakes throughout New Zealand spanning 12� of lati-
tude. The selected lakes covered a range of environmental gra-
dients including size, depth, altitude, trophic status, and
catchment land use, in order to establish the contribution of
deterministic and stochastic processes on structuring the bac-
terial and eukaryotic assemblages. We set out to test three
hypotheses: (i) bacteria and eukaryotes would have a positive
abundancy-occupancy pattern but this would be more pro-
nounced among bacteria due to the greater number of
amplicon sequence variants (ASVs) detected; (ii) deterministic
processes would be inferred to be the dominant processes in
structuring bacterial and eukaryotic sediment assemblages
with variable selection more important than homogeneous
selection; and (iii) differing environmental variables would
drive the distribution of the abundant bacteria and eukaryotic
taxa, and this will largely be attributed to different physiologi-
cal requirements between these taxa.

Methods
Study lakes

A total of 296 lakes were sampled between October 2018
and April 2021 (Fig. 1; Supporting Information Table S1).
Lakes were selected to ensure they were representative of the
wide range of gradients observed across all New Zealand’s
3821 lakes (Supporting Information Fig. S1). Lakes ranged in
altitude from sea level (e.g., Lakes Moawhitu and
Kohangapiripiri) to 1839 m (Duncan Stream Tarn) above sea
level, and in area from 1 ha (Lake Kawau and Dukes Tarn) to
29,825 ha (Lake Wakatipu). The depths of the lakes ranged
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from 0.2 m (Sutton Salt Lake) to 444 m (Lake Manapouri;
Supporting Information Table S1). Prior to sampling, the
deepest part of the lake was identified using a side scan sonar
survey (Lowrance) or depth sounder (HawkEye H22PX). Sam-
pling was undertaken at this position except for lakes deeper
than 100 m where sampling was undertaken in shallower bays
(Supporting Information Table S1).

Lake, catchment, and land-use data
Lake depth and Secchi disk depth were assessed in situ.

Catchment descriptors were extracted from the Freshwater
Ecosystems of New Zealand database (Leathwick et al. 2010).
Eight land cover variables were derived from the most recent
satellite imagery available in the Land Cover Database Version
5 (Landcare Research New Zealand Ltd, https://lris.scinfo.
org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-
mainland-new-zealand/): (1) native vegetation, (2) urban,
(3) non-native vegetation, (4) water, (5) forestry, (6) high pro-
duction grassland, (7) low producing grassland, and (8) other.

The specific land use characteristics that make up these eight
broad groups are described in Supporting Information
Table S2.

Sample collection, nutrient, and elemental
characterization of surface sediment

At each site, ponar grabs were used to collect triplicate sur-
face sediment samples. Surface sediment samples (top 5 mm,
ca. 1 g) were taken using sterile spatulas. These were placed in
LifeGuard™ Soil Preservation Solution (3 mL, Qiagen) and
stored frozen (�80�C) for later DNA extraction. The remaining
top 2 cm from the three ponar grabs was collected using spat-
ulas and placed in 500-g containers. This was homogenized,
stored chilled (4�C), and shipped to the laboratory within
48 h for nutrient and elemental characterization.

Samples (1 liter) were collected at the surface for water col-
umn chlorophyll a (Chl a) at the same point in the lake as the
ponar grabs and kept on ice until further processing. Filtration
(up to 600 mL) was undertaken using GF/C (Whatman) filters.

Fig. 1. Location of the 296 lakes sampled, including those on offshore Chatham Island. Lake points are colored by the dominant (> 50%) land use in
the catchment. HPG, high-productivity grassland, LPG, low-productivity grassland. Other includes lakes with a catchment dominated by another land use
category or one where there is no land use > 50%.
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Filters were placed in aluminum foil and stored in the dark
(�20�C). Chl a analysis was undertaken at Watercare Labora-
tories (Auckland, New Zealand) following the APHA 10200 H
method with a reporting limit of 0.0006 mg L�1.

Water chemistry samples (1 L) were collected in the surface
mixed layer, as determined by a RBRmaestro Multi-Channel
Logger (RBR), of the lake using an integrated sampler. Subsam-
ples (40 mL) were taken for total nitrogen (TN), total phos-
phorus (TP), and total organic carbon (TOC) with 40 mL for
each analysis. Dissolved organic carbon (DOC; Supporting
Information Table S1) samples were obtained by filtering
40 mL through a low bleed 0.45-μm filter. The APHA 4500
method was used to measure total nutrients on a flow injec-
tion analyzer (reporting limits in Supporting Information
Table S2). TOC and DOC analyses were undertaken by com-
bustion analysis at 850�C using APHA 5310 B methods
(Supporting Information Table S2).

For sediment nutrient and elemental characterization
porewater was decanted from the sediment after centrifuga-
tion (3000 � g, 40 min, 4�C). The sediment metals iron (Fe),
manganese (Mn), aluminum (Al), calcium (Ca), lead (Pb), cop-
per (Cu), zinc (Zn), cadmium (Cd), phosphorus (P), and sulfur
(S) were analyzed using Inductively Coupled Plasma-Mass
Spectrometry analysis based on the US Environmental Protec-
tion Agency (EPA) method 200.8. Reporting limits are detailed
in Supporting Information Table S2. Catalytic combustion at
(900�C, O2) and separation using a thermal conductivity
detector was used to measure sediment TN and TOC. These
data were only available for 190 samples (Supporting Informa-
tion Table S1).

DNA extraction, polymerase chain reaction, high-
throughput sequencing, and bioinformatics

All molecular analyses (i.e., DNA extraction, polymerase
chain reaction [PCR] set-up, template addition, PCR analysis),
were conducted in separate UV sterilized dedicated laborato-
ries to minimize potential cross-contamination. Laminar flow
cabinets with HEPA filtration were used for PCR set-up and
template addition.

DNA was extracted from surface sediment subsamples
(0.25 g wet weight of 1 g sample of the top 5 mm) using the
DNeasy PowerSoil Kit (Qiagen) following the manufacturer’s
instructions using a QIAcube extraction robot (Qiagen). A neg-
ative extraction control (nuclease-free water) was included
every 23rd sample.

PCR was used to amplify the V3–V4 regions of the bacterial
16S rRNA gene using the 341F and 805R primers (Herlemann
et al. 2007; Klindworth et al. 2013) and the V4 region of the
eukaryote nuclear 18S rRNA gene using the Uni18SF and
Uni18SR primers (Zhan et al. 2013). PCR conditions and
library construction are as described in Pearman et al. (2020).
Samples were sequenced on an Illumina Miseq™ platform at
the Auckland Genomics Facility. Raw sequence reads are
deposited in the NCBI short read archive under the accession

number: PRJNA606991, PRJNA750120, and PRJNA813318.
A small geographically restricted subset of the raw data was
previously analyzed in Pearman et al. (2020), while the bacte-
rial ASV data from the majority of the lakes were used for the
development of a sediment bacterial trophic index (Pearman
et al. 2022b).

Primers were trimmed from the raw reads using cutadapt
with a single mismatch allowed (Martin 2011). ASVs were
inferred using the DADA2 package (Callahan et al. 2016)
within R (R Core Team 2020). A maximum number of
“expected errors” (maxEE) threshold of two (forward reads)
and four (reverse reads) was used with reads truncated to
230 and 228 base pairs (bp) for forward and reverse reads,
respectively. Sequence variants were determined for the for-
ward and reverse reads based on a parametric error matrix con-
structed from the first 108 bp. Pair-end reads, after the removal
of singletons, were merged with a maximum mismatch of
1 bp and a required minimum overlap of 10 bp. Chimeric
sequences were removed using the script
removeBimeraDenovo within the DADA2 package.

Taxonomic classification of the ASVs was undertaken
against the SILVA 138 (Pruesse et al. 2007) and PR2 databases
(Guillou et al. 2013) for the 16S and 18S rRNA gene datasets,
respectively. The RDP classifier (Wang et al. 2007) was used
with a bootstrap of 70 to enable classifications at higher taxo-
nomic levels.

The results were combined into a phyloseq object
(McMurdie and Holmes 2013) and ASVs not assigned at king-
dom level removed. For the 16S rRNA dataset sequences
assigned as eukaryotes, chloroplasts and mitochondria were
removed and bacteria and the phylum Chordata were
removed from the 18S rRNA dataset. To assess potential con-
tamination, negative controls were evaluated. Each sequenc-
ing run was processed separately with the number of reads
observed in negative controls of the sequencing run removed
via subtraction from the corresponding samples. ASVs that
were present in only a single replicate within a lake were con-
sidered as potentially erroneous and removed from that
lake’s data.

For comparisons between lake samples, triplicates were
combined together and subsampling to an even depth was
undertaken for each sample at 12,579 and 18,459 reads for
bacterial and eukaryotic datasets, respectively. Samples which
did not reach this threshold were removed leaving 285 bacte-
rial and 281 eukaryotic samples, of which 270 were shared
between the two datasets. For some analysis a microbial subset
of the eukaryotes was used. This was assembled by selecting
microbial groups based on taxonomy from the rarefied eukary-
otic dataset.

Statistical analysis
Principal component analysis was undertaken on the envi-

ronmental data within the base package of R to give an indica-
tion of the environmental gradients sampled. The results were
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visualized with ggfortify v0.4.14 (Horikoshi et al. 2022) and
ggplot2 v3.3.6 (Wickham 2016).

The taxonomic structure and composition of overall lake
assemblages were assessed by calculating both the number of
ASVs per class as well as the relative proportions and visual-
ized in ggplot2 v3.3.6 (Wickham 2016). Occupancy of ASVs
was calculated using R, based on the number of lakes (tripli-
cate samples were bioinformatically combined) within which
an ASV occurred.

To infer the relative contributions of deterministic and sto-
chastic processes in structuring bacteria, microbial eukaryotic
and eukaryotic, sediment assemblages the ecological modeling
frameworks developed and adapted by Stegen and colleagues
were employed (Stegen et al. 2013, 2015). Initially, the assem-
blage was tested for phylogenetic signal against environmental
variables using mantel correlog in vegan and as there were sig-
nificant signals we proceeded with the analysis. Pairwise phy-
logenetic turnover between assemblages was assessed by
calculating the mean-nearest-taxon-distance (ßMNTD; Fine
and Kembel 2011). This was achieved by constructing a phylo-
genetic tree, using the package msa v1.24.0 (Bodenhofer
et al. 2015) and phangorn v2.8.1 (Schliep 2011), incorporating
“abundant” ASVs (those with at least 10 reads across the
dataset). The phylogenetic distance between each ASV in an
assemblage and its nearest relative in a second assemblage was
then quantified. Under the assumption that ecological selec-
tion was not the primary cause of differences in pairs of
assemblages a null distribution of ßMNTD was calculated
using the R packages picante v1.8.2 (Kembel et al. 2010) and
iCAMP v1.3.4 (repetitions = 999, Ning et al. 2020). By compar-
ing the null model with the observed ßMNTD values and
normalizing by the standard deviation, the beta-nearest-
taxon-index (ßMNTI) was calculated. Deterministic processes
are indicated by deviations away from null distributions. If
environmental conditions are similar, selective pressures will
be consistent and homogenous selection will be dominant,
resulting in low levels of change in the assemblage and
ßMNTI values < �2. Conversely, variable selection is indicated
by a ßMNTI > 2 and is suggestive of among taxa fitness differ-
ences to environmental changes resulting in higher than
expected pairwise differences in assemblages. Pairwise compar-
isons which did not deviate from the null distribution indi-
cated that deterministic processes were weak and thus
stochastic processes, dispersal limitation and homogenizing
dispersal, were evaluated. Stochastic processes were assessed
by calculating the Raup–Crick metric adapted to account for
species relative abundances (RCBray). A null model was calcu-
lated, and the observed values compared against it and stan-
dardized to between �1 and 1 (Stegen et al. 2015). If
deterministic processes are low, then large differences are
inferred to be primarily due to dispersal limitation and subse-
quent compositional drift of assemblages and is indicated by
RCBray > 0.95. High rates of dispersal, called homogenizing dis-
persal, can be inferred to be the primary cause of similarity

between communities if deterministic processes are at a low
level and are denoted by RCBray values < �0.95. Values
between � 0.95 and 0.95 are interpreted as having no domi-
nant assembly process.

A total of 31 environmental variables (catchment character-
istics and physiochemical variables) were obtained
(Supporting Information Table S1). These variables were
assessed for co-linearity with selection of one of the co-linear
variables occurring based on ecological knowledge (e.g., water
column TOC and DOC were co-linear, therefore, DOC was
selected for analysis as this compound is likely to be bioavail-
able to microorganisms; Supporting Information Table S2).
Remaining environmental variables were scaled and centered,
using the R package caret v6.0 (Kuhn 2008). Any missing
values for the environmental variables were imputed via bag-
ging using the caret package. This method fits a bagged tree
model for each predictor (as a function of all others) and
imputes a value for the missing variable based on this model.
A total of 13 environmental variables were retained for analy-
sis (Supporting Information Table S2). As appropriate water
quality data were not available for the majority of lakes, tro-
phic state was determined for each lake based on the surface
sediment bacterial trophic index (SBTI) as detailed in Pearman
et al. (2022b). This index is based on the proportion of bacte-
rial trophic state indicator ASVs in the lake. The indicator
ASVs were determined based on the investigation of the bacte-
rial assemblage in 96 monitored lakes which had a trophic
lake index assigned to them (Pearman et al. 2022b). The SBTI
was calculated by the following equation:

SBTI¼0:017�%microtrophicþ0:026�%oligotrophicþ
0:031�%mesotrophicþ0:040�%eutrophicþ
0:055�%supertrophicþ0:067�%hypertrophic,

where, for example, %microtrophic is the % of indicator taxa
in the sample that are microtrophic indicators. The SBTI value
was then classified into six trophic states: microtrophic (SBTI
1–2), oligotrophic (SBTI 2–3), mesotrophic (SBTI 3–4), eutro-
phic (SBTI 4–5), supertrophic (SBTI 5–6), and hypertrophic
(SBTI > 6). The microtrophic category would fall into the
ultra-oligotrophic of the trophic state index (TSI)
(Carlson 1977), while both supertropic and hypertrophic
would be classified as hypereutrophic in the TSI.

Moran’s eigenvector maps (MEMs) were created and used
as spatial variables. The distance between two lakes were cal-
culated with the R package geosphere v1.5 (Hijmans
et al. 2017), and these distance were used as the input for the
calculation of the MEMs using the function dbmem in the
package adespatial v0.3 (Dray et al. 2016). Environmental vari-
ables were scaled and centered, and MEMs were combined
and important variables were selected based on distance-based
redundancy analysis (dbRDA; McArdle and Anderson 2001)
stepwise selection (forward) using the function ordiR2step in
the package vegan v2.5.7 (Oksanen et al. 2007).

Pearman et al. Deterministic drivers of lake sediment assembly
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Variation partitioning was undertaken using the environ-
mental variables and MEMs that were selected during the step-
wise selection. The environmental variables were split into
three categories (lake/water column variables, sediment vari-
ables, and catchment variables, shown in Supporting Informa-
tion Table S2). The variation partitioning was undertaken
using the Bray–Curtis distance matrices as the response vari-
able using the function varpart in the package vegan (Oksanen
et al. 2007).

Mantel tests (method = Spearman; permutations = 999)
were used to assess whether the bacterial and eukaryotic
assemblages showed similar patterns based on Bray–Curtis
dissimilarities.

To investigate the relationship between bacteria and
eukaryotic assemblages amalgamated at the genera level, a
dbRDA based on Bray–Curtis dissimilarity was undertaken
using the scaled and centered environmental characteristics
and MEMS. Stepwise selection (forward) was undertaken to
select the important variables.

Correlation analysis was undertaken using data collated at
the genera level. Genera were considered abundant if they
had a relative abundance of greater than 1.5% in at least 10%
of lakes. We selected this threshold to allow the key patterns
in abundant genera to be observed, noting that over 200 gen-
era were present in over 10% of lakes. Correlations among
genera were considered significant if the adjusted p-value was
less than 0.05. Correlations between abundant genera and
environmental variables were calculated using rcorr in Hmisc
v4.6-0 (Harrell and Dupont 2021) package using Spearman’s
rank using the raw untransformed environmental data. Lakes
with missing data for a particular environmental variable were
not considered. Correlations were considered significant if the
adjusted p values (method = Benjamini Hochberg) were less
than 0.05.

Results
Environmental parameters

The environmental data showed a distinct split in the char-
acteristics of the lakes among islands. The South Island has
predominantly higher altitude lakes that were of glacial origin
with native vegetation in their catchments and a higher
Secchi disk depth. In contrast the lakes of the North Island
generally have a higher nutrient and organic carbon content
with higher amounts of high-productivity grassland in their
catchment (Fig. 2).

General diversity patterns
After rarefaction, there were 73,910 bacterial and 10,737

eukaryotic ASVs. On average, there were 1090 (range 263–
2438) bacterial and 144 (15–398) eukaryote ASVs per lake.

Gammaproteobacteria was the dominant bacterial class
accounting for 17.1% of ASVs and 21.8% of reads followed by
Bacteroidia (13.6% ASVs and 13.2% reads; Fig. 3).

Cyanobacteria while only being 25th in rank in terms of num-
ber of ASVs was the 5th highest class in terms of proportion of
reads accounting for 3.7%. Phototrophs dominated the
eukaryote assemblage and were predominant in terms of both
proportion of ASVs and reads with Dinophyceae (19.2% and
29.7%) and Chlorophyceae (10.6% and 6.7%) most abundant
(Fig. 3). Clitellata and Ostracoda had relatively low propor-
tions of ASVs (1.1% and 0.6%, respectively) but accounted for
a substantial component of the assemblage in terms of propor-
tion of reads (8.0% and 6.5%).

Occupancy
For both bacteria and eukaryotes, the majority of ASVs

(bacteria: 39,967 [54%] and eukaryotes: 5866 [55%]) were
found in a single lake. Only 41 (0.06%) bacterial ASVs and 2
(0.02%) eukaryotic ASVs were present in greater than 50% of
lakes. The highest lake occupancy for an ASV (i.e., the ASV
was found in this percentage of lakes) was 84% for bacteria,
belonging to the genus Sva0081 (family Desulfosarcinaceae)
and 56% for eukaryotes, belonging to the class Cryptomycota.
In general, the mean abundance of ASVs was higher for ASVs
with a greater occupancy for both the bacterial and eukaryotic
assemblages (Fig. 4).

Deterministic verses stochastic processes
Deterministic processes (variable and homogeneous selec-

tion) were inferred to be most prevalent for both bacteria and
eukaryotes accounting for 78% and 50% of lake pairwise com-
parisons, respectively (Table 1). For bacteria variable selection
dominated (49%), while for eukaryotes variable selection
(25%) and homogeneous selection (25%) had a similar contri-
bution to assembly overall. When only analyzing the micro-
bial eukaryotes a slightly different pattern was observed to the
eukaryotes overall, with a higher inferred contribution from
homogeneous selection than variable selection (Table 1).
Eighty-five percent of the lake pairwise comparisons that were
inferred to be dominated by variable selection for the bacterial
assemblage were between lakes with different trophic state.
For those dominated by homogeneous selection 30% of the
lakes had a similar trophic state. A similar pattern was
observed for the eukaryotes with 85.7% of the variable selec-
tion pairwise comparisons having a different trophic state and
73.5% for those dominated by homogeneous selection. Sto-
chastic processes were only inferred as the dominant assembly
process in less than 10% of lake pairwise comparisons for bac-
teria and eukaryotes. For the eukaryotic assemblages, a high
proportion (40%) of the pairwise comparisons had no domi-
nant process explaining assembly. A similar pattern was also
observed for the microbial eukaryote component.

Variation partitioning of the bacterial assemblage showed
that while the spatial component individually accounted for
3.2% of the variation, the combined environmental compo-
nents (when not shared with the spatial component)
accounted for 5.3%, with the catchment land use
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characteristics accounting for the highest proportion (2.1%) of
the variation explained by the environmental data. Most of
the variation (87.7%) could not be attributed to the

investigated variables. For the eukaryotic assemblage, a similar
pattern was evident with the majority of the variation (89.4%)
not attributed. Catchment land use (2.6%) and spatial factors

Fig. 3. Percentage of ASVs and reads per taxonomic class for; (A) bacteria and (B) eukaryotes. The order of taxa along the x-axis is based on the per-
centage of ASVs attributed to each class. Only the taxa that were ranked in the top 10 for percentage of ASVs or abundance are depicted.

Fig. 2. Principal component analysis (PCA) of the environmental data. Points are colored by the geomorphic class and the shape of the point indicates
which island the lake is found on. Alt, altitude; Area, lake area; Dep, maximum lake depth; For, forestry in the catchment; HPG, high-productivity grass-
land in catchment; LPG, low-productivity grassland in catchment; Nat, native vegetation in catchment; S.D., Secchi disk depth; W.Chla, water column
Chl a; W.DOC, water column dissolved organic carbon.
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(2.2%) accounted for similar amounts of variation individu-
ally. Overall environmental factors (without spatial impacts)
contributed 5.1% to explaining the variation (Fig. 5).

Mantel tests indicated that there was a significant positive
relationship between the bacterial and eukaryotic assemblages
(Mantel r = 0.5417; p < 0.001) based on Bray–Curtis
dissimilarities.

Environmental drivers
dbRDA at the genus level showed that measured variables

only explained a small percentage of the variation for both
bacteria (14.5% first two axes; Fig. 6A,B) and eukaryotes (9.5%
first two axes; Fig. 6C,D). Overall, the dbRDA was significant
for both bacteria (F = 4.36; p < 0.001) and eukaryotes
(F = 3.32; p < 0.001) with all terms for bacteria also significant.
For the eukaryotes all terms except for the spatial terms
MEM35 (p = 0.055) and MEM16 (p = 0.069).

To assess the environmental drivers for specific abundant
genera, Spearman’s Rank correlation analysis was undertaken.
Nitrospira was associated with lakes of lower trophic state (bet-
ter water quality) and negatively correlated to TN, water col-
umn Chl a and DOC as well as latitude and the proportion of
high-productivity grassland in the catchment (Figs. 6A,B, 7A).

Fig. 4. Abundance-occupancy relationships for (A) bacteria and (B) eukaryotes. Inserts in the figures show the percentage of ASVs observed in the pro-
portion of lakes surveyed.

Table 1. The proportion of lake pairwise comparisons attributed to each assembly process contributing to the composition of bacte-
rial, eukaryotic and microbial eukaryotes assemblages. Assembly processes are based on those of Stegen et al. (2013, 2015). Only ASVs
with greater than or equal to 10 reads were used for the analysis.

Deterministic Stochastic

No dominant
process (%)

Variable
selection (%)

Homogenous
selection (%)

Dispersal
limitation (%)

Homogenizing
dispersal (%)

Bacteria 49 29 6 2 14

Eukaryotes 25 25 9 1 40

Microbial

eukaryotes

15 37 7 1 41

Fig. 5. The contribution of different factors to explaining the variation in
the biological assemblages. Microbes refers to eukaryotic microbes.
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In contrast Dechloromonas, Desulfatiglans, Ignvibacterium, and
Sva0081 were more prevalent in lakes with higher trophic
states (reduced water quality) associated with higher concen-
trations of DOC and Chl a in the water column, increased sed-
iment TN and TP, and greater proportions of modified
catchments (high-productivity grassland, low-productivity
grassland, and forestry; Figs. 6A,B, 7A; Supporting Information
Table S3). The genus Cyanobium PCC-6307 was positively asso-
ciated with sediment TN and low-productivity grassland in
the catchment and negatively correlated to lake depth, area,
and latitude (Figs. 6A,B, 7A; Supporting Information Table S3).

For eukaryotes, the relative abundance of the macrophyte
genus Isoetes was positively correlated with Secchi disk depth,
lake area and depth, the proportion of native vegetation and
low-productivity grassland in the catchment and altitude.

Isoetes was negatively correlated with latitude as well as TN
and TS in sediment, water column Chl a and DOC, and high-
productivity grassland in the catchment (Figs. 6C,D, 7B; Sup-
orting Information Table S4). Chlorophyta genera Scenedesmus
and Desmodesmus were both negatively correlated with Secchi
disk depth, maximum lake depth, lake area, and native vegeta-
tion in the catchment and positively correlated to sediment
TN and water column DOC and Chl a (Figs. 6C,D, 7B;
Supporting Information Table S4). Dinoflagellata genera
showed differing correlation patterns. Tovellia and
Asulcocephalium were more abundant in lakes of a higher tro-
phic state with higher nutrients and modified catchments
(Fig. 5B). In contrast, Gymnodinium was positively correlated
with native vegetation in the catchment and negatively corre-
lated to TN and water column DOC. The two abundant

Fig. 6. dbRDA based on Bray–Curtis dissimilarity matrix on the sediment assemblage at the genus level showing environmental, spatial and abundant
taxa relationships for bacteria (A–C), and eukaryotes (D–F). Points are colored by predicted trophic state calculated based on the bacteria assemblage
based on Pearman et al. (2022b). Alt, altitude; Area, lake area; Dep, maximum lake depth; HPG, high-productivity grassland in catchment; Lat, latitude;
LPG, low-productivity grassland in catchment; Nat, native vegetation in catchment; S.D., Secchi disk depth; W.Chla, water column Chl a, W.DOC, water
column dissolved organic carbon. Only significant environmental variables shown. The spatial vectors are represented by Moran eigenvector maps.
A total of 15 spatial variables were selected by forward selection during the dbRDA analysis with the spatial autocorrelation depicted geographically in
Supporting Information Fig. S2. ADurb, ADurb.Bin063-1; Apha, Aphamonas; Anae, Anaeromyxobacter; Asul, Asulcocephalium; Cera, Ceratium; Chae,
Chaetonotus; Cren, Crenothrix; Cyano, Cyanobium PCC-6307; Dech, Dechloromonas; Desm, Desmodesmus; Desul, Desulfatiglans; Eumo, Eumonhystera;
Gymn, Gymnodinium; Igna, Ignavibacterium; Isoe, Isoetes; Monh, Monhystera; Nitr, Nitrospira; Peri, Peridinium; Scen, Scenedesmus; Synt, Syntrophus; Tove,
Tovellia; Tubi, Tubificoides.
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nematode genera showed contrasting patterns. Monhystera was
positively associated with latitude and high-productivity grass-
land in the catchment as well as water column DOC and Chl
a with Eumonhystera showing the opposite pattern (Figs. 6C,D,
7B; Supporting Information Table S4).

Discussion
This study investigated bacterial and eukaryotic assem-

blages in lake surface sediment from 296 lakes across 12� of
latitude and a wide range of environmental gradients from
high altitude glacial lakes in the South Island which are sur-
rounded by a native catchment to nutrient rich lowland dune
and swamp lakes in the North Island. To our knowledge, this
is the largest investigation of bacterial and eukaryotic assem-
blages in lake surface sediments to date. The scale of the study
and diversity of lakes included enabled us to investigate pro-
cesses involved in assembling sediment assemblages and envi-
ronmental factors driving taxa abundance across multiple
interacting environmental gradients.

Overall diversity and occupancy
The finding that even across a large spatial scale Prote-

obacteria, especially Gammaproteobacteria, were the dominant
bacteria within lake sediments both in terms of the number of
ASVs and relative proportion of reads indicates this taxon plays
an important role in lake sediment ecology. It has been observed
previously to be major contributor for a geographically restricted
subset of these data (Pearman et al. 2020) and is also consistent
with studies on individual or a few lakes in other countries
(Huang et al. 2017; Zhang et al. 2019, 2020). Gammaprote-
obacteria are a diverse phylum that play a vital role in degrada-
tion and metabolism in sediments (Huang et al. 2017).

Among eukaryotes, nationwide patterns were similar to
those previously observed in the Southern lakes of
New Zealand (Pearman et al. 2020) with Dinophyceae and
Chlorophyceae high in ASVs, and the classes Clitellata and
Ostracoda being ASV poor but accounting for a higher propor-
tion of reads. Dinophyceae have been shown to be the sub-
stantial component in terms of reads in Lake Baikal
(Yi et al. 2017). Likewise, Dinophyceae and Chlorophyceae
comprised a sizeable proportion of the phytoplankton

Fig. 7. Spearman’s rank correlations for abundant (relative abundance greater than 1.5% in at least 10% of lakes) genera against environmental vari-
ables. Non-significant correlations (NS) are based on a p-value of ≥ 0.05. Alt, lake altitude; Area, lake area; Dep, maximum lake depth; HPG, high-
productivity grassland in catchment; Lat, latitude; LPG, low-productivity grassland in catchment; Nat, native vegetation in catchment; S.D., Secchi disk
depth; W.Chla, water column Chl a; W.DOC, water column dissolved organic carbon.
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community in Qinghai–Tibetan lakes (Liu et al. 2016).
Dinophyceae and Chlorophyceae along with the prokaryotic
Cyanobacteria are likely to play a substantial role in the pri-
mary production within these lakes. The presence of these
phototrophs in the DNA of the sediment could be due to
either them growing on the sediment substrate, being present
in the form of resting stages or having settled out of the water
column. Further experiments are required to investigate the
origin of the phototroph DNA and these should also include
exploring the impact of lake depth on the rate at which plank-
tonic DNA settles in the sediment.

Positive abundance–occupancy relationships have been
noted for a wide range of taxa from bacteria to vertebrates
(Shade et al. 2018). The results presented here suggest that
both the bacterial and eukaryotic assemblages in the surface
sediments of lakes on a national scale follow the same pattern,
a trend also observed for the bacterioplankton in a subset of
these lakes (Pearman et al. 2022a). The majority of the taxa
found in this study where present only in one lake and had
very low relative abundances. The restricted distribution of
rare organisms has been shown in a range of taxa, but the
advent of molecular methods has highlighted the high pro-
portion of rare microbes (Pedr�os-Ali�o 2012). As microbes are
easily dispersed a proportion of the rare microbes could have
originated in surrounding environments (e.g., terrestrial habi-
tats) and been transported into the lake where they can no
longer propagate (Pedr�os-Ali�o 2012). Abundance–occupancy
theory suggests that taxa that have a wide niche breadth can
tolerate a wider range of environmental conditions and thus
have a higher occupancy rate and abundance (Izabel-Shen
et al. 2021). The bacterial ASV found in the most lakes
belonged to the genus Sva0081, a sulfate reducing bacteria
which has been shown previously to play important roles in
the sediments of lakes dominated by cyanobacteria (Fan
et al. 2018). However, its presence even in lakes with high
water quality and without cyanobacteria suggests that it could
contribute substantially to sulfur cycling within lake
sediments.

Among eukaryotes an ASV belonging to the class Crypto-
mycota was present in the most lakes. These fungi are para-
sites of a variety of eukaryotic organisms (Gleason et al. 2012)
and have previously been found in lake sediments (Simon
et al. 2016) and may be involved in transferring energy from
primary producers to tertiary consumers (Gleason et al. 2012).
The eukaryotes exhibited a weaker abundance–occupancy rela-
tionship with many ASVs having a restricted distribution and
a relative high abundance. Several of these ASVs belonged to
the phylum Dinoflagellata potentially providing an example
of conditional rarity where taxa are rare until environmental
conditions are suitable and a rapid increase in abundance is
observed (Shade et al. 2014). Some of the ASVs that were
abundant but restricted in distribution belonged to larger
mobile organisms such those in the class Clitellata. Mac-
roorganisms tend to have a lower density in sediments and

thus a patchier distribution in the sediment and 0.25 g sedi-
ment samples are not suitable for the investigation of these
organisms (Pawlowski et al. 2021). However, when collected
in the sample due to their size they will likely account for
high read counts which could led to the deviation in the
abundance–occupancy relationships. Further studies using dif-
ferent sample volumes and analysis methods are required to
explore drivers of assemblage composition for larger mobile
eukaryotes in lakes.

DNA in the sediment can originate from both organisms
that lived in the water column and have settled to the bottom
or from those who inhabit the sediment. Due to limitations in
the resolution of the taxonomic classifications, as well as a
lack of knowledge of niche preferences for taxa, especially
those attributed to environmental clades, this study did not
attempt to differentiate between these groups of organisms.
The incorporation of DNA from dead organisms may have
slightly impacted the assessment of sediment assemblages
although it is representative of the assemblage in and around
the lake. Future studies could undertake metabarcoding on the
RNA in the sediment as this is likely to be more reflective of
the active assemblage.

The role of deterministic verses stochastic processes in
driving assembly

In both bacterial and eukaryotic assemblages as well as the
microbial subset of eukaryotes, deterministic processes were
inferred to contribute more to assembly than stochastic pro-
cesses. The dominance of deterministic over stochastic pro-
cesses has been observed previously in lake sediments (Zeng
et al. 2019) but contrasts with large scale planktonic bacterial
survey in Canada (Kraemer et al. 2020). In the present study,
variable selection was inferred to be the main process
governing the assembly of the bacterial assemblage and an
important contributor for the eukaryotes alongside homoge-
neous selection. Given the wide range of environmental gradi-
ents (e.g., altitude, lake depth, lake size, trophic state,
catchment land use) included in this study, we anticipated
that selective processes would contribute substantially to
structuring the sediment assemblages. Variation partitioning
indicated that land use in the catchment, which is strongly
related to trophic state, was the most important environmen-
tal factor in explaining the assemblage composition, and a
strong gradient between lakes in catchments with high pro-
ductive grassland and those with native catchments was noted
in the dbRDA for both bacteria and eukaryotes. This is in
agreement with Kraemer et al. (2020) who have shown a per-
vasive signal of land use on bacterioplankton communities.
Investigation of the assembly processes showed that for vari-
able selection, 85% of the lake pairwise comparisons for both
bacteria and eukaryotes were between trophic states indicating
that nutrient concentrations and algal concentrations were
exerting sufficient environmental pressure on taxa to drive
selective adaptation. This agrees with Zeng et al. (2019) who
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showed that beta diversity increased with greater differences
in trophic state across 10 Chinese freshwater lakes in Nanjing,
China. Such variable selection pressures likely underpin the
success of using microbial indicator species for predicting tro-
phic state (Pearman et al. 2022b).

Homogeneous selection was inferred to be the dominant
assembly process in approximately a quarter of the pairwise
comparisons for both the bacteria and the eukaryotes and
� 37% for the microbial component of the eukaryotes. Homo-
geneous selection has previously been shown to be less impor-
tant than variable selection for bacteria in lake sediments
compared to those within the water column and is likely due
to the more diverse habitat niches being present in the sedi-
ment (Jiao et al. 2020, 2021). The higher levels of homoge-
neous selection compared to variable selection for the
microbial eukaryotes is in contrast to the bacteria and larger
eukaryotes. Dinoflagellates were a major component of the
microbial eukaryotes. These DNA sequences may have origi-
nated from the water column before settling into the sediment
which could explain the higher values of homogeneous selec-
tion, which would be in agreement with the results of Jiao
et al. (2020, 2021). Further work, which distinguishes living
and dead organisms, is required to better understand these
assembly patterns.

Stochastic processes were inferred to be less important com-
pared to deterministic ones for both bacteria and eukaryotes.
Dispersal limitation was slightly higher for eukaryotes than
bacteria and agreed with the distribution patterns observed
which were more restricted for eukaryotic ASVs. With no
hydrological connection between the vast majority of lakes in
this study (� 5% had a connection to another lake) dispersal
vectors are likely to be limited. Waterbirds have been shown
to move zooplankton and dinoflagellates between lakes
(Figuerola et al. 2005; Tesson et al. 2018) and could be a possi-
ble vector for long distance dispersal of both bacteria and
eukaryotes between lakes. While modeling has shown aerial
dispersal is viable for bacteria, long distance dispersal of organ-
isms greater than 20 μm is unlikely (Wilkinson et al. 2012). It
has been shown in the plankton that larger organisms such as
zooplankton have higher dispersal limitations compared to
phytoplankton and bacteria (Soininen et al. 2011). Similar
size-related dispersal patterns may occur in the sediment
explaining the higher levels of dispersal limitations of eukary-
otes compared to bacteria. This is especially true as dispersal
limitation of the microbial fraction of the eukaryotes is lower
than that of eukaryotes overall suggesting the possible pres-
ence of size limitations on dispersal.

The contribution of homogenizing dispersal to the assem-
bly of the surface sediment bacterial and eukaryotic assem-
blages was inferred to be low. Lakes can be considered aquatic
islands surrounded by inhospitable terrestrial habitats; there-
fore, dispersal rates would not be expected to be sufficient to
lead to homogenizing dispersal especially when lakes were not
positioned close to one another. Zeng et al. (2019) showed

that homogenizing dispersal did not contribute substantially
to bacterial assemblages in surface sediments of 10 Chinese
freshwater lakes across a trophic gradient. The authors also
demonstrated that bacterial assemblages in the sediment were
less likely to be predominantly assembled by homogenizing
dispersal than planktonic assemblages indicating lower dis-
persal capabilities of sediment assemblages.

Environmental drivers of assemblage composition
Overall dbRDA analysis indicated that the measured envi-

ronmental variables only explained a relatively small percent-
age of the variation in bacterial and eukaryotic assemblages.
This result was surprising given the importance of determinis-
tic processes in assembling both the bacterial and eukaryotic
assemblages. There could be various reasons for this. First,
dbRDA is a linear method and alternative approaches may
identify nonlinear effects that are poorly identified using
dbRDA. Second, environmental variables (e.g., anoxia, sedi-
ment temperature, pH, dissolved oxygen), not measured in
this study can affect microbial assemblages as well as geologi-
cal factors such as origin and age of the lake. Parameters such
as these may explain for a portion of the remaining variation.
Another explanation could be that biological interactions
(e.g., grazing, commensalism, mutualism, and parasitism)
have been shown to impact assemblage structure (Zhou and
Ning 2017). While microbial interactions have been shown to
exist, they are difficult to document, and little is known about
how they impact assemblage composition (Nemergut
et al. 2013).

Species within a genus can have substantially different
responses to environmental variables, however, given the high
number of ASV and to enable broad relationships to be identi-
fied we used correlations between the dominant genera and
predictor variables in this study. Four genera of bacteria
(Dechloromonas, Sva0081, Desulfatiglans and Ignavibacterium)
were strongly associated with increased proportions of high-
productivity grassland in the catchment as well as increased
nutrients and DOC within the lake. Dechloromonas is an anaer-
obic nitrate reducer which has been shown to be an important
constituent of wastewater treatment plants and contributor to
the removal of nitrogen and phosphorus from these systems
(Zhang et al. 2021). Desulfatiglans are sulfate reducing organ-
isms that have been shown to be important in the sulfur cycle
of sediments in aquatic systems (Jochum et al. 2018). They
have also been shown to be positively correlated with TN in
lakes sediment (Pan et al. 2020) in agreement with the results
presented here.

Scendesmus and Desmodesmus are common green algae that
often constitute a large proportion of algal biomass in fresh-
water systems and are often associated with nutrient rich con-
ditions (An et al. 1999). This concurs with the distribution of
these genera in the lakes of this study where they were present
in higher abundance in higher trophic state lakes and had
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positive correlations with TN in the sediment as well as water
column dissolved oxygen and Chl a concentration.

Nematodes are important components of the meiofauna
and perform important roles in benthic foodwebs of lakes
(Ristau and Traunspurger 2011). The two dominant genera
found in this study Monhystera and Eumonhystera, are both
bacterial feeders (Ristau and Traunspurger 2011), but showed
contrasting patterns in respect to environmental drivers.
Monhystera was associated with more nutrient rich lakes with
Eumonhystera being more abundant in low trophic states. This
concurs with a study of Swedish lakes where species in the
genus Monhystera were indicative of eutrophic lakes while the
species Eumonhystera longicaudatula was more common in oli-
gotrophic lakes (Ristau and Traunspurger 2011).

Conclusions
Large scale studies offer an unprecedented opportunity to

enhance knowledge on ecological processes. Here we sampled
surface sediments from 296 lakes which were representative of
lakes found throughout New Zealand. These lakes crossed a
variety of environmental gradients and provided an opportu-
nity to investigate the processes structuring biological assem-
blages within lake surface sediments. We showed that bacteria
and eukaryotes had a restricted distribution with the majority
of ASVs present in one, or a few lakes. Our analysis, based on
the Stegen framework, also indicated that deterministic pro-
cesses, driven by environmental factors, contributed more
than stochastic processes to structuring bacterial and eukary-
otic assemblages. Variation partitioning indicated that land
use in the catchment contributed was the most substantial
individual component to explaining the composition of the
sediment community. To our knowledge, this is the largest
study to use the Stegen framework to investigate assembly
processes on surface sediment assemblages in lakes. With
increasing anthropogenic impact on lake systems, increased
knowledge on the processes responsible for the structuring
these assemblages are vital to assist efforts aimed at mitigating
the impacts of humans and to allow lakes to recover from
anthropogenic stressors.

Data availability statement
Raw sequence reads are available in the NCBI SRA archive

under the accession numbers: PRJNA606991, PRJNA750120,
and PRJNA813318.
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Hochreiter. 2015. msa: An R package for multiple sequence
alignment. Bioinformatics 31: 3997–3999. doi:10.1093/
bioinformatics/btv494

Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A.
Johnson, and S. P. Holmes. 2016. DADA2: High-resolution
sample inference from Illumina amplicon data. Nat.
Methods 13: 581–583.

Capo, E., M.-E. Monchamp, M. J. L. Coolen, I. Domaizon, L.
Armbrecht, and S. Bertilsson. 2022. Environmental pal-
eomicrobiology: Using DNA preserved in aquatic sediments
to its full potential. Environ. Microbiol. 24: 2201–2209.
doi:10.1111/1462-2920.15913

Carlson, R. E. 1977. A trophic state index for lakes. Limnol.
Oceanogr. 22: 361–369. doi:10.4319/lo.1977.22.2.0361

Compson, Z. G., B. McClenaghan, G. A. C. Singer, N. A. Fahner,
and M. Hajibabaei. 2020. Front. Ecol. Evol.: 8:581835.

Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, P.
Legendre, and H. H. Wagner. 2016. Adespatial: Multivariate
multiscale spatial analysis. R package version 00-3
Httpscran R-Proj. Orgpackage Adespatial.

Dudgeon, D., and others. 2006. Freshwater biodiversity:
Importance, threats, status and conservation challenges.
Biol. Rev. 81: 163–182. doi:10.1017/S1464793105006950

Duggan, I. C. 2007. An assessment of the water quality of
ten Waikato lakes based on zooplankton community
composition. CBER Contract Report 60. University of
Waikato.

Fan, X., S. Ding, M. Gong, M. Chen, S. Gao, Z. Jin, and
D. C. W. Tsang. 2018. Different influences of bacterial com-
munities on Fe (III) reduction and phosphorus availability
in sediments of the cyanobacteria- and macrophyte-
dominated zones. Front. Microbiol. 9:2636.

Figuerola, J., A. J. Green, and T. C. Michot. 2005. Invertebrate
eggs can fly: Evidence of waterfowl-mediated gene flow in
aquatic invertebrates. Am. Nat. 165: 274–280. doi:10.1086/
427092

Fine, P. V., and S. W. Kembel. 2011. Phylogenetic community
structure and phylogenetic turnover across space and
edaphic gradients in western Amazonian tree communities.
Ecography 34: 552–565.

Forsberg, C. 1989. Importance of sediments in understanding
nutrient cyclings in lakes. Hydrobiologia 176: 263–277.
doi:10.1007/BF00026561

Gaston, K. J., T. M. Blackburn, J. J. D. Greenwood, R. D.
Gregory, R. M. Quinn, and J. H. Lawton. 2000. Abundance–
occupancy relationships. J. Appl. Ecol. 37: 39–59. doi:10.
1046/j.1365-2664.2000.00485.x

Gleason, F. H., L. T. Carney, O. Lilje, and S. L. Glockling.
2012. Ecological potentials of species of Rozella
(Cryptomycota). Fungal Ecol. 5: 651–656. doi:10.1016/j.
funeco.2012.05.003

Pearman et al. Deterministic drivers of lake sediment assembly

13

 19395590, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12247 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.4319/lo.2009.54.6_part_2.2283
https://doi.org/10.4319/lo.2009.54.6_part_2.2283
https://doi.org/10.1111/j.1438-8677.1999.tb00724.x
https://doi.org/10.1111/j.1438-8677.1999.tb00724.x
https://doi.org/10.1093/bioinformatics/btv494
https://doi.org/10.1093/bioinformatics/btv494
https://doi.org/10.1111/1462-2920.15913
https://doi.org/10.4319/lo.1977.22.2.0361
https://doi.org/10.1017/S1464793105006950
https://doi.org/10.1086/427092
https://doi.org/10.1086/427092
https://doi.org/10.1007/BF00026561
https://doi.org/10.1046/j.1365-2664.2000.00485.x
https://doi.org/10.1046/j.1365-2664.2000.00485.x
https://doi.org/10.1016/j.funeco.2012.05.003
https://doi.org/10.1016/j.funeco.2012.05.003


Guillou, L., and others. 2013. The protist ribosomal reference
database (PR2): A catalog of unicellular eukaryote small
sub-unit rRNA sequences with curated taxonomy. Nucleic
Acids Res. 41: D597–D604. doi:10.1093/nar/gks1160

Harrell Jr, F. E., and C. Dupont. 2021. Hmisc: Harrell miscella-
neous. https://cran.r-project.org/web/packages/Hmisc/
index.html

Herlemann, D. P., O. Geissinger, and A. Brune. 2007. The ter-
mite group I phylum is highly diverse and widespread in
the environment. Appl. Environ. Microbiol. 73: 6682–
6685. doi:10.1128/AEM.00712-07

Hijmans, R. J., E. Williams, C. Vennes, and M. R. J. Hijmans.
2017. Package “geosphere”. https://cran.r-project.org/web/
packages/geosphere/index.html

Horikoshi, M., and others. 2022. ggfortify: Data visualization
tools for statistical analysis results. https://cran.r-project.
org/web/packages/ggfortify/index.html

Huang, W., X. Chen, X. Jiang, and B. Zheng. 2017. Characteri-
zation of sediment bacterial communities in plain lakes
with different trophic statuses. Microbiol. Open 6: e00503.
doi:10.1002/mbo3.503

Irvine, F., L. C. Cwynar, J. C. Vermaire, and A. B. H. Rees.
2012. Midge-inferred temperature reconstructions and veg-
etation change over the last �15,000 years from Trout Lake,
northern Yukon Territory, eastern Beringia. J. Paleolimnol.
48: 133–146. doi:10.1007/s10933-012-9612-7

Izabel-Shen, D., A.-L. Höger, and K. Jürgens. 2021. Abun-
dance-occupancy relationships along taxonomic ranks
reveal a consistency of niche differentiation in marine
bacterioplankton with distinct lifestyles. Front. Microbiol.
12:690712.

Ji, B., J. Liang, Y. Ma, L. Zhu, and Y. Liu. 2019. Bacterial com-
munity and eutrophic index analysis of the East Lake. Envi-
ron. Pollut. 252: 682–688. doi:10.1016/j.envpol.2019.05.138

Jiao, C., D. Zhao, J. Zeng, L. Guo, and Z. Yu. 2020. Dis-
entangling the seasonal co-occurrence patterns and ecologi-
cal stochasticity of planktonic and benthic bacterial
communities within multiple lakes. Sci. Total Environ.
740: 140010. doi:10.1016/j.scitotenv.2020.140010

Jiao, C., D. Zhao, R. Huang, F. He, and Z. Yu. 2021. Habitats
and seasons differentiate the assembly of bacterial commu-
nities along a trophic gradient of freshwater lakes. Freshw.
Biol. 66: 1515–1529. doi:10.1111/fwb.13735

Jochum, L. M., L. Schreiber, I. P. G. Marshall, B. B. Jørgensen,
A. Schramm, and K. U. Kjeldsen. 2018. Single-cell genomics
reveals a diverse metabolic potential of uncultivated
Desulfatiglans-related Deltaproteobacteria widely distributed
in marine sediment. Front. Microbiol. 9: 2038. doi:10.
3389/fmicb.2018.02038

Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell,
H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb.
2010. Picante: R tools for integrating phylogenies and ecol-
ogy. Bioinformatics 26: 1463–1464. doi:10.1093/
bioinformatics/btq166

Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M.
Horn, and F. O. Gloeckner. 2013. Evaluation of general 16S
ribosomal RNA gene PCR primers for classical and next-
generation sequencing-based diversity studies. Nucleic
Acids Res. 41: e1. doi:10.1093/nar/gks808

Kraemer, S. A., N. Barbosa da Costa, B. J. Shapiro, M. Fradette,
Y. Huot, and D. A. Walsh. 2020. A large-scale assessment of
lakes reveals a pervasive signal of land use on bacterial com-
munities. ISME J. 14: 3011–3023. doi:10.1038/s41396-020-
0733-0

Kuhn, M. 2008. Building predictive models in R using the
caret package. J. Stat. Softw. 28: 1–26.

Leathwick, J. R., D. West, D. Kelly, H. Robertson, D. Brown,
W. L. Chadderton, and A.-G. Ausseil. 2010. Freshwater
eEcosystems of New Zealand (FENZ) Geodatabase—version
1—user guide. Department of Conservation.

Li, H., J. Zeng, L. Ren, J. Wang, P. Xing, and Q. L. Wu. 2017.
Contrasting patterns of diversity of abundant and rare bacter-
ioplankton in freshwater lakes along an elevation gradient.
Limnol. Oceanogr. 62: 1570–1585. doi:10.1002/lno.10518

Li, Y., J. Meng, C. Zhang, S. Ji, Q. Kong, R. Wang, and J. Liu.
2020. Bottom-up and top-down effects on phytoplankton
communities in two freshwater lakes. PLoS One 15:
e0231357. doi:10.1371/journal.pone.0231357

Liu, J., Z. Meng, X. Liu, and X.-H. Zhang. 2019. Microbial
assembly, interaction, functioning, activity and diversifica-
tion: A review derived from community compositional
data. Mar. Life Sci. Technol. 1: 112–128. doi:10.1007/
s42995-019-00004-3

Liu, X., W. Hou, H. Dong, S. Wang, H. Jiang, G. Wu, J. Yang,
and G. Li. 2016. Distribution and diversity of cyanobacteria
and eukaryotic algae in Qinghai–Tibetan Lakes.
Geomicrobiol. J. 33: 860–869. doi:10.1080/01490451.2015.
1120368

Logares, R., S. V. M. Tesson, B. Canbäck, M. Pontarp, K.
Hedlund, and K. Rengefors. 2018. Contrasting prevalence
of selection and drift in the community structuring of bac-
teria and microbial eukaryotes. Environ. Microbiol. 20:
2231–2240. doi:10.1111/1462-2920.14265

Martin, M. 2011. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet J. 17: 10–12.
doi:10.14806/ej.17.1.200

McArdle, B. H., and M. J. Anderson. 2001. Fitting multivariate
models to community data: A comment on distance-based
redundancy analysis. Ecology 82: 290–297 doi:
10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2.

McCrackin, M. L., H. P. Jones, P. C. Jones, and D. Moreno-
Mateos. 2017. Recovery of lakes and coastal marine ecosys-
tems from eutrophication: A global meta-analysis. Limnol.
Oceanogr. 62: 507–518. doi:10.1002/lno.10441

McMurdie, P. J., and S. Holmes. 2013. phyloseq: An R package
for reproducible interactive analysis and graphics of micro-
biome census data. PLoS One 8: e61217. doi:10.1371/
journal.pone.0061217

Pearman et al. Deterministic drivers of lake sediment assembly

14

 19395590, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12247 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1093/nar/gks1160
https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://doi.org/10.1128/AEM.00712-07
https://cran.r-project.org/web/packages/geosphere/index.html
https://cran.r-project.org/web/packages/geosphere/index.html
https://cran.r-project.org/web/packages/ggfortify/index.html
https://cran.r-project.org/web/packages/ggfortify/index.html
https://doi.org/10.1002/mbo3.503
https://doi.org/10.1007/s10933-012-9612-7
https://doi.org/10.1016/j.envpol.2019.05.138
https://doi.org/10.1016/j.scitotenv.2020.140010
https://doi.org/10.1111/fwb.13735
https://doi.org/10.3389/fmicb.2018.02038
https://doi.org/10.3389/fmicb.2018.02038
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1038/s41396-020-0733-0
https://doi.org/10.1038/s41396-020-0733-0
https://doi.org/10.1002/lno.10518
https://doi.org/10.1371/journal.pone.0231357
https://doi.org/10.1007/s42995-019-00004-3
https://doi.org/10.1007/s42995-019-00004-3
https://doi.org/10.1080/01490451.2015.1120368
https://doi.org/10.1080/01490451.2015.1120368
https://doi.org/10.1111/1462-2920.14265
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1002/lno.10441
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217


Nemergut, D. R., and others. 2013. Patterns and processes of
microbial community assembly. Microbiol. Mol. Biol. Rev.
77: 342–356. doi:10.1128/MMBR.00051-12

Ning, D., and others. 2020. A quantitative framework reveals
ecological drivers of grassland microbial community assem-
bly in response to warming. Nat. Commun. 11: 4717. doi:
10.1038/s41467-020-18560-z

Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H.
Stevens, M. J. Oksanen, and M. Suggests. 2007. The vegan
package. Community ecology package, v. 10. p. 631–637.
https://cran.r-project.org/web/packages/vegan/index.html

Pan, X., L. Lin, H. Huang, and J. Chen. 2020. Differentiation
of nitrogen and microbial community in the sediments
from Lake Erhai, Yunnan–Kweichow Plateau, China.
Geomicrobiol. J. 37: 818–825. doi:10.1080/01490451.2020.
1783034

Pawlowski, J., and others. 2021. Environmental DNA
metabarcoding for benthic monitoring: A review of sedi-
ment sampling and DNA extraction methods. Sci. Total
Environ. 818: 151783. doi:10.1016/j.scitotenv.2021.151783

Pearman, J. K., and others. 2020. Local factors drive bacterial
and microeukaryotic community composition in lake sur-
face sediment collected across an altitudinal gradient. FEMS
Microbiol. Ecol. 96:fiaa070. doi:10.1093/femsec/fiaa070

Pearman, J. K., and others. 2022a. The role of environmental
processes and geographic distance in regulating local and
regionally abundant and rare bacterioplankton in lakes.
Front. Microbiol. 12:793441.

Pearman, J. K., and others. 2022b. A bacterial index to estimate
lake trophic level: National scale validation. Sci. Total Envi-
ron. 812: 152385. doi:10.1016/j.scitotenv.2021.152385

Pedr�os-Ali�o, C. 2012. The rare bacterial biosphere. Ann. Rev.
Mar. Sci. 4: 449–466. doi:10.1146/annurev-marine-120710-
100948

Pruesse, E., C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J.
Peplies, and F. O. Gloeckner. 2007. SILVA: A comprehen-
sive online resource for quality checked and aligned ribo-
somal RNA sequence data compatible with ARB. Nucleic
Acids Res. 35: 7188–7196. doi:10.1093/nar/gkm864

R Core Team. 2020. R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing,
p. 2014.

Ristau, K., and W. Traunspurger. 2011. Relation between nem-
atode communities and trophic state in southern Swedish
lakes. Hydrobiologia 663: 121–133. doi:10.1007/s10750-
010-0564-5

Rühland, K., A. Priesnitz, and J. P. Smol. 2003. Pal-
eolimnological evidence from diatoms for recent environ-
mental changes in 50 lakes across Canadian Arctic Treeline.
Arct. Antarct. Alp. Res. 35: 110–123. doi:10.1657/1523-
0430(2003)035[0110:PEFDFR]2.0.CO;2

Ruuskanen, M. O., K. A. St. Pierre, V. L. St. Louis, S. Aris-
Brosou, and A. J. Poulain. 2018. Physicochemical drivers of
microbial community structure in sediments of Lake

Hazen, Nunavut. Can. Front. Microbiol. 9:1138. doi:10.
3389/fmicb.2018.01138

Sadeghi, J., S. R. Chaganti, A. H. Shahraki, and D. D. Heath.
2021. Microbial community and abiotic effects on aquatic
bacterial communities in north temperate lakes. Sci. Total
Environ. 781: 146771. doi:10.1016/j.scitotenv.2021.146771

Schallenberg, L. A., J. K. Pearman, C. W. Burns, and S. A.
Wood. 2021. Metabarcoding reveals lacustrine
picocyanobacteria respond to environmental change
through adaptive community structuring. Front. Microbiol.
12: 3258. doi:10.3389/fmicb.2021.757929

Schliep, K. P. 2011. phangorn: Phylogenetic analysis in R. Bio-
informatics 27: 592–593. doi:10.1093/bioinformatics/
btq706

Shade, A., S. E. Jones, J. G. Caporaso, J. Handelsman, R.
Knight, N. Fierer, and J. A. Gilbert. 2014. Conditionally rare
taxa disproportionately contribute to temporal changes in
microbial diversity. mBio 5: 5–e01314. doi:10.1128/mBio.
01371-14

Shade, A., and others. 2018. Macroecology to unite all life,
large and small. Trends Ecol. Evol. 33: 731–744. doi:10.
1016/j.tree.2018.08.005

Simon, M., P. L�opez-García, P. Deschamps, G. Restoux, P.
Bertolino, D. Moreira, and L. Jardillier. 2016. Resilience of
freshwater communities of small microbial eukaryotes
undergoing severe drought events. Front. Microbiol. 7: 812.

Sloan, W. T., M. Lunn, S. Woodcock, I. M. Head, S. Nee, and
T. P. Curtis. 2006. Quantifying the roles of immigration
and chance in shaping prokaryote community structure.
Environ. Microbiol. 8: 732–740. doi:10.1111/j.1462-2920.
2005.00956.x

Soininen, J., J. J. Korhonen, J. Karhu, and A. Vetterli. 2011.
Disentangling the spatial patterns in community composi-
tion of prokaryotic and eukaryotic lake plankton. Limnol.
Oceanogr. 56: 508–520. doi:10.4319/lo.2011.56.2.0508

Stegen, J. C., X. Lin, J. K. Fredrickson, X. Chen, D. W.
Kennedy, C. J. Murray, M. L. Rockhold, and A. Konopka.
2013. Quantifying community assembly processes and
identifying features that impose them. ISME J. 7: 2069–
2079.

Stegen, J. C., X. Lin, J. K. Fredrickson, and A. E. Konopka.
2015. Estimating and mapping ecological processes
influencing microbial community assembly. Front.
Microbiol. 6: 370.

Tesson, S. V. M., A. Weißbach, A. Kremp, Å. Lindström, and K.
Rengefors. 2018. The potential for dispersal of microalgal
resting cysts by migratory birds. J. Phycol. 54: 518–528.
doi:10.1111/jpy.12756

Vellend, M. 2010. Conceptual synthesis in community ecol-
ogy. Q. Rev. Biol. 85: 183–206. doi:10.1086/652373

Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007.
Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Appl. Environ.
Microbiol. 73: 5261–5267.

Pearman et al. Deterministic drivers of lake sediment assembly

15

 19395590, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12247 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1128/MMBR.00051-12
https://doi.org/10.1038/s41467-020-18560-z
https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.1080/01490451.2020.1783034
https://doi.org/10.1080/01490451.2020.1783034
https://doi.org/10.1016/j.scitotenv.2021.151783
https://doi.org/10.1093/femsec/fiaa070
https://doi.org/10.1016/j.scitotenv.2021.152385
https://doi.org/10.1146/annurev-marine-120710-100948
https://doi.org/10.1146/annurev-marine-120710-100948
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1007/s10750-010-0564-5
https://doi.org/10.1007/s10750-010-0564-5
https://doi.org/10.3389/fmicb.2018.01138
https://doi.org/10.3389/fmicb.2018.01138
https://doi.org/10.1016/j.scitotenv.2021.146771
https://doi.org/10.3389/fmicb.2021.757929
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1128/mBio.01371-14
https://doi.org/10.1128/mBio.01371-14
https://doi.org/10.1016/j.tree.2018.08.005
https://doi.org/10.1016/j.tree.2018.08.005
https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.4319/lo.2011.56.2.0508
https://doi.org/10.1111/jpy.12756
https://doi.org/10.1086/652373


Wickham, H. 2016. ggplot2: Elegant graphics for data analysis.
Springer.

Wilkinson, D. M., S. Koumoutsaris, E. A. D. Mitchell, and I.
Bey. 2012. Modelling the effect of size on the aerial dis-
persal of microorganisms. J. Biogeogr. 39: 89–97. doi:10.
1111/j.1365-2699.2011.02569.x

Yi, Z., C. Berney, H. Hartikainen, S. Mahamdallie, M. Gardner,
J. Boenigk, T. Cavalier-Smith, and D. Bass. 2017. High-
throughput sequencing of microbial eukaryotes in Lake
Baikal reveals ecologically differentiated communities and
novel evolutionary radiations. FEMS Microbiol. Ecol. 93.
doi:10.1093/femsec/fix073

Zeng, J., C. Jiao, D. Zhao, H. Xu, R. Huang, X. Cao, Z. Yu, and
Q. L. Wu. 2019. Patterns and assembly processes of plank-
tonic and sedimentary bacterial community differ along a
trophic gradient in freshwater lakes. Ecol. Indic. 106:
105491. doi:10.1016/j.ecolind.2019.105491

Zhan, A., and others. 2013. High sensitivity of
454 pyrosequencing for detection of rare species in aquatic
communities. Methods Ecol. Evol. 4: 558–565.

Zhang, L., T. Zhao, Q. Wang, L. Li, T. Shen, and G. Gao. 2019.
Bacterial community composition in aquatic and sediment
samples with spatiotemporal dynamics in large, shallow,
eutrophic Lake Chaohu, China. J. Freshw. Ecol. 34: 575–
589. doi:10.1080/02705060.2019.1635536

Zhang, L., T. Shen, Y. Cheng, T. Zhao, L. Li, and P. Qi. 2020.
Temporal and spatial variations in the bacterial community
composition in Lake Bosten, a large, brackish lake in
China. Sci. Rep. 10: 304. doi:10.1038/s41598-019-57238-5

Zhang, S., C. Amanze, C. Sun, K. Zou, S. Fu, Y. Deng, X. Liu,
and Y. Liang. 2021. Evolutionary, genomic, and

biogeographic characterization of two novel xenobiotics-
degrading strains affiliated with Dechloromonas. Heliyon 7:
e07181. doi:10.1016/j.heliyon.2021.e07181

Zhou, J., and D. Ning. 2017. Stochastic community assembly:
Does it matter in microbial ecology? Microbiol. Mol. Biol.
Rev. 81: e00002–e00017. doi:10.1128/MMBR.00002-17

Acknowledgments
This research was funded by the New Zealand Ministry of Business,

Innovation, and Employment research programme—Our lakes’ health:
past, present, future (Lakes380; C05X1707). J.K.P. thanks the Cawthron
Internal Investment Fund for support. We thank all members of the
Lakes380 team for field assistance (www.lakes380.com/about-the-project/
the-team). The authors acknowledge the support of New Zealand
regional authorities that provided data and permission to use it and
assisted with access to the sampling sites: Northland Regional Council,
Auckland Council, Waikato Regional Council, Bay of Plenty Regional
Council, Hawkes Bay Regional Council, Taranaki District Council, Horizon
Regional Council, Greater Wellington Regional Council, Marlborough Dis-
trict Council, Tasman District Council, West Coast Regional Council, Envi-
ronment Canterbury, Otago Regional Council and Environment
Southland. The authors thank iwi and landowners across the country for
their assistance with sampling, accessing sites and guidance throughout
this work. The Department of Conversation is acknowledged for assis-
tance with permitting.

Conflict of Interest
None declared.

Submitted 31 March 2022

Revised 30 May 2022

Accepted 01 October 2022

Associate editor: Hans-Peter Grossart

Pearman et al. Deterministic drivers of lake sediment assembly

16

 19395590, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12247 by N

anjing Institution O
f G

eography A
nd L

im
nology, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/j.1365-2699.2011.02569.x
https://doi.org/10.1111/j.1365-2699.2011.02569.x
https://doi.org/10.1093/femsec/fix073
https://doi.org/10.1016/j.ecolind.2019.105491
https://doi.org/10.1080/02705060.2019.1635536
https://doi.org/10.1038/s41598-019-57238-5
https://doi.org/10.1016/j.heliyon.2021.e07181
https://doi.org/10.1128/MMBR.00002-17
http://www.lakes380.com/about-the-project/the-team
http://www.lakes380.com/about-the-project/the-team

	 Deterministic processes drive national-scale patterns in lake surface sediment bacteria and eukaryotic assemblage composition
	Methods
	Study lakes
	Lake, catchment, and land-use data
	Sample collection, nutrient, and elemental characterization of surface sediment
	DNA extraction, polymerase chain reaction, high-throughput sequencing, and bioinformatics
	Statistical analysis

	Results
	Environmental parameters
	General diversity patterns
	Occupancy
	Deterministic verses stochastic processes
	Environmental drivers

	Discussion
	Overall diversity and occupancy
	The role of deterministic verses stochastic processes in driving assembly
	Environmental drivers of assemblage composition

	Conclusions
	Data availability statement

	References
	Acknowledgments
	Conflict of Interest



