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1 1. Introduction

2 1.1 Background

3 Global warming and human interventions are changing the behavior of Earth’s water cycle 

4 (Stott, 2016, Easterling et al., 2017, Sterling et al, 2013, Rodell et al., 2018, Tabari, 2020). 

5 Although there is evidence that extreme weather events and increasing climatic variability are 

6 intensifying hydrologic processes worldwide (Held & Soden, 2006, Milly et al., 2015, Huntingon, 

7 2006, Tabari, 2020, Creed et al., 2014), there is still no consensus on the direction or the magnitude 

8 in which different components of the water cycle will respond in the world’s major terrestrial 

9 ecosystems under these imposed changes (Stott, 2016, Zhan et al., 2012, Salmoral et al., 2015, 

10 Martens et al., 2018, Padron et al., 2017). As the current human population arrives at a critical 

11 environmental carrying capacity, and the world enters a warmer climate, our planet’s ecosystems 

12 are changing and adapting (Seddon et al., 2016, Pecl et al., 2017), bringing along changes in the 

13 way water is partitioned in the landscape (Milly et al., 2005; Held & Soden, 2006; Huntington 

14 2006; Creed et al., 2014; Tabari, 2020). Whether natural or human induced, ecosystems’ 

15 alterations to the water cycle at the global scale need to be urgently assessed. Particularly in the 

16 face of increasing climate variability and the rising numbers and intensity of extreme weather 

17 events altering hydrologic processes worldwide (Stott, 2016; Milly et al., 2005; Zhan et al., 2012). 

18 Thus, looking at variations in hydrologic response as a function of the variability in climatic 

19 forcing offers an opportunity to detect regions where hydrologic dynamics are changing (Gao et 

20 al., 2016). Furthermore, identifying locations with changing hydrologic responses to climatic 

21 variability is important for detecting regions arriving at critical thresholds that may compromise 

22 the availability of water for both ecosystems and human settlements. 

23 1.2 Concept of Elasticity 



2

24 Assessing the hydrologic sensitivity to climate variability can be approached from the concept of 

25 elasticity. Elasticity here is defined as the capacity of a system to keep a consistent response in 

26 spite of sudden perturbations, and/or extreme climatic variability (i.e. hydrologic resilience; Creed 

27 et al., 2014). Thus, in that sense, hydrologic sensitivity is the inverse of elasticity, and can be used 

28 to detect regions with unstable hydrologic systems. The elasticity concept has been devised using 

29 the well-known  and widely used Budyko’s curve (Creed et al., 2014, Roderick et al., 2014, 

30 Helman et al., 2017, Sinha et al., 2018, Padron et al.,2017), which provides a reference condition 

31 on the behavior of the long term mean water balance as a function of the average climatic condition 

32 of an area (Trenberth, 2011, Roderick et al., 2014, Helman et al., 2017, Li et al., 2019, Budyko, 

33 1974, Greve et al., 2016) (Figure 1). It uses annual values of Potential and Actual 

34 Evapotranspiration (PET and AET respectively), and Precipitation (P) and examines changes in 

35 the Evaporative Index (i.e. hydrologic response, EI=AET/P) against changes in the Dryness Index 

36 (i.e. climate condition, DI; PET/P) over defined periods of time. Simply put, Budyko’s curve 

37 represents the historical average of multiple catchments across varying climate types. Therefore, 

38 a region’s EI can be obtained along the curve given information on its climate (DI). Thus, elasticity 

39 (e) is quantified by how far the EI deviates from the Budyko’s curve (B) relative to the change in 

40 DI defined as the ratio between the range of the dryness index (ΔDI) and that of the evaporative 

41 index relative to the curve (ΔEIR = Δ[EI-B]) (Creed et al., 2014) (Equation 1). Positive deviation 

42 (+ΔEI, more AET) indicates less water yield (-Q, water left over on Earth’s surface after 

43 evaporation has taken place) while negative deviation (-ΔEI, less AET) indicates greater water 

44 yield (+Q) (Figure 1). A catchment has high elasticity when there is a small deviation in EIR 

45 relative to change in DI (e >1=ΔDI > ΔEIR, resilient) and low elasticity when a great deviation of 

46 EIR occurs relative to DI (e <1=s ΔDI < ΔEIR, sensitive).
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47                                               =  .                                                  (1)𝑒
ΔDI
ΔEIR

=
ΔDI

Δ(EI ― B)

48

49                          

50 Figure 1: Budyko’s Framework. The framework plots the evaporative index against the dryness index. When the 
51 evaporative index increases (decreases) the water yield (Q) decreases (increases). The solid lines represent the 
52 energy (red) and water limit (blue) lines, and the dashed line represents the historical average of where regions 
53 would plot given information on their climate (known as the original Budyko curve) (Creed et al., 2014, Budyko, 
54 1974).

55

56 1.3 The need for a global assessment of hydrologic response to climatic variability

57 Although previous studies have documented regions undergoing hydrological changes 

58 using the concept of elasticity for showing how varying climate and the intensification of human 

59 activities can have a strong influence on year-to-year changes in hydrologic responses, (Wu et al, 

60 2017b, Creed et al., 2014, Helman, 2017, Li et al., 2019, Wu et al., 2017), they have only been 

61 assessed in a few catchments within geographically limited regions. Because of this limited 

62 geographic extent, other important factors known to modulate climatic variability, such as 

63 elevation, slope and aspect, have been obviated. For example, elevation and aspect in complex 
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64 terrain alter temperature and humidity regimes across different land conditions within similar 

65 climatic zones. Elevation leads to changes in temperature and precipitation regimes which are 

66 further amplified by slope and aspect creating distinct microclimates (Gutiérrez-Jurado et al., 2006, 

67 Sristava et al., 2020). Together, these factors influence the partitioning of water in the landscape 

68 and hence its hydrologic response over time (Gutiérrez-Jurado et al., 2007), raising questions about 

69 which of them plays a major role in maintaining a consistent hydrologic behavior in spite of large 

70 climatic perturbations (e.g. climatic deviations from the normal). Changes to hydrologic 

71 functioning in response to climatic perturbations are expected to vary widely according to land 

72 cover conditions, topographic complexity of the terrain and geographic location (Sterling et al., 

73 2013), specifically in places where sensitive characteristics to these perturbations are relevant. 

74 Thus, it is important to evaluate the hydrologic responses to climatic variability globally, and to 

75 assess the recurrence (frequency) of heightened responses, while evaluating the role of terrain 

76 properties in locations where relatively minor perturbations result in significant changes in 

77 hydrologic functioning.

78 In this study, we evaluate the hydrologic responses to climatic variability globally, and  

79 assess the frequency of these responses, while evaluating the role of major topographic factors in 

80 modulating these responses. Given that different biomes (climate types) have unique 

81 characteristics and the way they respond to extreme climate forcing is inextricably linked to how 

82 it will affect water resources (Padron et al., 2017, Motew & Kucharick, 2013, Gudmunsson et al., 

83 2016), we explore the resulting hydrologic sensitive areas for each of the different terrestrial 

84 biomes in the world. Finally, we document the average direction in which hydrologic changes 

85 occur in these sensitive areas, noting if these regions are shifting to drier (+∆DI) or wetter state (-

86 ∆DI) and if they are yielding more (-∆EI) or less (+∆EI) water.



5

87 2. Methods

88 2.1 Data Collection

89 We use annual values of the 3 key variables (AET, PET and P) for the period of January 

90 2001 to December 2016 due to the availability of datasets. The main characteristics (i.e. 

91 component, product, temporal resolution, spatial resolution) of the satellite products used are listed 

92 in Table 1. AET is derived from Penman Monteith Leuning version 2 (PML-V2) at 500m 

93 resolution (Zhang et al., 2019). The PML_V2 product performs well against observations at 95 

94 flux sites across the globe and is similar to or noticeably better than major state-of-the-art AET 

95 products such as PML-V1, MOD16, and GLEAM (Zhang et al., 2019). PET is derived from the 

96 Moderate-Resolution Imaging Spectroradiometer (MOD16A2) version 6 onboard the Terra 

97 satellite and produced at 500m resolution (Running et al., 2019). It has been validated over 46 eddy 

98 flux towers, and the close agreement in the seasonality between data reveals the reasonability 

99 (magnitude, range and directions of variations) for valid pixels (Running et al., 2019). P is derived 

100 from the Multi-Source Weighted-Ensemble Precipitation dataset (MSWEPv2) at 0.1-degree 

101 resolution (Beck et al., 2019a). This dataset, MSWEPv2, combines gauge and satellite products, 

102 with multiple corrections for regional differences and has shown to be a robust dataset when 

103 compared to other P products with a high spatial resolution (Beck et al., 2019b) is (≤0.1°,) which 

104 include Climate Hazards Group Infrared Precipitation with Stations (CHIRPS; 0.05°), CPC 

105 morphing technique (CMORPH; 0.07°), Global Satellite Mapping of Precipitation (GSMaP; 0.1°), 

106 Integrated Multi satellite Retrievals for Global Precipitation Measurement (IMERG; 0.1°), and 

107 Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–

108 Cloud Classification System (PERSIANN-CCS; 0.04°). Overall, the three products used in this 

109 study have been tested worldwide and span a variety of climates and land cover types providing 
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110 the opportunity to apply these datasets for studies of global terrestrial water and energy cycles and 

111 environmental changes. 

112 Table 1: Data Collection. List of products with temporal and spatial resolution used to evaluate HSi.

113

114

115 2.2 Conceptualization of a Hydrologic Sensitivity Index

116 This study focuses on identifying regions showing consistent large departures in 

117 hydrologic responses to interannual variations in climate forcings (non-elastic regions) and which 

118 may change to an alternative or permanent state in hydrologic functioning. Thus, we devised a 

119 metric called the Hydrologic Sensitivity Index (HSi) by taking the inverse of the elasticity 

120 formulation and adapting it for interannual analyses. As stated before, the elasticity concept is 

121 based on Budyko’s framework, which assumes steady-state conditions (Greve et al., 2016) that are 

122 seldomly observed at interannual scales. Because our intent is to produce interannual analysis, the 

123 Budyko’s formulation needs an adjustment. At sub-annual and interannual timescales, changes in 
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124 storage water terms such as soil moisture, groundwater, snow storage or human interventions 

125 results in AET>P (additional water other than P) violating the steady state assumptions (Greve et 

126 al., 2016). Consequently, we apply the adapted Budyko formulation presented by Greve et al., 

127 2016 to account for changes in storage (BA) (Equation 2a and Figure 2) using the parameter y0, 

128 which represents a measure of the maximum amount of additional water besides P being available 

129 to AET  (Equation 2b):

130                                          BA=                                 (2a)
𝐴𝐸𝑇

𝑃 = 1 + ― (1 + (1 ― 𝑦0)𝑘 ― 1 ∗ (𝑃𝐸𝑇
𝑃 )𝑘)

1
𝑘

, 

131                                                   where                                             (2b)𝑦0 =
𝐴𝐸𝑇 ― 𝑃

𝑃𝐸𝑇 , 𝑖𝑓 𝐴𝐸𝑇 ― 𝑃 > 0

132

133  The y0 parameter is calculated as the difference between AET and P (only when AET-P 

134 >0) normalized by PET. Note that the schematic of Figure 2 is similar to the one in Figure 1 with 

135 additional curves for the cases when y0>0. For example, case a} represents the scenario when a 

136 region is sensitive between a pair of years since the ∆EIR.>∆DI. In this scenario, each year’s value 

137 of y0 determines which curve is used for calculating the deviations in EIR.   Following case a}, 

138 when y0=0 then EIR  =EI-B, while at y0=0.2, EIR  =EI- BA,0.2. In similar fashion case b} represents 

139 the scenario when a region is resilient ∆EIR<∆DI. Note that in this case (green coordinates) y0=0.2 

140 so EIR  is in reference to the BA,0.2.  curve. Also, the deviation may occur in opposite direction for 

141 different years since EI can deviate towards positive (greater Q) or negative directions (less Q). 

142 The parameter k is a free model constant that can be interpreted as a factor other than the aridity 

143 index that influences the water partitioning of EI. This parameter can change spatially and it must 

144 be estimated. In its global analysis of the modified Budyko function accounting for non-steady-

145 state water storage conditions, Greve et al. (2016) found the k value yielding the best fit to the 

Commented [MD1]:  Figure 2 answer
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146 original Budyko curve and determined k = 2.6 as an appropriate value to use worldwide. To verify 

147 this, we performed a sensitivity analysis on k, varying its values in between [0,6] and found our 

148 results were unaffected. Thus, we use k = 2.6, which corresponds to the best fit to the original 

149 Budyko function (Greve et al., 2016).

150

151 Figure 2: Adapted Budyko Curve. The Budyko framework accounts for changes in storage for regions where 
152 AET-P>0, so that the range in EIR is in reference to the adjusted curve, while range in DI is not affected.  HSi is 
153 calculated as the ratio of a catchment’s range in EI to its range in DI between consecutive pair of years: HSi= 
154 (∆DI)/(∆EIR), where a) high sensitivity (HSi > 1, red) (i.e., approximating theoretical behavior), and (b) low 
155 hydrologic sensitivity (HSi<0, green) (i.e., deviating from theoretical behavior).

156

157 Once Budyko’s curve is adjusted to varying changes in y0, the interannual changes in 

158 hydrologic response (ΔEIR) of a location or region relative to the adapted curve (BA) can be 

159 tracked; that is, its water yield deviation to interannual climatic variability (ΔDI) for consecutive 

160 years, producing a value for its hydrologic sensitivity (HSi) can be calculated in the following 

161 manner: 

162                                                   HSi = | |,                    (3)
ΔEIR

ΔDI =
Δ(EI ―  BA)

ΔDI
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163 where sensitive regions will display HSi>1, and resilient locations will show HSi <1 (Equation 3). 

164 It is important to note that HSi evaluates the absolute difference between DI and EIR between 

165 successive years, regardless of which year was warmest or wettest. A conceptual diagram depicting 

166 the algorithm used is shown in Figure 2, of which a detailed description is provided next.  HSi 

167 evaluates the absolute ratio between ranges in DI and EIR values between consecutive years (e.g. 

168 HSi = | |).   |ΔEIR/∆ DI| =   ΔEIR,2001 ― 2002/ΔDI2001 ― 2002

169 2.3 Computing HSi

170 2.3.1. Computing HSi Frequency

171  Knowing the year to year hydrologic sensitivity is more meaningful when looked over a 

172 longer period of time. Regions consistently showing sensitive behavior can be identified by 

173 looking at the frequency with which HSi >1 is detected. Figure 3 displays the algorithm for 

174 computing HSi frequency. First, we compute annual values of AET, PET, P, and  y0. Next, we 

175 compute HSi for every successive pair of years from 2001 to 2016.  All computations leading to 

176 the HSi are performed in the Google Earth Engine Platform  (Golerick et al., 2017).  A total of 15 

177 HSi maps were obtained representing the HSi for each consecutive pair of years.  For each map, 

178 where HSi >1, regions are classified as Sensitive and for HSi ≤1, Resilient. To provide a synthesis 

179 of the general trend of global hydrologic sensitivity, we display the frequency of HSi, showing the 

180 recurrence of HSi >1 for every terrestrial location with a range of 0 (low frequency) to 15 (high 

181 frequency). Regions where frequency HSi 7 are considered highly recurring and as such are 

182 deemed as the most hydrologically sensitive.  
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183
184 Figure 3: HSi Algorithm. Flowchart for computing HSi. Input data layers are shown in medium blue, intermediate 
185 data layers computed in Google Earth Engine as part of the algorithm are shown in light blue, and final output is 
186 displayed as a map of HSi Frequency.

187

188 2.3.2. Computing Mean Sensitive Area

189 Besides the geographic occurrence of hydrologic sensitive areas, identifying the percentage 

190 of sensitive area relative to the total area in a biome can help inform the regions of the world where 

191 hydrologic response has been consistently changing. Figure 4 displays the algorithm for estimating 

192 the mean hydrologic sensitive area for each terrestrial biome. For this analysis, the biome 

193 boundaries were obtained from Terrestrial Ecosystems of the World (TEOW) shapefiles (Figure 

194 5) by the World Wildlife Fund (Olson et al., 2001). The 15 pairs of EIR’s and DI’s per biome 

195 are used to quantify sensitive for every consecutive pair of years. Hydrologic sensitive areas are 

196 represented by the colored quadrants (green and red or light and dark blue). All colored area shows 

197 that the interannual absolute change in evaporative index, |∆EI|, is greater than the interannual 

198 absolute change in the dryness index, |∆DI| which is equivalent to |HSi|>1. The diagram is split 

199 into 4 quadrants indicating the possible climate and water yield directions: drier (+∆DI) wetter (-
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200 ∆DI) and less water yield (+∆EI) and more water yield (-∆EI). Sensitive area (grid cells) where 

201 |HSi|>1 = |∆EIR|>|DI| equivalent to:

202 I = EIR > DI = less water yield and drier climate;

203 II = EIR > -DI = less water yield and wetter climate;

204 III = -EIR < -DI = more water yield and wetter climate;

205 IV = EIR < DI = more water yield and drier climate.

206 Sensitive area is defined by the percentage of sensitive grid cells (HSi>1) to the total 

207 number of grid cells within each biome. Once we obtain all 15 values (one per pair of years) of 

208 sensitive area per biome, we compute the temporal average. Additionally, we display sensitive 

209 areas with direction of change by including the portion of sensitive area allocated toward drier vs 

210 wetter climate conditions (Figure 4a) and less vs greater water yield (Figure 4b) and direction of 

211 change. For instance, the percentage of sensitive grid values toward warmer/drier (∆DI) and 

212 colder/wetter (-∆DI) values defines the climate direction, while decreasing (∆EI) and increasing (-

213 ∆EI) water yield defines the water yield direction. Also, the fraction of the sensitive area is plotted 

214 relative to the global land area to provide a global areal extent of sensitivity for each biome. 

215 Separately, we created 2 maps to spatially display the median climate and water yield trends only 

216 for regions with HSi>1 and Frequency ≥7. 



12

217                 

218 Figure 4 : Mean Hydrologic Sensitive Area Concept. The diagrams show how the hydrologically sensitive area is 
219 calculated. a) Quadrant 1 and IV where hydrologic sensitive areas have become drier (red), so that the change in 
220 +DI is positive, while in quadrant II and III represents the areas which have become wetter the absolute change in -
221 DI is negative (green).  b) Quadrant I and II represent the condition where hydrologic sensitive areas show 
222 decreasing water yield trends, so that the change in +EIR is positive (light blue), while in quadrant III and IV 
223 represent the areas that show increasing water yield trends, so that the change in -EIR is negative (dark blue).  

224
225 Figure 5: Terrestrial biomes of the world used in this study. A total of 14 Major Terrestrial Ecosystems reflect the 
226 diverse climate types (we do not consider lakes and rock ice biomes for this study). Terrestrial communities 
227 represented here include the full extent of continental topographic relief (Oslon, 2001).

228

229 2.3.3. Evaluating the effect of elevation, slope and aspect on HSi

230

a) b)

Commented [MD2]:  Line 180 - please consider adding 
an additional figure of the "biomes" given this is critical 
to your highlights and results.
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231 We evaluate the effect topography on hydrologic sensitivity by plotting the average HSi 

232 frequency for all elevations ranges (binned every 100 m), aspects (binned every 22.5), and slope 

233 steepness (binned every 5) against latitudinal change. For this analysis we used global digital 

234 elevation models (DEMS) from the Shuttle Radar Topography Mission (SRTM, Jarvis et al., 

235 2008) data (90 m resolution; version 4, for latitudes < 60◦ N and GTOPO30 (1◦ resolution; 

236 http://lta.cr.usgs.gov/GTOPO30) for latitudes > 60◦ N seen in Table 1. Slope and aspect maps 

237 were derived from the DEMs using standard GIS-based methods in ArcMap 10.7. (Burrough et 

238 al., 2015). Elevation range used is [0,7000] meters above sea level (m.a.s.l), aspect (N, NE, E, SE, 

239 S, SW, W, NW) specifically above slope values greater than 10 (no flat areas used), and slope 

240 [0,90] degrees.

241 3. Results

242 3.1 Average annual excess water used from storage (y0) 

243 We identified where water storage was used to supplement precipitation to satisfy the 

244 annual AET (y0>0; Figure 6), except in locations where “No Data” values in either AET or PET 

245 impeded the calculation of y0 (gray areas in Figure 6). Particularly, high values (y0>0.2) occur 

246 along the Yucatan Peninsula (y0~0.3-0.4, Mexico), California (y0~0.30-0.35) and Great plains 

247 (y0~0.25, USA), Patagonia region (y0~0.28-0.41, Argentina), Tamil Nadu and Rajasthan (y0~0.3-

248 0.4 India), Caatinga forest (y0~ 0.26-0.38, and Eastern Africa (y0~0.40-0.65). Some of these 

249 regions showing large y0 values correspond to groundwater fed irrigated croplands where 

250 significant abstraction of water resources subsidizes high AET rates (e.g. Central Valley, 

251 California and Central Midwestern USA, Northern India, Northeastern China; Aeschbach-Hertig 

252 & Gleeson, 2012). Other areas with large y0 values show groundwater dependent ecosystems 

253 where vegetation has a continual access to water regardless of precipitation conditions yielding 
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254 high annual AET (e.g. Yucatan Peninsula; Uuh-Sonda et al., 2018). Other regions along high Artic 

255 tundra, northernmost boreal zones, and equatorial tropical zones display no excess storage (y0~0), 

256 while all other regions have slight excess water storage (y0>0-0.20) (see Figure 6).       

257
258 Figure 6: Average excess water used from storage. 16-year average excess water storage as a fraction of the 
259 potential evapotranspiration (additional water other than P available to AET standardized by PET). The values range 
260 from 0 (no significant changes in storage) to 0.4 or greater (red, high changes in storage). Areas with dominant 
261 barren land and permanent ice (No Data) are shown in grey. Wetland areas, as identified by the Global Lakes and 
262 Wetlands Database, are mapped in blue. Pixel resolution is 500m. Map created in Google Earth Engine and 
263 modified with continental outline shapefile in ArcGIS 10.7 software. 

264

265 3.2 Global map of HSi Frequency

266 The areas exhibiting the most frequent hydrologic sensitivity during the 2001-2016 period 

267 were located in the tropical rainforests (tropical & subtropical moist broadleaf forest) of Central 

268 and South America (Amazon basin), central-western Africa (Congo Basin), and southeast Asia 

269 (Himalayan region, Indochinese Peninsula, and Malay Archipelago), the Arctic tundra, parts of 

[-]
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270 the boreal forest, and tropical and subtropical coniferous forests scattered throughout North 

271 America and Eurasia (Figure 7).  Overall, arid and semiarid areas worldwide display low 

272 frequency (<2) of HSi, and the areas displaying the highest frequency (>7) are in general 

273 surrounded by a zone of increasingly lower HSi frequency (orange and yellow areas in Figure 7) 

274 outwards. 

275
276 Figure 7:  Frequency of Hydrologic Sensitivity. Tendency to high hydrologic response to climate variability (based 
277 on the recurrence of HSi 1). The index ranges from 0 (no frequency, green) to 15 (high frequency, red). Areas with 
278 dominant barren land and permanent ice (No Data) are shown in grey. Wetland areas, as identified by the Global 
279 Lakes and Wetlands Database, are mapped in blue. Pixel resolution, 500m; period, 2001–2016. Map created in Google 
280 Earth Engine79 and modified with continental outline shapefile in ArcGIS 10.7 software 

281

282 The areas where no hydrologic sensitivity is detected during the period of study (2001-2016) are 

283 regions with large interannual variability in climatic conditions. A map showing the coefficient of 

284 variation (CV) of the Dryness Index (DI) reveals that the regions of the world where this coefficient 

285 is large (values close to 1 show locations with high variability) closely match those with no 
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286 hydrologic sensitivity (0 frequency of HSi >1; Figure 8.a). In those places the interannual 

287 variability of the DI outweighs any moderate or even large variabilities in Evaporative Index (EI; 

288 Figure 8.b). By contrast, the areas where the highest frequency of hydrologic sensitivity is 

289 observed, correspond to locations with low or moderate interannual variability in DI and EI (i.e. 

290 CV of DI and EI < 0.4). This suggests that hydrologic sensitivity, as measured by HSi, is largely 

291 dependent on the prevailing interannual variability of the fluctuations in climatic conditions 

292 expressed by the DI. This finding gives confidence in the ability of the HSi to detect those locations 

293 where in spite of having low year to year variations in climatic conditions, relatively large 

294 variations in the evaporative index are occurring.
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295

296
297 Figure 8. Coefficient of Variation of (a) Dryness Index (DI) and (b) Evaporative Index (EI) for the study period 
298 (2001-2016). The coefficient ranges from 0 (low variability, light yellow) to 1 (high variability, red). Areas with 
299 dominant sterile soil and permanent ice (NoData) are shown in gray. Wetland areas, identified by Global Lakes and 
300 Wetlands Database, are mapped in blue. Pixel resolution is 500m. Map created in Google Earth Engine and 
301 modified to include continental schema basemap and lakes in ArcGIS 10.7 software.

302

303 3.3 Mean Sensitive Area per biome w/climate and water yield direction

(a)

(b)
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304 Figure 9 displays mean sensitive area per biome arranged from largest to least hydrologic 

305 sensitive. The biomes displaying the largest sensitive area in descending order are Tropical 

306 rainforests, the Arctic tundra, tropical and subtropical coniferous forests, and boreal forests. 

307 Tropical & subtropical rainforests and coniferous forests display decreasing water yields while 

308 tundra and boreal systems display increasing water yields. Relative to global land, boreal forests 

309 have the greatest actual areal extent of hydrologic sensitive land followed by tropical rainforests 

310 and grasslands (tropical & subtropical grassland, savannas, and shrublands). The hydrologic 

311 sensitive area in the majority of the biomes (12 out of 14 biomes) have a clear tendency towards 

312 decreasing water yield conditions with the exception of the Arctic tundra and temperate broadleaf 

313 mixed forests (mixed forests) which display a neutral behavior. Although the climate direction is 

314 roughly neutral for most biomes, the hydrologic sensitive area in 9 out of 14 biomes is slightly 

315 inclined toward drier conditions with the exception of the Arctic tundra, mixed forests, temperate 

316 coniferous forests, tropical & subtropical coniferous forests, and tropical rainforests, which lean 

317 toward wetter/colder conditions. 
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318

319 Figure 9: Hydrologic Sensitive Area. Average sensitive area per biome (relative to biome area) with portion 
320 indicating direction of change, where drier (red) and wetter (green) conditions refer to the climate direction; less 
321 (light blue) and greater water yield (dark blue) refers to the hydrologic direction; average sensitive area relative to  
322 the global land area (orange) refers actual extent of sensitivity. Values are computed on Google Earth Engine 
323 platform at ~1000m resolution. 

324

325 3.3.1 Global Map of water yield and climate direction  for regions with high HIS frequency

326

327 Focusing on only those regions where HSi frequency ≥7 (mainly equatorial and northern 

328 high latitudes) the median direction in water yield (∆EI) and climate direction (∆DI) is displayed 

329 in Figure 10 and Figure 11 respectively. Figure 10 displays dominant decreasing water yield (light 

330 orange) for the majority of pixels within tropical forest (equatorial zones) while increasing water 

331 yields (blue) is evident in the northern high latitude regions particularly along Alaskan, 

332 easternmost Canadian and Eurasian arctic regions and boreal forests.  Figure 11 displays a general 

333 neutral tendency in climate conditions in dry (red) vs wet (blue) for these same regions in 

334 particular. Nonetheless the map displays drying/warmer conditions along southern part of and 
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335 southern edge of the Amazon basin, western and central Congo basin and northeastern part 

336 Canadian and Eurasian continent. Colder/wetter conditions are seen along northern part of the 

337 Amazon basin and northmost Siberian region. 

338

339 Figure 10: Water yield direction of hydrologically sensitive regions. For displaying purposes, observed results 
340 are based on median values of interannual change in evaporative index, ∆EI, only for regions where frequency 
341 HSi≥7. The values range from less water yield (+∆EI, light orange) to greater water yield (-∆EI, dark blue) 
342 conditions. Areas with dominant sterile soil and permanent ice (No Data) and non-sensitive areas are shown in gray. 
343 Pixel resolution is 500m. Map created in Google Earth Engine and modified to include continental schema basemap 
344 and lakes in ArcGIS 10.7 software.
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345
346 Figure 11: Climatic direction of hydrologically sensitive regions. For displaying purposes observed results are 
347 based on average values of interannual change in dryness index, ∆DI, only for regions where frequency HSi≥7. The 
348 index ranges from colder/wetter (-∆DI, blue) to drier/warmer (+∆DI, red) climate conditions. Areas with dominant 
349 sterile soil and permanent ice (No Data) and non-sensitive areas are shown in gray. Pixel resolution is 500m. Map 
350 created in Google Earth Engine and modified to include continental schema basemap and lakes in ArcGIS 10.7 
351 software.

352

353 3.4 Effect of elevation slope, and aspect on HSi

354
355 The topographic effects on hydrologic sensitive areas are most apparent along high latitude 

356 regions, particularly at mountainous locations in both hemispheres, including the Tibetan Plateau 

357 (33N) as seen in Figure 12a-c For example, in Figure 12a elevation appears to be a defining 

358 parameter driving hydrologic sensitivity beyond 45 latitude in both North and South hemispheres. 

359 Conversely, midlatitude regions (between 20 and 40 in both South and North hemispheres 

360 appear to be somewhat hydrologically insensitive to changes in elevation, but most markedly and 

361 for a larger latitudinal stretch in the Southern hemisphere. The latitudinal stretch on the Northern 

362 Hemisphere where HSi values are low across all elevation ranges is 5 shorter than in the Southern 
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363 Hemisphere (20 to 40 vs -30 to -45 respectively). Along the equatorial belt, in between 15 S 

364 and 7 N, high HSi values appear at the lowlands (0-500 m.a.s.l) and above ~1500 m.a.s.l 

365 throughout all the elevation range, with the highest sensitivity above 2000 m.a.s.l. In the same 

366 latitudes, where high HSi is found across elevation gradients, steep slopes (slopes greater than 30°) 

367 display high HSi values in Figure 12b, mainly attributed to the various effects of mountainous 

368 landscapes that are generally associated with having steep-sloped topography compared to low 

369 elevations (Riebe et al., 2015). Along the equatorial zone (~7°N and ~10°S) high HSi values are 

370 found at the majority of slope angles but with highest sensitivity at slopes greater than 15°. In the 

371 northern hemisphere, HSi gradually increases beginning at latitude 45° and beyond, but has 

372 specific thin latitudinal stretches (~2°) of higher sensitivity at slopes greater than 30° around 50°, 

373 60°, 70° and 80°. In the southern hemisphere, HSi increases abruptly with higher latitudes 

374 beginning at -40° and beyond with highest sensitivity in very steep slopes (slope>60 °), while 

375 between latitudes of -20 and -40 (location of arid lands) appear to be insensitive at all slope 

376 angles and elevations. In our analysis, aspect (orientation of the terrain) did not show an effect on 

377 HSi (Figure 12c). This is possibly due to the inability of the HSi data to capture the fine scale 

378 microclimatic variability in areas with complex terrain due to the native spatial resolution of the 

379 data (>500m). There is evidence that varying aspects in complex terrain modulate the hydrologic 

380 response to extreme hydroclimatic events (Gutiérrez-Jurado et al., 2007) and could potentially 

381 amplify or mute the HSi of headwater catchments constituting some of the largest water yielding 

382 areas inland. Further studies addressing this shortcoming in the analysis with higher resolution 

383 data, should provide a clearer picture on the impact of terrain attributes on the HSi of these regions. 
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384

385  

386 Figure 12: Frequency HSi [0,7+] at varying values of a) elevation [100,7000] in m.a.s.l. b) slope steepness [0,90] 
387 in degrees, and  c) aspect[0,359] in degrees against latitudinal change from 80N to -55.5S  from low frequency 
388 (green) to high frequency (red). Graphs created in MATLAB 2019 software using pixel resolution at 90m for each 
389 variable.

390

391 4. Discussion
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392 In this study we showed a global map displaying excess storage water. These regions agree 

393 with locations of some of the world’s groundwater-dependent ecosystems and groundwater-fed 

394 irrigated croplands (Rodell et al., 2018, Aeschbach-Herring & Gleeson, 2012). Regions displaying 

395 no excess water storage such as northern high latitude regions and equatorial tropical zones are 

396 mostly explained by being energy-limited regions and receiving large amounts of precipitation 

397 resulting in larger moisture influxes relative to evapotranspiration outfluxes. The relatively simple 

398 computation of y0 can provide a first insight into out-of-water-balance areas that can alter the 

399 estimates of hydrologic sensitivity by raising AET totals substantially at the annual scale. Our 

400 analyses indicate that the majority of the regions detected as hydrologic sensitive areas are 

401 changing towards drier conditions with decreasing water yields. This observation coincides with a 

402 phenomenon suggested by Cook et al., (2014), in which vast regions of land  in the planet are 

403 experiencing at least moderate drying as  a warmer climate—generally more able to evaporate 

404 moisture from the land surface– in combination with hotter temperatures will favor increasing 

405 dryness.  

406 Our results showed that the locations with the highest HSi can be clustered in two regions: 

407 (1) tropical zones across all elevation ranges (2) along artic tundra and boreal zones. For the first 

408 region, at equatorial latitudes, we found hydrologic sensitivity in tropical rainforests associated 

409 with changing water yields. A majority of tropical regions show decreasing water yields while 

410 fewer regions show increasing trends (Figure 9). There is still no consensus as to whether reduced 

411 forest cover will increase or decrease water yields across these regions (Bruijinzeel et al., 2004, 

412 Zhoue et al., 2013, Roudier et al., 2014, Reyer et al., 2017, Deb et al., 2018). Reduced forest cover, 

413 which has been shown to alter precipitation patterns (Ellison et al., 2011, van der Ent et al., 2010) 

414 resulting in reductions in leaf gas exchanges (Seddon et al., 2016, Clark et al., 2003, Staal et al., 

https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall
https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall
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415 2018, Wu et al., 2019) along these regions is a potential explanation to the observed reductions in 

416 water yields. Placed in a large-scale context, a great portion of tropical forests’ rainfall is water 

417 recycled within these basins by forest evapotranspiration (van der Ent et al., 2010, Lenton et al., 

418 2008). For instance, approximately one-third of rainfall in the Amazon (Staal et al., 2018, van der 

419 Ent et al., 2010, Lenton et al., 2008), Congo (van der Ent et al., 2010, Dyer et al., 2017), and 

420 northern Indonesia and Papua New Guinea basins is regional recycled precipitation (van der Ent 

421 et al., 2010). Hence, a reduction in tropical forest cover leads to decreases in forest 

422 evapotranspiration which in turn results in reduced precipitation. Consequently, reduced regional 

423 recycled precipitation at large scales implies a tendency toward decreasing water yields. This 

424 highlights the hydrologic sensitivity of tropical regions to forest cover changes. Continuing 

425 deforestation and human land use and disturbances at continental scale, currently highest in this 

426 terrestrial biome (Crowther et al., 2015), have the potential to amplify the negative impact seen on 

427 water yields (Davidson et al., 2012). In contrast, regions south of Indonesia and Papua New Guinea 

428 where ocean moisture is the main precipitation source, shows some of the areas where forest cover 

429 loss is accompanied by increasing water yield trends (van der Ent et al., 2010). In addition, there 

430 is evidence that regional recycling ratios are amplified at mountainous regions globally since these 

431 areas are able to block moisture from entering continents or easily capture moisture from the 

432 atmosphere (van der Ent et al., 2010). Accelerating vegetation changes involving biodiversity loss 

433 and reduction of tropical alpine areas (Buytaert et al., 2011) is therefore a plausible cause for 

434 decreased water yields along these regions.

435 For the second region, at high latitudes, in the past three decades temperatures have 

436 increased rapidly, mainly in the northern hemisphere (Hartmann et al, 2013). As a consequence, 

437 rapid rates of snow melt have been observed in Arctic tundra and boreal forests in response to 
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438 warming temperatures (López-Moreno et al., 2020, Najafi et al., 2015, Pepin et al., 2015, Myers-

439 Smith et al., 2015, Lamprecht et al., 2015). These regions are warming more rapidly than lower 

440 latitudes due to polar amplification of temperature, water vapour, and surface albedo feedbacks 

441 (Myers-Smith et al., 2015, Chapin et al., 2005, Hinzman et al., 2013). There is also evidence that 

442 this effect is enhanced at high elevation regions where snow accumulation is greatest and changes 

443 in precipitation patterns are occurring (e.g  regions in the Tibetan Plateau, Rocky Mountains, 

444 Greater Alpine Region) (Pepin et al., 2015, Ohmura, 2012, Zhang et al., 2013, Yan et al., 2016, 

445 Palazzi et al., 2019). For example, recent findings have shown increases in lake levels and volumes 

446 in the Tibetan Plateau related to temperature amplification resulting in enhanced precipitation from 

447 a faster warming rate compared to the mean global warming (Zhang et al., 2020). Also, high 

448 latitude and mountainous regions of Siberian and Canadian arctic and boreal zones have seen 

449 increasing water yield trends due to ice-sheet loss, increasing precipitation, thawing and shrub 

450 growth in steep slopes (Rodell et al., 2018, Myers-Smith et al., 2015, Zhang et al., 2013). These 

451 lines of evidence are consistent with our findings of high HSi areas leaning toward higher water 

452 yields in these regions, and particularly those along the Siberian and easternmost Canadian and 

453 Euroasian Arctic.

454 5. Concluding remarks

455 We identified regions with hydrologic sensitivity to climate variability globally and at high 

456 spatial and temporal resolution within high and low latitudes. At high latitudes, boreal and arctic 

457 zones show heightened hydrologic sensitivity accompanied by increasing water yields, while at 

458 low latitudes, tropical rainforests show the largest hydrologic sensitivity with the majority of their 

459 sensitive area leaning towards decreasing water yields. We found that hydrologic sensitivity is 

460 amplified at high elevations and steep-sloped terrain, outlining the importance of topography in 
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However, I support another point, the warmer and 
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and results in enhanced precipitation. The enhanced 
precipitation is clearly reflected in expansion of lakes 
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461 modulating these effects with strong implications for high water yielding headwater catchments. 

462 We direct the attention towards climate warming resulting in increasing snow melt and 

463 precipitation in Arctic tundra and boreal forests and increasing tree cover loss in tropical forests, 

464 as possible mechanisms driving the observed patterns. Although there is no clear consensus yet on 

465 the direction surface water yields would take in tropical zones as a result of climate variability, our 

466 findings suggest that hydrologic sensitivity may be linked to vegetation changes. Other land cover 

467 changes associated with altered climatic patterns across high latitude regions may be contributing 

468 to changing hydrologic dynamics (Myers-Smith et al., 2015) in areas displayed in our HSi analysis 

469 as highly sensitive locations. Globally, boreal and tropical forests, the two biomes producing the 

470 greatest water yields also display the greatest extent of hydrologic sensitive land. This makes them 

471 hotspots for hydrologic surveillance to expected impacts from further increases in climatic shifts 

472 with the potential to significantly alter the global water cycle. Future work should determine if the 

473 hydrologic sensitivity patterns found in this study represent tipping points in changing hydrologic 

474 dynamics within each biome, and to assess at the regional and local scale their cascading impacts 

475 on ecosystems and human settlements. 

476 Code Availability
477 Code and datasets used to conduct this analysis are available online from our  Google Earth 
478 Engine link https://code.earthengine.google.com/9efbe6a3ccfb488eef80a903d923a30f. A 
479 MATLAB  code and associated data to reproduce the topographic analyses is available for 
480 download in the following open access repository:http://doi.org/10.5281/zenodo.4479716.
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698 Highlights

699  The majority of the terrestrial biomes are tending towards a drier state.
700  Tundra, boreal and tropical forests are the most hydrologic sensitive.
701  Hydrologic sensitivity in tropical forests is accompanied by reduced water yields.
702  Hydrologic sensitivity in high latitudes is accompanied by increased water yields.
703  Hydrologic sensitivity is amplified at high-elevation regions.
704
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