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ABSTRACT: The spatial distribution, concentration, particle size,
and polymer compositions of microplastics in Lake Michigan and
Lake Erie sediment were investigated. Fibers/lines were the most
abundant of the five particle types characterized. Microplastic
particles were observed in all samples with mean concentrations for
particles greater than 0.355 mm of 65.2 p kg−1 in Lake Michigan
samples (n = 20) and 431 p kg−1 in Lake Erie samples (n = 12).
Additional analysis of particles with size 0.1250−0.3549 mm in
Lake Erie resulted in a mean concentration of 631 p kg−1. The
majority of polymers in Lake Michigan samples were poly(ethylene
terephthalate) (PET), high-density polyethylene (HDPE), and
semisynthetic cellulose (S.S. Cellulose), and in Lake Erie samples
were S.S. Cellulose, polypropylene (PP), and poly(vinyl chloride)
(PVC). Polymer density estimates indicated that 85 and 74% of observed microplastic particles have a density greater than 1.1 g
cm−3 for Lake Michigan and Lake Erie, respectively. The current study provided a multidimensional dataset on the spatial
distribution of microplastics in benthic sediment from Lake Michigan and Lake Erie and valuable information for assessment of the
fate of microplastics in the Great Lakes.

1. INTRODUCTION

Microplastics are ubiquitous throughout the natural environ-
ment with their prevalence being observed in marine water,
freshwater, groundwater, drinking water, remote mountains,
Arctic sea ice, the atmosphere, and can be found within
numerous organisms including humans.1−9 Microplastics are
plastic particles measuring less than 5 mm in diameter and are
commonly categorized as fibers/lines, fragments, films, pellets/
beads, and foams. Microplastics originate from primary or
secondary sources; primary sources fulfill a specific need or
function (e.g., microbeads used in personal care products,
abrasive cleaning particles, pre-production resin pellets, and
microfibers used in manufacturing textiles),10,11 and secondary
sources result from degradation, wear and tear, or fragmenta-
tion of larger debris. Secondary sources include litter fragments
(e.g., plastic bags, bottles, wrappers, Styrofoam containers,
cigarette filters), synthetic fibers from textiles, road salt, and
tire wear particles.12−16 Pathways for microplastics to enter the
aquatic environment can include stormwater runoff (e.g., litter
and tire wear particles); domestic, industrial, and commercial
wastewater treatment plant effluent; treated sewage sludge and
illicit discharges (e.g., plastic shavings and dust, microbeads,
and synthetic fibers); organic fertilizers from biowaste
fermentation and composting (e.g., litter fragments, synthetic
fibers, microbeads); and atmospheric deposition (e.g.,
synthetic fibers).13,17−21

The number of organisms with observed microplastics in
their digestive systems continues to increase, but the
consequences for ingestion of microplastics are not well
understood. Plastic pieces of varying sizes have been ingested
by many different marine and freshwater organisms including
mammals,22−24 birds,25−28 crustaceans,29−31 mollusks,3,32−34

worms,35,36 and fish.37−42 Potential negative effects on
organisms that have been documented include obstruction of
the digestive system, clogging of feeding appendages, reduced
food consumption and predator performance, nutritional
deprivation, reduced immune response, substantial energy
reduction, and impaired reproduction and survival.31,43−48

Microplastics have been reported from various Great Lakes
hydrologic settings and compartments, including tributary
surface and subsurface water, and sediment, lake surface and
subsurface water, nearshore and offshore sediment, and
shoreline sediment.49−62 Comparison of water surface samples
in the Great Lakes with water surface samples in tributaries
indicate a large difference in the relative percent of different
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microplastic particle types. Fibers were much more prevalent
in tributary samples (52 to 97% of particles)51,63 than in lake
samples (<1−14%).53,55,56,61 A subsequent study of Milwau-
kee, Wisconsin, rivers and nearshore environments indicated
that microplastics were distributed throughout the water
column and density profiles reflected increasing polymer
densities from the surface to the subsurface to the sediment.59

Low-density microplastics (<1.1 g cm−3), such as foams from
expanded polystyrene and fragments from polypropylene were
shown to be the most abundant in water surface samples.
Conversely, high-density (>1.1 g cm−3) particles from
synthetic fibers, such as poly(ethylene terephthalate) (i.e.,
polyester, PET) had the opposite result with particle
abundance increasing with water depth down into the
sediment.59 Similar results describing vertical partitioning
based on polymer density have been observed previously.64,65

These results indicate that microplastic particles with a density
greater than 1.1 g cm−3, such as fibers, are likely to be settling
out in the Great Lakes, and this could help explain the
difference in the relative abundance of fibers in tributary
samples compared with lake samples. While studies of lake
sediment to date have begun to provide local-scale
information, they have not been of sufficient scale to verify
that high-density microplastic particles greater than 1.1 g cm−3

are indeed settling out in Great Lakes benthic sediment. The
majority of Great Lakes sediment samples have been collected
from shorel ine, nearshore, and coastal environ-
ments,49,50,52,54,58,59 and the St. Lawrence River.66 To further
understand fate and transport within the Great Lakes Basin, a
large-scale spatial representation of sediment microplastics
presence in Great Lakes benthic sediment in the offshore lake
environment is needed.
The goal of this study was to determine the spatial extent of

microplastics contamination in Lake Michigan and Lake Erie
surficial benthic sediment and the relative abundance of
different microplastic types, sizes, and polymeric composition
(microplastics properties). To do this, sediment was sampled
from multiple locations within each of the two lakes for
detailed analysis. Results may be used in future assessment of
microplastics fate and transport in freshwater environments
and for informing the assessment of potential biological effects
for particles with varying microplastics properties.

2. MATERIALS AND METHODS
2.1. Sample Collection and Analysis. Sampling locations

in Lake Michigan and Lake Erie were selected to provide a
representative coverage of the different characteristics within
the lakes, which include a range in water depth (15−240 m in
Lake Michigan and 7.5−62.8 m in Lake Erie), spatial coverage
around the lakes, and variable distance from the mouths of
tributaries (Table S1).
Twenty sediment samples were collected from Lake

Michigan in September 2013, and 12 sediment samples were
collected from Lake Erie in September 2014. Adequate
sediment samples could not be collected at six locations in
Lake Michigan and eight locations in Lake Erie due to a lack of
fine-grain sediment, or a high abundance of Dreissena bugensis
(quagga) or Dreissena polymorpha (zebra) mussels (Table S1).
Lake Michigan and Lake Erie sediment samples were

collected while on-board the U.S. Environmental Protection
Agency’s (EPA) R/V Lake Guardian. Lake Michigan sediment
was obtained using a stainless-steel standard ponar with an
0.229 m × 0.229 m sampling area (0.0524 m2) and a scoop

volume of 8.2 L (Ponar Grab, Standard, Wildco, Yulee,
Florida). Immediately upon retrieval, sediment was transferred
from the ponar dredge to a stainless-steel pan where a
stainless-steel spatula was used to subsample approximately the
top 2 cm of sediment. Sediment was then transferred to a 500-
mL baked amber glass bottle with a Teflon-lined lid, labeled
and frozen. Lake Erie sediment was collected with a four-core
multicorer (model MC-400, Ocean Instruments, Inc., San
Diego, California). The coring tubes used in Lake Erie were 10
cm × 60 cm polycarbonate tubes. Four sediment samples were
collected per multicorer cast. Immediately upon removal from
the multicorer, sediment cores were placed on a pneumatic
sediment extrusion device to be sectioned into 2-cm intervals.
The top 2 cm from two cores were composited into a 500-mL
baked amber glass bottle and frozen.
Sediment samples were processed using an improved

National Oceanic and Atmospheric Administration (NOAA)
laboratory method67 as modified by Zobkov and Esiukova68

with further details provided in the Supporting Information
(Text S1). Briefly, sediment processing consisted of a three-
step method: extraction of microplastics three times using a
zinc chloride solution (ρ = 1.6 g mL−1), wet peroxide oxidation
digestion of floating organic and plastic materials and calcite
digestion using 4.5% hydrochloric acid. Digestions were done
at room temperature to minimize the effects of the digestion
process on the integrity of microplastic particles. After
processing, the Lake Michigan samples were filtered through
a stacked set of 8-in. diameter stainless-steel mesh sieves
(4.750, 1.000, and 0.355 mm), while those for Lake Erie were
filtered through sieves of smaller mesh sizes (1.000, 0.355, and
0.125 mm). In both cases, the solid material was separated into
three size fractions, but the size fractions were different:
0.355−0.999, 1.000−4.749, and >4.750 mm for Lake
Michigan, and 0.125−0.3549, 0.355−0.999, and >1.000 mm
for Lake Erie. The different size fractions between Lake
Michigan and Lake Erie provided information on smaller
particle sizes to gain additional insight into microplastics
presence. No microplastics were found in the >4.750 mm size
fraction in Lake Michigan. As a result, the number of particles
counted in each size fraction 1.000−4.749 and >4.750 mm
were summed together so Lake Michigan sediment could have
two comparable size fractions, 0.355−0.999 mm and >1.000
mm, to Lake Erie. Individual sieve contents from Lake
Michigan and Lake Erie samples were transferred to Petri
dishes using deionized (DI) water for microplastic abstraction.
After filtering by size, microplastics were microscopically
analyzed to enumerate and categorize microplastic particles
according to plastic type: fragments, pellets/beads, fibers/lines,
films, or foams. Results presented are likely to underestimate
concentrations given the potential for some microplastics to
adhere to settling material during the extraction process, the
potential losses that could occur during sieving, and the
potential loss of some polymers from the chemical digestions.
Plastic particle concentrations are reported as particles per

kilogram (dry weight) sediment (p kg−1). All sample results for
this study are available online.69

To confirm the polymeric nature of collected microplastic
particles, a subset of Lake Michigan (9%, n = 37) and Lake
Erie (5.5%, n = 44) particles were selected for further analysis
by Fourier transform infrared (FTIR) attenuated total
reflectance spectroscopy (Table S2). All particles chosen for
FTIR analysis were randomly selected, but with regard to
obtaining acceptable FTIR spectra, and were less than 1 mm in
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size. An attempt was made to get good spectra on every
particle selected for FTIR analysis. Whichever particles were
first spotted under the microscope were extracted for FTIR
analysis. Once 10−20 readings from a single sample were
obtained, lab analysts would move on to another sample.
Selected particles were analyzed using a PerkinElmer Spectrum
Two FTIR with a universal attenuated total reflectance
accessory attachment operating in reflectance mode at 64
scans with 4 cm−1 resolution. Polymer identification was made
by comparing sample spectra to an internal manufacturer-
provided spectrum library, requiring a minimum 80% match
for acceptance. The amount of FTIR analysis performed by
particle type varied for Lake Michigan and Lake Erie
microplastic particles, with fiber/line particles from Lake
Michigan (7%) and Lake Erie (4%) being the lowest
percentage of particle types analyzed (Table S2). All FTIR
results for this study are available online.69

2.2. Data Analysis. Because the percentage of particle
types analyzed by FTIR were not exactly the same as the
percentage of each particle type observed in samples, FTIR
results were normalized to estimate the percentage of particles
represented by each polymer in the observed samples for each
lake. This computation was done using eq 1

PPE
NP
PT

TP= ×i
k
jjj

y
{
zzz (1)

where NP equals the number of particles identified as a specific
polymer (e.g., polypropylene) per particle type (e.g., fiber/
line), PT equals the number of individual particles analyzed via
FTIR by particle type, TP equals the total number of particles
collected by particle type for each lake sampled (Michigan or
Erie), and PPE equals the estimated number of particle types
by polymer type. This normalization routine was intended to
provide estimates for comparison, but accuracy is limited by
the number of particles analyzed by FTIR. Computations were
done separately for each lake with additional interpretation
based on common density values for the polymers.59

Statistical significance for concentrations from the over-
lapping size classes 0.355−0.999 and >1.000 mm from each
lake was determined with a pairwise Wilcoxon rank-sum test
with corrections for multiple comparisons (p < 0.05).70

2.3. Quality Assurance and Quality Control. To
determine recovery rates for microplastics in sediment using
the NOAA laboratory method67 recovery was evaluated in
2015, and again in 2017 using the revised NOAA method.68

Briefly, in 2015, Lake Erie sediment was collected at Dunkirk
Harbor, New York, using a ponar grab sampler specifically for
methods testing. Microbeads were extracted from consumer
facewash products by emptying entire tubes into a 0.125 mm
stainless-steel sieve and were washed with deionized water
until all of the soap residue was rinsed away. The remaining
microbeads were transferred into a Petri dish, dried in a
convention oven at 50 °C, and transferred to a glass vial for
later use. Eight test samples were produced using 60 to 500 mL
of Dunkirk Harbor sediment spiked with 10 to 100 extracted
microbeads. These eight samples were processed in 2015 using
the NOAA method67 yielding recovery rates of 67 to 100%
(mean = 90%, standard deviation (SD) 12%).
Two additional recovery tests were performed again in 2017

following the publication of the revised NOAA method68 using
Dunkirk Harbor sediment from the previous recovery tests.
For these two tests, PET fibers were created by trimming
thread purchased from a local fabric store. PET and

polypropylene fragments were created by cutting up a post-
consumer cup and straw. Twenty-five fragments, half of all the
spiked fragments, were greater than 1.0 mm, and the remaining
spiked plastic particles ranged from 0.125 to 0.355 mm in size.
Overall recovery results had a mean of 92% SD 7% from these
two tests and were consistent with results reported by Zobkov
and Esiukova using the revised NOAA method.68 Mean
recovery rates of 94% were obtained for fiber/lines and
fragments. Further details regarding microplastic recovery tests
are provided in Supporting Information Text S2.
To assess potential contamination from laboratory materials

or ambient laboratory air, two laboratory blanks were collected
and analyzed alongside the environmental samples and have
previously been reported.59 Laboratory blanks consisted of
deionized water stored in open sample containers for periods
of 1−14 days. The two laboratory blanks had fiber/lines in the
two smallest size categories for a total of three and six fiber/
lines, respectively.
Duplicate sediment samples were collected at three different

sampling locations on Lake Michigan and two sampling
locations on Lake Erie. Relative percent difference (RPD) for
the total microplastics concentration of the three duplicate
sediment samples from Lake Michigan was 8, 28, and 116%,
and the two duplicate sediment samples from Lake Erie was 11
and 126%.69 Additional RPD details by particle type are
provided in the Supporting Information (Text S3 and Table
S3). The number of microplastics collected in each duplicate
sediment sample pair varied by lake, sampling location, and
particle type (Figures S1 and S2). These RPD duplicate
sediment results represent a combination of variability from
laboratory procedures, an incomplete mixture of sediment
prior to transferring into the sample collection bottle, and
sediment heterogeneity.
Polycarbonate core tubes were individually inspected prior

to sampling. Visual evidence for potential contamination from
these tubes was not apparent, but additional blank samples
were not collected to verify this observation. Given that only
one of the seven fragment particles analyzed by FTIR were
found to be polycarbonate, it was considered unlikely that the
core tubes introduced contamination of polycarbonate
particles.

3. RESULTS
3.1. Sediment Microplastics. The smaller particle size

fraction enumerated in Lake Erie samples (0.1250−0.3549
mm) was not enumerated in Lake Michigan samples. Results
presented will first include the common particle size fractions
analyzed in samples from both lakes (0.355−0.999 mm and
>1.000 mm) and then the smaller particle size fraction for Lake
Erie. In Lake Michigan no particles were greater than 4.750
mm, and therefore the two largest size fractions (1.000−4.749
and >4.750 mm) were combined to make a >1.000 mm size
fraction for analysis herein. A full accounting of all sample
results including concentrations for each particle size fraction,
particle type within each sample, and polymers identified in a
subset of particles is available online.69

Microplastic particles were observed in every sediment
sample collected. The concentration of particles of size fraction
greater than 0.355 mm ranged from 9.1 to 318 p kg−1 with a
mean of 65.2 p kg−1 in Lake Michigan (n = 20) and 77.6 to
1680 p kg−1 with a mean of 431 p kg−1 in Lake Erie (n = 12;
Figures 1−3A). Concentrations of the additional smaller
particle size fraction analyzed in Lake Erie samples ranged
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from 110 to 3200 p kg−1 with a mean of 631 p kg−1 (Figures 2,
and 3A). The size fraction 0.355−0.999 mm represented 77%
of particles from all size fractions for Lake Michigan and 36%
for Lake Erie. The smallest size fraction 0.125−0.3549 mm
accounted for 63% of observed particles from all size fractions
in Lake Erie samples (Table S4).
Observed microplastics types were dominated by fibers/lines

for all size fractions in samples from both lakes (Figure 3B).
Particles that were greater than 0.355 mm consisted of 91 and
75% fibers/lines for Lake Michigan and Lake Erie, respectively.
Particles in the small size fraction from Lake Erie consisted of
59% fibers/lines. Other microplastics that were greater than
0.355 mm in Lake Michigan and Lake Erie samples consisted
of 1.5 and 10.2% fragments, 1.3 and 3.4% pellets/beads, 0.90
and 6.4% films, and 5.0 and 5.4% foams, respectively (Figure
3B). Microplastics observed in the smallest size fraction from
Lake Erie consisted of 20.6% fragments, 10.5% pellets/beads,
1.7% films, and 8.6% foams (Figure 3B).
Mean concentrations for the combined comparable size

fractions (>0.355 mm) were greater in Lake Erie samples than
Lake Michigan samples, including total concentration and the
individual particle type fragments, fiber/lines, and films (p <
0.05, Figure 4). Pellets/beads and foams were only present in

six and nine samples between both lakes, respectively; and
therefore, results between the two lakes for these particle types
were not significantly different.

3.2. Polymer Identification. FTIR analysis of 37 particles
from Lake Michigan sediment samples (9% of all Lake
Michigan sediment particles) resulted in identification of eight
different polymers (Figure S3 and Table S5). Thirty-two
percent of analyzed particles were identified as poly(ethylene
terephthalate) (PET, “polyester”), 24% as high-density poly-
ethylene (HDPE), and 19% as semisynthetic cellulose (S.S.
Cellulose). The other five identified polymers each accounted
for less than 8% of the total (Figure S3 and Table S5).
FTIR analysis of 44 particles from Lake Erie sediment

samples (5.5% of all Lake Erie sediment particles) resulted in
identification of 13 different polymers (Figure S3 and Table
S5). Twenty-three percent of analyzed particles were identified
as S.S. Cellulose, 14% as polypropylene (PP), and 11% as
poly(vinyl chloride) (PVC). The other 10 identified polymers
each accounted for less than 9% of the total, and polymers
could not be identified for 9% of the particles (Figure S3 and
Table S5).
Based on common densities for each polymer type and

normalized FTIR results, an estimated 85 and 74% of observed
plastic particles had estimated polymer densities greater than
1.1 g cm−3 for Lake Michigan and Lake Erie, respectively. Of
those particles with polymer density greater than 1.1 g cm−3,
80 and 57% represent fibers/lines from Lake Michigan and
Lake Erie, respectively (Figure 5A,B). The relative percentage
of different polymer types varied by lake in these samples
(Figure 5B).

4. DISCUSSION
The presence of microplastics in all sediment samples collected
across Lake Michigan and Lake Erie demonstrates the
ubiquitous presence of microplastics in the sediment of these
two lakes. Concentrations in sediment from Lake Erie were
greater overall compared to those from Lake Michigan for the
common particle sizes analyzed (>0.355 mm). Contributing
factors for this result could include the greater population
density and urban and agricultural land cover in the Lake Erie
basin, and collection of contributions from upstream areas that
include the Detroit River and Lake St. Clair.
Microplastic particles have also been observed to be

ubiquitous throughout tributaries from all Great
Lakes51,59,62,63,77,78 and at the surface within all Great
Lakes.53,55,56,61 These previous results established a difference
in the distribution of particle types between water surface
samples in tributaries compared with those from the open
lakes: fibers were the dominant particle type in tributaries
(45−100% of particles),51,59,62,63,77,78 and fragments were
dominant in lake water surface samples (42−97% of
particles).53,55,56,61 Evidence that helps explain this difference
was provided in a study of the vertical distribution of
microplastics in Milwaukee, Wisconsin area streams, estuary,
and Lake Michigan: Microplastic particles were present
throughout the water column with polymer density increasing
from the water surface to the water column to the sediment.59

Fibers were present throughout the water column and
sediment, and fragments were more abundant at the water
surface than in subsurface or sediment samples. Results from
sediment samples in the current study support the notion that
high-density microplastics (>1.1 g cm−3), such as PET fibers,
observed at the water surface in tributaries tend to settle

Figure 1. Sediment sampling locations and concentrations by particle
type for sediment samples collected from Lake Michigan. The black
dots represent sampled locations, X indicates a location where bed
material composition did not allow sample collection, major streams
are indicated with blue lines, and state/provincial boundaries are
shown with gray lines.71,72 Particles include the size fractions >0.355
mm. (p kg−1, particles per kilogram dry weight sediment; mm,
millimeters; >, greater than).
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through the water column and deposit in benthic lake
sediment once reaching the more quiescent, low-turbulent,
and deep waters of the Great Lakes.

Consistent with the current study, a prevalence of fibers in
different environmental settings has been observed in multiple
studies from around the globe: stream water samples from
eight countries,51,62,79−87 lake water samples from four
countries,59,85,88−90 sediment samples from eight coun-
tries,52,60,82,84,88,91−95 and atmospheric samples from four
countries in addition to the Arctic7,8,21,79,96−101 have
documented that anthropogenic fibers are the most prevalent
type of microplastic particle. Fibers can be primary and
secondary microplastics, although they are predominantly
thought of as secondary microplastics derived mainly from the
breakdown of larger plastic material. Additionally, fibers can be
composed of a diverse group of synthetic plastic polymers such
as nylon or PET, natural cellulose, and/or artificial semi-
synthetic cellulose making fiber material challenging to

Figure 2. Sediment sampling locations and concentrations by particle type and particle size fraction for sediment samples collected from Lake Erie.
The black dots represent sampled locations, X indicates a location where bed material composition did not allow sample collection, major streams
are indicated with blue lines, and state/provincial boundaries are shown with gray lines.71,72 Particles include the size fractions from 0.125 to 0.3549
mm (left bar) and >0.355 mm (right bar). (p kg−1, particles per kilogram dry weight sediment; mm, millimeters; >, greater than).

Figure 3. (A) Mean concentrations and (B) percentages by size
fraction and particle type for sediment samples collected in Lake Erie
(12 samples) and Lake Michigan (20 samples). The smallest size
fraction was only analyzed in Lake Erie samples. (n = number of
samples; mm = millimeter; p kg−1 = particles per kilogram; wt,
weight).

Figure 4. Mean concentrations by particle type for all microplastics
greater than 0.355 mm for Lake Erie and Lake Michigan. (n, number
of samples collected; p kg−1, particles per kilogram; wt, weight).
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define.80,101−103 Original sources of fibers can include
microfibers used in manufacturing textiles, synthetic textiles
(e.g., clothing, reusable bags/baskets, carpeting, window
shades, towels, backpacks, parachutes, tents, nets, furniture,
plastic teabags), cigarette filters, construction materials (e.g.,
fiber-reinforced cement composites, insulation) electrical
components, and automotive components (e.g., airbags,
upholstery, heavy-duty tires, cap ply for radial tires).104−107

Particles from these sources have multiple potential routes of
delivery to the aquatic environment, including wastewater
treatment plant (WWTP) effluent directly to water bodies,19

treated biosolids (sewage sludge) application on land surfaces
and subsequent runoff,19,108 runoff from nonpoint sour-
ces,109,110 venting exhaust from laundry drying machines that
can result in atmospheric transport,21,79,111 and atmospheric
deposition directly to aquatic environments,21,99,100 and
atmospheric deposition to land surfaces followed by runoff
events.21,97,100 For example, WWTP facilities from around the
United States contribute an estimated mean discharge of 4
million microplastic particles per facility per day, with fibers
and fragments being the most prevalent in treatment plant
effluent.19 Estimates of microplastics in sewage sludge have
been reported from 15 385 p kg−1 dry weight (dw) up to
34 000 p kg−1 dw, and fibers were the most prevalent particle
type.108,112 Research into atmospheric deposition of micro-
plastics indicates that fibers and fragments are ubiquitous

within the atmosphere globally and the potential for
redeposition (wet and dry) onto aquatic surfaces is high.7,8,96

The range of microplastic concentrations in the current
study from Lake Michigan was less than that from previous
sediment studies of the Great Lakes basin, but previous studies
have focused primarily on tributaries, estuaries, and nearshore
environments that were closer to sources and not subject to
dilution from larger undeveloped areas in the Great Lakes. In
addition, previous studies have quantified microplastics into
smaller size fractions (0.063 to >5.0 mm),52 (0.5−3.0 mm),50

(0.063−2.0 mm),58 (>0.125 mm),59 and (0.063−2.0 mm)60

than the current study from Lake Michigan (>0.355 mm). In
contrast, concentrations and the size fractions used for
quantifying microplastics from sediment samples collected
from Lake Erie in the current study were more comparable to
the results from previous samples50,52,58−60 collected from
tributaries, and nearshore environments. This is likely a result
of the greater influence of areas developed for urban and
agricultural land use that contribute flow to Lake Erie,
including flow from Lake Huron through the Detroit River,
and direct drainage from the highly developed land
surrounding Lake Erie. Like the current study, fibers and
fragments have proven to be the most abundant particle types
observed in these previous Great Lakes studies discussed
above.

Figure 5. (A) Sum of the estimated fraction of total particles and polymers by density. (B) Estimated fraction of total particles and polymers by
lake, arranged by increasing density (ρ)73−76 from top left to right within each color group. Only polymers that represented greater than 2% of
particles collected are represented in individual polymer charts, and polystyrene (PS) and polycarbonate (PC) are not shown. PP = polypropylene;
LDPE = low-density polyethylene; HDPE = high-density polyethylene; Nylon = nylon; PMMA = poly(methyl methacrylate); PAN =
polyacrylonitrile; PVA = poly(vinyl acetate); PEG = poly(ethylene glycol); Azlon = azlon; PET = poly(ethylene terephthalate); PVC = poly(vinyl
chloride); S.S. Cellulose = semisynthetic cellulose; unknown = polymer was not identified; (<, less than; >, greater than; ρ, density; g cm−3, grams
per cubic centimeter).
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Much of the previous research on microplastics in the
aquatic environment has focused on particle sizes greater than
about 0.355 mm, and only a small number of studies have
included smaller size fractions, although that number continues
to increase. Many studies have enumerated microplastics
particles in sizes greater than 0.355 mm. Of those particles, the
concentrations in smaller size fractions (e.g., 0.355−1.0 mm)
have commonly been greater than concentrations in larger size
fractions; the percent of particles less than 1.0 mm in these
studies ranged from 62−97% in sediment samples52,57,59,113,114

and from 59−93% in water samples.51,53,55,56,61 This pattern is
maintained in studies where smaller sized particles were
enumerated in water and in sediment samples. In the current
study, the amount of microplastics in Lake Erie sediment
samples with grain size 0.125−0.3549 mm was similar to the
amount in the larger particle sizes (>0.355 mm) with median
values of 309 and 312 p kg−1, respectively. Similarly,
concentrations of particles less than 0.125 mm in sediment
samples from marine and freshwater environments in previous
work were approximately equal to or greater than concen-
trations from size fractions greater than 0.125 mm.59,115−117

Results from surface water samples have indicated that
concentrations of smaller particles may be even more
prevalent; previous studies of marine waters, sampling with a
mesh smaller than 100 μm in size increased concentrations 1−
4 orders of magnitude over samples collected with a standard
333 μm mesh.118−120 Similarly, studies of freshwater environ-
ments have shown higher concentrations when sampling with
mesh sizes less than or equal to 100 μm compared to the
standard 333 μm mesh.79,80,84,121 Collectively, these results
have indicated smaller particles are at least as abundant as
larger particles in sediment and in surface water, and this
indicates that limiting analysis to size fractions greater than
0.355 mm can substantially underestimate overall microplastics
concentrations in aquatic environments.
Identified polymers in more than 10% of the FTIR-analyzed

particles were different depending on the lake. For example,
36% of the particles analyzed by FTIR in Lake Michigan were
PET, while only 12% of particles from Lake Erie were PET.
Similarly, 15% of FTIR-analyzed particles were HDPE in Lake
Michigan compared to 1% in Lake Erie. Semisynthetic
cellulose (S.S. Cellulose) and PP resulted in similar
percentages between the lakes with 23 and 3% of FTIR-
analyzed particles in Lake Michigan and 30 and 11% in Lake
Erie, respectively. The variety of polymers observed supports
the idea that “microplastics” are a suite of particles consisting
of different chemical compounds with inherently different
properties, including density, particle type, shape size, and
chemical behavior. This information reinforces the notion that
microplastics may be more accurately treated as a diverse
group of emerging contaminants rather than one generic class
of contaminants.122

The relative abundances of different polymers in freshwater
and marine environments have been observed to be vertically
stratified with a diverse group of high-density polymers most
abundant in the bottom sediment113,115,123−127 (including the
current study), a combination of low- and high-density
particles in the water column beneath the water surface,22,59,65

and low-density polymers most abundant at the water
surface.55,61,121,128−130 The presence of polymers in these
different aquatic compartments has not been exclusively
limited in this manner: low-density particles such as poly-
ethylene and PP (ρ < 1.1 g cm−3) have been observed in

sediment,50,52,58,59,115 and high-density polymers such as PVC
and PET (ρ > 1.1 g cm−3) have been observed at the water
surface.59,85,90,121 Estimations of polymer density rely on values
from the literature for the most common forms of each
polymer. Density can vary from these values based on several
factors. For example, manufacturing of plastics often includes
addition of functional fillers such as calcium carbonate, silica,
kaolin, talc, and mica or pigments such as copper(II)
phthalocyanine that can change the density of polymers.50,58

In addition, biofilm colonization has been observed on
microplastics in the aquatic environment that changes the
effective density of the particles.131−134 These density
modifications can cause microplastics with polymers of high
or low density to appear in unexpected aquatic compartments.
With an abundance of evidence that microplastics are

present in multiple environmental compartments from around
the globe, and specifically in the Great Lakes basin, it is
important to consider how this presence may influence
ecological health.122 A review of published exposure studies
over multiple levels of biological organization concluded that
microplastics are causing ecological effects, and the assessment
of these effects is complex with the nature and severity driven
by dose, particle shape, polymer type, and particle size.135

Observed effects are diverse and include multiple biological
pathways with variable outcomes, such as reproductive
disfunction, alteration of locomotion, intestinal damage,
change in metabolic profiles, and mortality.136 In addition,
components of plastics including polymers and functional
additives can have adverse effects,136 and desorption of these
components has been documented in biological organ-
isms.137−139 Furthermore, microplastics can increase the
concentration of harmful persistent organic pollutants
(POPs) such as dichlorodiphenyldichloroethylene (DDE)
and represent an understudied pathway for contamination
among aquatic food-webs.140 Even with the mounting evidence
regarding adverse biological effects, bioassays with micro-
plastics commonly use concentrations greater than those
typically observed in environmental samples,135 and have not
been focused on exposure in benthic sediment. The current
study provides information on microplastics particle size and
type, concentration, and polymer composition in sediment of
Lakes Michigan and Erie that can be used to assess potential
for biological effects when sufficient data is available for such
analysis.
Although research in the past decade has advanced the

understanding of the behavior and effects of microplastics in
the aquatic environment, there is still much to learn. There are
many remaining gaps with respect to assessment of ecological
effects. With regard to the presence and movement of
microplastics, a more thorough understanding is needed for
source characterization, atmospheric deposition, mass or
particle loadings to and within receiving waters, fate and
transport properties, and hydrodynamic modeling. In addition,
understanding how exposure to microplastics may translate to
a potential hazard for environmental organisms is not well
understood. Additional relevant laboratory and field-based
experiments for the complex matrix of environmentally
appropriate microplastics characteristics are needed, including
variable concentrations, size fractions, particle types, polymer
composition, and organisms from multiple trophic levels.
Further, a consistent approach for defining microplastics in the
aquatic environment would allow comparability among studies,
including field sampling as well as laboratory methods. Field
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methods that would benefit from standardized methods
include sampling at the surface, in the subsurface, and in
sediment of rivers, estuaries, and lakes. Laboratory methods in
need of standardization include enumeration, size fractions,
classification of particle types (morphology and shape), and
identification of polymer composition.
The current study fills an important gap in information for

the Great Lakes system by quantifying microplastics in benthic
sediment from the offshore lake environment. A multidimen-
sional dataset was developed for evaluation of the spatial
distribution of microplastics in benthic sediments from Lake
Michigan and Lake Erie including concentrations, geographic
distribution, particle types, particle sizes, and identified
polymers. Lake Erie microplastic concentrations were greater
than those observed for Lake Michigan for the comparable size
fractions between the two lakes. There were similar amounts of
particles in the smaller size fraction analyzed in Lake Erie
compared to the large size fraction, emphasizing the
importance of quantifying smaller particle sizes for a more
thorough representation of microplastics. The observed
tendency toward high-density particles and a majority
percentage of fibers compared to other particles in sediment
samples provides information that can be used in a future study
of fate and transport of microplastics particles. These results
indicate a plausible explanation for the difference in fiber
abundance in tributaries that were not present at the water
surface in the Great Lakes.
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Instituto Nacional de Estadiśtica, Geografía e Informat́ica, Aguasca-
lientes, Aguascalientes, Mexico; U.S. Geological Survey, Reston,
Virginia, USA, 2006.
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