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A B S T R A C T

A hyperspectral inversion algorithm was used to distinguish between cyanobacteria and algal blooms in optically
complex inland waters. A framework for the algorithm is presented that incorporates a bio-optical model, a
solution for the radiative transfer equation using the EcoLight-S radiative transfer model, and a non-linear op-
timization procedure. The natural variability in the size of phytoplankton populations was simulated using a
two-layered sphere model that generated size-specific inherent optical properties (IOPs). The algorithm effec-
tively determined the type of high-biomass blooms in terms of the relative percentage species composition of
cyanobacteria. It also provided statistically significant estimates of population size (as estimated by the effective
diameter), chlorophyll-a (chl-a) and phycocyanin pigment concentrations, the phytoplankton absorption coef-
ficient, and the non-algal absorption coefficient. The algorithm framework presented here can in principle be
adapted for distinguishing between phytoplankton groups using satellite and in situ remotely sensed reflectance.

1. Introduction

The development of a method for remote sensing for distinguishing
between blooms of cyanobacteria and algae is of considerable im-
portance due to the large potential negative effects that toxin producing
cyanobacteria may have on the health of humans, animals and aquatic
ecosystems (see Matthews et al., 2012). Hyper- and multi-spectral sa-
tellite missions present the opportunity to detect species-specific spec-
tral features as postulated in the 1990s by Laurie L. Richardson
(Richardson, 1996), and are becoming a reality through several
planned hyperspectral satellite missions such as Germany's Environ-
mental Mapping and Analysis Program (EnMAP), Italy's PRecursore
IperSpettrale della Missione Applicativa (PRISMA), India's Hyperspec-
tral Imaging Satellite (HySIS), NASA's Plankton, Aerosol, Cloud and
ocean Ecosystem (PACE), and ESA's FLuorescence EXplorer (FLEX).
Studies focused on differentiating cyanobacteria using ground or sa-
tellite spectral measurements have been limited to empirical methods
detecting diagnostic spectral features of species such as Microcystis (e.g.
Zhou et al., 2018; Matthews and Odermatt, 2015; Stumpf et al., 2012)
and Trichodesmium (e.g. Hu et al., 2010; Dupouy et al., 2011), and the
retrieval of accessory pigments such as phycocyanin (PC) (e.g. Simis

et al., 2005; Hunter et al., 2010). Up till the present study, there have
been very few approaches using a physically-based inverse modeling
approach to distinguishing cyanobacteria from algae (e.g., Xi et al.,
2015, 2017). However, all the studies so far have ignored the natural
variability in the spectral inherent optical properties (IOPs), the species
percentage composition of cyanobacteria to algae, and the phyto-
plankton population cell-size, which are considered important diag-
nostic drivers of the resulting remote sensing reflectance and are also
indicators of harmful species. This study addresses some gaps identified
by Bracher et al. (2017) related to phytoplankton type identification.
Firstly, it presents a useful in situ matchup dataset from a selection of
diverse inland waters; secondly, it presents new measurements of
spectral IOPs for two phytoplankton groups (including backscattering
derived using a two layered sphere model); and thirdly, it implements
an inversion based on the direct solution of the radiative transfer
equation through EcoLight-S (Sequoia Scientific, Inc.). It also presents a
new framework for an approach that exploits hyperspectral informa-
tion.

This study tests the hypothesis that cyanobacteria can be system-
atically differentiated from algae using remote sensing reflectance on
the basis of diagnostic IOPs resulting from pigmentation, cell size and
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internal structure. It uses the results from an earlier investigation on the
effect of intracellular gas vacuoles on spectral scattering in cyano-
bacteria (Matthews and Bernard, 2013a). It develops a novel inversion
algorithm framework based on the equivalent algal populations (EAP)
model (Robertson Lain et al., 2014) and the inverse method used in
Evers-King et al. (2014) that incorporates a direct solution of the ra-
diative transfer equation with EcoLight-S (see also Rehm and Mobley,
2013). The overall aim is to present a novel spectral-matching inversion
algorithm that accounts for variability in the size and type of cyano-
bacteria and algal populations.

2. Materials and methods

2.1. Description of sample sites and water types

The details of the sampling areas and the methods used to determine
the bio-geochemical parameters and absorption coefficients are pro-
vided in Matthews and Bernard (2013b). Briefly, measurements were
made in three mid-latitude African freshwater reservoirs: Loskop Dam
(LK, 25.42 S, 29.35 E), Hartbeespoort Dam (HB, 25.74 S, 27.86 E), and
Theewaterskloof Dam (TW, 34.03 S, 19.26 E). Each of the systems had
differing phytoplankton populations: LK was dominated by the large
celled dinoflagellate Ceratium hirundinella (equivalent spherical dia-
meter (ESD) = 40 μm) with a wide range of biomass (chl-a of 0.5 to
500 mg m−3); HB was dominated by a mono-specific Microcystis aeru-
ginosa cyanobacteria bloom (ESD = 5 μm) with chl-a up to
13,000 mg m−3; and TW had a mixed phytoplankton population co-
dominated by the large dinoflagellate Sphaerodinium fimbriatum
(ESD = 40 μm) and the filamentous vacuolate cyanophyte Anabaena
ucrainica (ESD = 16 μm) and various diatom species. Therefore, the
data can be summarised as being derived from a) a large-celled dino-
flagellate bloom, b) a small-celled gas-vacuolate cyanobacteria bloom,
and c) a mixed bloom of large-celled dinoflagellates and intermediate-
celled gas vacuolated cyanobacteria. For the purposes of analysis, the
data were grouped into the following cases based on OECD trophic
classes: oligotrophic (chl-a < 10 mg m−3, oligo); meso-eutrophic di-
noflagellate-dominant (chl-a 10 to 30 mg m−3, meso_dino); meso-eu-
trophic mixed (meso_mixed); hyper-eutrophic dinoflagellate-dominant
(chl-a > 30 mg m−3, dino); and hyper-eutrophic cyanobacteria-
dominant (cyano).

2.2. Remote sensing reflectance

A total of 63 remote sensing reflectance (Rrs) spectra from the three
systems were used in the algorithm evaluation (Fig. 1). Rrs was mea-
sured using an ASD FieldSpec™ 3 Portable Spectroradiometer (ASD Inc.,
Bolder, CO) using the protocols outlined in Mueller et al. (2003).
Measurements were only performed under mostly clear sky conditions
(cloud cover< 20%) since cloud cover is known to impart large errors
from shadows and other effects (Mobley, 1999; Doxaran et al., 2004).
Ten radiance spectra were collected in sequence for a Spectralon™
plaque, sky and water targets in order to minimise the effects of wind
and waves and temporal variability in surface reflectance. Measure-
ments were performed between 9 am and 12 pm using a viewing zenith
angle of θ = 40° away from the sun azimuthally at ϕ = 135°. Care was
taken to ensure that the plaque was free from shadow or reflectance
effects from any source. Sky radiance was measured using the same
viewing angle to the zenith. The measurement procedure was per-
formed three times in sequence with dark readings taken between each
sequence. The mean of the radiance spectra for each target was then
computed, taking care to exclude contaminated or outlying spectra by
visual inspection. Rrs was then calculated using the mean spectrum for
each target according to Mobley (1999):
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where Lt is the water surface radiance, Ls is the sky radiance, ρ is the
proportionality factor for the sky radiance to the reflected sky radiance
on the water surface, π is 3.14, Lg is the radiance measured from the
Spectralon™ plaque, and Rg is the Spectralon™ bi-directional reflectance
function. The Spectralon™ plaque was assumed to be Lambertian and a
perfect reflector (Rg = 0.99). Since the wind speed of all measurements
was less than 5 m s−1 a value for ρ of 0.025 was used (see Fig. 9 in
Mobley, 1999).

2.3. Phytoplankton type and size

Two estimates of the phytoplankton population size were de-
termined, namely the effective diameter (Deff) and the equivalent
spherical diameter (ESD). Phytoplankton identification and counts were
performed by microscopy. These were used to calculate ESD using lit-
erature estimates of cell volumes for individual species mainly from
Reynolds (2006). Particle size distributions (PSDs) were determined
using a Multisizer-4™ particle analyzer (BeckmanCoulter®). The 140 μm
aperture allowed measurements of particles between 2.8 and 84 μm.
Samples were kept cool and in the dark until analysis which was per-
formed on the same day as collection. Fresh water samples were diluted
using Isoflow solution (BeckmanCoulter®), after which 20 ml was
counted maintaining a concentration of between 2.5 and 10% with
correction for particle coincidence. Blank particle counts were mea-
sured using freshly 0.2 μm filtered and sample water that was diluted
identically. PSDs were corrected by subtracting the mean blank particle
counts that were scaled for dilution. PSDs in cells per liter were median
filtered to reduce spiking and interpolated onto linear spaced bins of
1 μm diameter through calculation of the spectral density.

PSDs were partitioned into algal and non-algal components using a
numerical technique (cf. Bernard et al., 2001). The detrital distribution
was estimated as a Jungian distribution with slope of −4 and scaled to
the minimum volume of the PSD between 1 and 7 μm. The detrital
distribution was then subtracted from the PSD to give the estimated
phytoplankton size distribution. The effective radius (Reff) and variance
(Veff) of the phytoplankton size distributions were calculated as follows
(Hansen and Travis, 1974):
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where r is the particle radius in m, F(r) is the number of particles per
unit volume (cells per m3), and d(r) is the difference between the size
bins in meters. The effective diameter or Deff (= 2Reff) was used to
describe a mean particle size.

2.4. Phytoplankton IOPs

The IOPs for cyanobacteria and dinoflagellates were measured (see
Matthews and Bernard, 2013b), and the size-specific absorptions and
backscattering coefficients were generated using a two-layered sphere
model (see Matthews and Bernard, 2013a for details). For cyano-
bacteria the model was configured with an internal gas vacuole occu-
pying 50% of the cell volume, surrounded by a chromatoplasm. For
dinoflagellates the model consisted of an internal cytoplasm surrounded
by a chloroplast layer. The complex refractive indices (m), consisting of
the imaginary (n’) and real (n) components for the absorbing layers,
were derived from measurements of the particle size distribution (PSD)
and absorption of natural populations of M. aeruginosa and C. hir-
undinella (see Fig. 2).

Using the refractive index data, the two-layer model was run for
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hypothetical populations of cells characterized by cell size. For the
purposes of this study, standard size distributions with Deff ranging from
1 to 50 μm with a 1 μm resolution were used (Bernard et al., 2001,
2007), with the value of Veff set to 0.6. The population of cells had
diameters ranging from 1 to 100 μm at a 1 μm size interval. The in-
tracellular chlorophyll concentration (ci) was used to normalise the PSD
and volume coefficients to produce chl-a specific IOPs. The value of ci
forMicrocystis sp. cyanobacteria was 2.1 kg m−3 (Zhou et al., 2012) and
3.2 kg m−3 for C. hirundinella calculated from experimental data.

The output of the two layered model was the size-and-chl-a-specific
IOPs for the hypothetical cyanobacteria and dinoflagellate populations
(Fig. 3). The phytoplankton IOPs were therefore characterized in terms
of both size (Deff) and concentration of chl-a (C) in mg m−3.

2.5. Algorithm framework

The algorithm uses an implicit spectral matching approach con-
sisting of three components: a bio-optical model for estimating the
IOPs; a radiative transfer model for calculating Rrs; and a non-linear
optimization algorithm for matching the estimated and observed Rrs

(Fig. 4).

2.6. Bio optical model

Water constituents were partitioned into living phytoplankton (ϕ),
chromophoric dissolved organic matter here referred to as gelbstoff (g),
and non-algal particles (NAP) which includes minerals and detritus
(also referred to as d), not neglecting water itself (w). The IOPs of other

water constituents such as bubbles, viruses, bacteria and very small
particles e.g. colloids, are not explicitly determined for this study, but
may also be significant contributors to the total IOPs (e.g. Stramski
et al., 2001). The four-component bio-optical model was used to cal-
culate the total volume coefficients according to:

= + +a a a at ϕ gd w (4)

= + +b b b bt ϕ nap w (5)

= + +b b b bbt bϕ bnap bw (6)

where a, b and bb, are the absorption, scattering and backscattering
volume coefficients, respectively.

The total phytoplankton coefficients were calculated as an ad-
mixture of the cyanobacteria and dinoflagellates types. The phyto-
plankton admixture coefficient, T, varying between 0 and 1, re-
presented the relative contributions of cyanobacteria and
dinoflagellates to the overall phytoplankton population (1 = 100%
cyanobacteria, 0 = 100% dinoflagellates). The concentration of C was
used to calculate the total phytoplankton IOPs:

= × + −∗ ∗i C Ti D T i D[ ( ) (1 ) ( )]ϕ ϕc effc ϕd effd (7)

where i is a, b or bb at the relevant effective diameter, and c and d
represent cyanobacteria or dinoflagellates, respectively. The size para-
meters (Deff) for dinoflagellates and cyanobacteria were allowed to vary
independently of each other. Gelbstoff and detrital (including minerals)
absorption (agd) were coupled because of their similar spectral shapes:

= − −a a e(442)gd gd
S λ( 442) (8)

Fig. 1. Rrs measured in cyanobacteria-dominant waters (Hartbeespoort) (A), dinoflagellate-dominant waters (Loskop) (B), and mixed waters (Theewaterskloof) (C).
The measured distributions of chl-a (D), aϕ(442) (E), ad(442) (F) and ag(442) (G). Rrs spectra from (A) and (B) are overlaid in (C) for comparison of shape and
magnitude.
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where S is the slope coefficient where the mean value of 0.013 for the
study areas was used (see Matthews and Bernard, 2013b).

An independent non-algal particle (back)scattering coefficient was
used as it accounted for other particles (e.g. very small particles, bub-
bles and bacteria), and because there was variability in the mass-spe-
cific tripton coefficients between the study areas (see Matthews and
Bernard, 2013b). A power-law function has been determined to provide

a close fit with measurements of the particulate backscattering in
coastal and inland waters (e.g. Sun et al., 2009; Snyder et al., 2008):

= ×b b λ(560) ( /560)bnap bnap
γ (9)

where γ is the slope coefficient, the value of which typically ranges
from 0 to−2 nm−1 with a mean near−1 nm−1 (ibid.). A spectrally flat
γ (= 0 nm−1) was used as it was found to increase the sensitivity to

Fig. 2. Properties of M. aeruginosa (cyanobacteria) and C. hirundinella (dinoflagellate) used in the two-layered model simulations. (A) Measured chl-a specific
absorption coefficients; (B) the chl-a specific phytoplankton volume distribution (Vchl

∗); (C) imaginary refractive index for cyanobacteria chromatoplasm (n’chrom) for
cell with 50% gas vacuole volume, and dinoflagellate chloroplast (n’chlor) with 30% cell volume, (D) real refractive index (n) for cyanobacteria chromatoplasm and
dinoflagellate chloroplast layers.

Fig. 3. Chl-a specific volume coefficients modelled using a two-layered sphere for cyanobacteria and dinoflagellates populations with Deff from 1 to 50 μm.
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phytoplankton related spectral features.
Based on a review of studies performed in complex waters, from

sediment-dominated coastal waters to turbid eutrophic lakes, the value
of the backscattering ratio, b ,͠ bp ranges from approx. 0.5 to 7% (Snyder
et al., 2008; Sun et al., 2009; McKee et al., 2009; O'Donnell et al., 2010;
Neukermans et al., 2012). The cited studies refer to the bulk particulate
matter (back)scattering and not non-algal particle backscattering as
used here (Eq. 9). A spectral dependency of b͠bp has been noted by some

authors (Snyder et al., 2008; McKee et al., 2009) although this is
somewhat disputed (Whitmire et al., 2007). In productive turbid wa-
ters, b͠bp has been reported as being inversely proportional to the in-
organic or mineral component of suspended matter, and poorly corre-
lated with chl-a (Sun et al., 2009), typically varying between 1 and 2%.
As phytoplankton scatter poorly in comparison with minerals, bnap is
likely to differ little from bp, except in highly productive waters. It is
also probable that bnap that excludes the phytoplankton component has

Fig. 4. Framework for the radiative transfer inversion algorithm. Light grey shading represents variables solved for iteratively, and darker grey shading represents
outputs. The bold text and arrows represent the iterative process followed by the algorithm. Tol. = tolerance. See text for abbreviations.
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less spectral dependence than bp. Therefore, a spectrally flat b͠bp with
values ranging from 1 to 5% was assessed in the calculation of bnap:

= ×b
b

b1
͠nap
bnap

bnap
(10)

where b͠bnapis the ratio bbnap:bnap.
Phycocyanin (PC) is commonly used as an indicator pigment for

cyanobacteria blooms, and various algorithms have been developed for
its detection (e.g. Simis et al., 2005; Hunter et al., 2010). PC was re-
trieved from aϕ(λ). The absorption by PC at 620 nm, apc(620), was
calculated as aϕ(620) − 0.24 × aϕ(665) after Simis et al. (2005). PC
was then retrieved using the relationship determined in Matthews and
Bernard (2013b):

=PC apc( (620)/0.0146)1.076 (11)

2.7. Radiative transfer model

EcoLight-S is a radiative transfer model that solves the radiative
transfer equation with very fast run times. The use of EcoLight-S avoids
the assumptions and uncertainties associated with reflectance approx-
imations and the associated bi-directional function (f/Q), which up to
the present has not been adequately characterized in high-biomass,
turbid and optically complex waters (Lee et al., 2011; Chami et al.,
2006). In highly scattering waters, the single scattering approximation
breaks down, resulting in large changes in the radiance distribution and
the f/Q factor (Piskozub and McKee, 2011; Aurin and Dierssen, 2012).

The inputs to EcoLight-S are the total absorption, scattering and
backscattering volume coefficients (at, bt, bbt). Fluorescence is not cal-
culated by EcoLight-S. The required incident downwelling irradiance
(Ed) was computed using the Radtran Sky irradiance model (Gregg and
Carder, 1990). Atmospheric pressure, total precipitable water vapour
column in cm (WV), and aerosol optical thickness (AOT) (Microtops II
sun photometer) were measured co-incident to Rrs and used as input.
Horizontal visibility was calculated from AOT at 550 nm according to
3.9449 = (AOT(550) – 0.08498) (Retalis et al., 2010). Relative hu-
midity was estimated from WV according to 18WV + 40 (calculated
using data in Raj et al., 2004). Cloud cover was estimated in % as ob-
served in situ, and a continental aerosol model was used.

In EcoLight-S the IOPs are assumed to be constant within homo-
geneous layers. In this study, a homogeneous optically-deep water
profile was used with no bottom reflectance. Although the vertical
profile of the IOPs significantly changes Rrs (e.g. Kutser et al., 2008), the
turbid waters under investigation in this study have very shallow op-
tical depths. On average Secchi disk depth was less than 2 m (maximum
of approx. 8 m for a few clear water samples). A spectrally variant

Fournier and Forand (1994) phase function dependent on the value of
bb:b and shown to provide improved optical closure in optically com-
plex waters was used (e.g., Mobley et al., 2002; Tzortziou et al., 2006;
Gallegos et al., 2008).

2.8. Non-linear optimization technique

A Nelder and Mead (1965) downhill simplex algorithm was used to
fit the measured Rrs spectrum between 400 and 800 nm, using the
Euclidian distance and a wavelength weighting function, f(λ):

∑= × −
=

d x y f λ x y( , ) ( ) (| |)
i

N

i i i
1

2

(12)

where x and y are the measured and modelled spectra, and f(λ) is a
spectral function used to assign a reduced weight (1%) to wavelengths
in the chl-a fluorescence domain (680 to 695 nm). The complex fluor-
escence effects at high concentrations are thereby not taken into ac-
count by the algorithm. The simplex algorithm iterates until the esti-
mated variables change by less than the tolerance level, which was
1 × 10−6, or the maximum number of iterations is reached.

Six unknowns were solved for: chl-a, the admixture coefficient (T),
Deff for cyanobacteria and dinoflagellates, bbnap(560) and agd(442).
Various initial values for each of the unknowns were tested (Table 1).
The initial value for chl-a was estimated using an empirically-derived
relationship between chl-a and the Rrs(710):Rrs(665) reflectance ratio
(R):

= − + −Chl R R6.1 91.3 47.72 (13)

The starting value of T was determined using a binary flag based on
spectral features (Eq. 6 in Matthews et al., 2012) and the initial chl-a
estimate (Table 2). The initial values for the effective diameters for
cyanobacteria and dinoflagellates were 5 and 31 μm simulating a small
and large species, respectively. The initial value of agd(440) was
2.5 m−1 and ranged between 0.2 and 6.0 m−1.

The non-parametric (Spearman's rank) coefficient of determination
(R2) and log-scaled root mean square error (log-RMSE) was used to
assess the performance of the algorithm estimates, as the data were

Table 1
Experiment testing different sets of initial conditions and resulting change from the default or optimal initial conditions.

Initial conditions Constants Change

C T agd(440) bbnap(560) Deffc Deffd γ 1/b͠ bnap

mg m−3 % m−1 m−1 μm μm nm−1 m
Empirical Flag 2,5 0,1 5 31 0 50 Default / Optimal
10 50 2,5 0,1 5 31 0 50 Large
100 50 2,5 0,1 5 31 0 50 Small
empirical 95 2,5 0,1 5 31 0 50 Large
empirical 5 2,5 0,1 5 31 0 50 Large
empirical 50 0.5 0,1 5 31 0 50 Medium
empirical 50 4,0 0,1 5 31 0 50 Medium
empirical 50 2,5 0,001 5 31 0 50 Large
empirical 50 2,5 0,01 5 31 0 50 Large
empirical 50 2,5 0,5 5 31 0 50 Large
empirical 50 2,5 0,1 5 31 −0,5 50 Large
empirical 50 2,5 0,1 5 31 −1.2 50 Large
empirical 50 2,5 0,1 5 31 0 10 Medium
empirical 50 2,5 0,1 5 31 0 100 Small

Table 2
Conditions for determining the starting value of the admixture coefficient T.

C (mg m−3) Cyanobacteria flag T

> 20 True 0.9
> 20 False 0.1
< 20 True or False 0.5

M.W. Matthews, et al. Remote Sensing of Environment 248 (2020) 111981
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non-normally distributed and varied on a log scale:

− =
∑ −

−
= x x

N
log RMSE

[log( ) log( )]
2

i
N

i i1
2

(14)

where x is the measured value, x is the estimated value of the unknown,
and N is the sample size.

3. Results

3.1. Retrieval of phytoplankton type and size

In general, there was a close agreement between the measured and
modelled reflectance across the cases (Figs. 5 and 6). Spectral fitting
was most challenging in mineral rich (4A) and very clear waters (4D)
(note the order of magnitude difference in spectral reflectance). In
general, good fitting in low-to-mid biomass waters did not depend on
accurate determination of type. For hyper-eutrophic cyanobacteria-
dominant and dinoflagellate-dominant cases, where type (T) was cor-
rectly determined, good fitting was obtained even at extreme biomass
levels (5C). However, where type was inconclusive, the fitting was

correspondingly poor (5D).
By comparing the values of the estimated type parameter and the

water classes, it was determined that in general the algorithm correctly
differentiated between cyanobacteria and dinoflagellate blooms
(Fig. 7C, Table 3). The average type parameter for cyanobacteria-
dominant waters was 0.93, while that for dinoflagellate-dominant wa-
ters was 0.11. Oligotrophic and mixed waters had a median value near
0.5, indicating dominance by neither type. Successful type detection
was largely determined by the algorithm's ability to fit spectral features
in the 500 to 650 nm spectral range (Fig. 6D). The linear correlation
coefficient between measured and modelled Rrs was typically larger
than 0.8, except at wavelengths< 450 nm (possibly caused by residual
sun glint), at the narrow chl-a fluorescence band near 685 nm, and at
the fluorescence-related 761 nm feature caused by fill-in effects of
Telluric lines noticeable in dinoflagellate-dominant cases (Lu et al.,
2016).

The algorithm effectively determined the size of the small-celled
and large-celled blooms (Fig. 7A, B). Deff for the large-celled dino-
flagellate bloom was estimated as ranging between 20 and 42 μm, while
that for the small-celled cyanobacteria bloom ranged from two to

Fig. 5. Examples of spectral fitting in a mixed medium-biomass bloom (A1), mesotrophic dinoflagellate-dominant bloom (B1), and oligotrophic clear waters (C1, D1).
Rows 2–3 show corresponding modelled a and bb coefficients. The titles show the estimated concentration of chl-a (mg m−3) = C, Deff (μm) = d, and type = T as %
cyanobacteria.
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15 μm. There was a tendency to overestimate the size in oligo-meso-
trophic cases (Table 3). Fitting was significantly better for hyper-eu-
trophic cases than oligo-mesotrophic cases likely caused by the spatial
distribution of the data (Table 4). Deff was smaller than ESD due to the
inclusion of smaller particles by the coulter-counter measurement
technique and was not available for some samples.

3.2. Retrieval of pigment concentrations and absorption coefficients

The algorithm provided fair estimates of chl-a, PC and aϕ, but poor
estimates for agd (Fig. 8, Table 4). The extreme range of concentrations
makes statistical evaluation more challenging. Chl-a tended to be
overestimated in mesotrophic cases and underestimated in hyper-eu-
trophic cases. The extreme concentration range (from 0.5 to
10,000 mg m−3) likely reduced the overall log-RMSE which was 1.09
(R2 = 0.64). PC was more challenging to determine than chl-a as in-
dicated by the higher log-RMSE value of 1.22 (R2 = 0.35). PC was only
estimated for cases where cyanobacteria were present or dominant,
resulting in a smaller sample size. The determination of aϕ was slightly
better in oligo-mesotrophic cases (log-RMSE = 1.0, R2 = 0.82) than in
hyper-eutrophic cases (log-RMSE = 1.09, R2 = 0.41).

The retrieval of agdwas satisfactory, albeit consistently under-
estimated, in oligo-mesotrophic cases (log-RMSE = 0.89, R2 = 0.66).
By contrast there was no significant correlation in hyper-eutrophic
cases: it is most likely impossible to separate absorption from dissolved
substances from that of phytoplankton in extreme bloom conditions.

The log-RMSE values in this study are noticeably high when com-
pared to other published studies (e.g. IOCCG, 2006). However, other
similar published studies do not handle similar extreme bloom condi-
tions and pigment concentrations over five orders of magnitude. Fur-
ther, the focus of the present study is to develop an approach for bloom
discrimination, while accurate determination of pigment concentra-
tions and IOPs are of secondary importance.

4. Discussion

4.1. The bio-optical basis for distinguishing cyanobacteria from algae

In this study, cyanobacteria and algal blooms were accurately dis-
tinguished on the basis of their spectral reflectance using a non-linear
spectral inversion algorithm based on a four-component bio-optical
model. This is possible because of cellular-level differences in size,

Fig. 6. As for Fig. 4 except for high-biomass cyanobacteria bloom (A), high-biomass dinoflagellate bloom (B), floating cyanobacterial scum (C), and high-biomass
dinoflagellate bloom (D).
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pigmentation, and internal structure between cyanobacteria and algae,
briefly discussed here.

The large C. hirundinella cells (mean diameter 40 μm) had con-
siderably larger absorption efficiency relative to the smaller cyano-
bacteria cells. The increased pigment packaging resulted in a con-
siderably smaller mean value of aϕ∗(675) of 0.0089 m2 mg−1 in
contrast to that of 0.023 m2 mg−3 for cyanobacteria. The small cell size
and intracellular gas vacuole structure used to model cyanobacteria
resulted in bbϕ∗(510) values more than two orders of magnitude higher
for cyanobacteria (5.5 × 10−3 m−1) than for the dinoflagellates
(8 × 10−5 m−1). Rrs spectra measured for cyanobacteria blooms had
considerably larger magnitude than those measured for dinoflagellate
blooms of similar biomass. Rrs(560) values ranged from 0.013 to
0.048 sr−1 for cyanobacteria, an order of magnitude larger than those
for the dinoflagellate bloom that ranged from 0.003 to 0.011 sr−1. The
larger magnitude can also be attributed to the tendency of cyano-
bacteria to be vertically stratified in the upper surface layers (Kutser
et al., 2008).

Diagnostic phycocyanin and phycoerethrin pigments present in cy-
anobacteria resulted in marked troughs in Rrs between 600 and 650 nm,
and a shift in the green peak to wavelengths less than 550 nm. By
contrast, dinoflagellate blooms were characterized by strong absorption
from peridian carotenoid and diadinoxanthin and diatoxanthin xan-
thophylls (Schluter et al., 2006; Richardson, 1996) resulting in char-
acteristic absorption troughs in the 440 to 550 nm region, and a green-
peak near 560 nm. Diagnostic spectral features in Rrs that can be used to
discriminate cyanobacteria from algae are changes in the position of the
green peak towards lower wavelengths near 550 nm, the presence of a
peak near 650 nm from proximal PC and chl-a absorption bands, and a
noticeable lack of chl-a fluorescence related features near 685 nm (see
Seppälä et al., 2007).

5. Conclusion and recommendations

The study has demonstrated how a hyperspectral inversion algo-
rithm incorporating a radiative transfer model can be used to differ-
entiate between cyanobacteria and algal blooms in inland waters, in
waters with an extreme range of phytoplankton biomass. This study
demonstrated how a modified EAP algorithm framework (see Evers-
King et al., 2014; Robertson Lain et al., 2014) can be used to differ-
entiate phytoplankton groups on the basis of type-specific IOPs (in this
case cyanobacteria and dinoflagellates). It is the first study to demon-
strate how cyanobacteria may be distinguished from eukaryotic algae
using an algorithm incorporating a direct solution to the radiative
transfer equation through EcoLight-S.

The algorithm can likely be adapted to distinguish between other
phytoplankton groups (e.g. diatoms or cryptophytes) to enable more
general application, and in principle be used to resolve phytoplankton
groups (and possibly size) from satellite-based sensors. This is,

Fig. 7. Modelled (y axis) versus measured (x axis) size parameters Deff and ESD (A - B), histograms where N is the number of spectra binned by percent cyanobacteria
(C), and the wavelength-specific correlation coefficients (D).

Table 3
Mean estimated and measured size parameters (μm) and type in percent cya-
nobacteria.

Measured Modelled

Case Deff ESD D eff T

Oligo 9 27 23 0.44
Meso_dino 18 32 27 0.32
Meso_mixed 10 17 32 0.22
Dino 30 32 24 0.11
Cyano 5 5 5 0.93
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however, dependent upon the availability of appropriate hyper or
multi-spectral resolution instruments (such as EnMAP or FLEX) with
adequate signal to noise ratios, and accurate estimation of the water-
leaving reflectance through atmospheric correction applied to these
instruments.
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