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ARTICLE INFO ABSTRACT

Keywords: Aquatic land cover represents the land cover type that is significantly influenced by the presence of water over an

Aquatic land cover monitoring extensive part of a year. Monitoring global aquatic land cover types plays an essential role in preserving aquatic

Global aquatic land cover dataset ecosystems and maintaining the ecosystem service they provide for humans, while at the same time their accurate

Characterization framework and consistent monitoring for multiple purposes (e.g. climate modelling, biodiversity conservation, water resource

Eéecrsneeds management) remains challenging. Although a number of global aquatic land cover (GALC) datasets are available
for use to monitor aquatic ecosystems, there are prominent variabilities among these datasets, which is primarily
caused by the inconsistency between different land versus water-related monitoring approaches and character-
ization schemes. As aquatic land cover exists in many different forms on Earth (e.g. wetland, open water) and can
be mapped by different approaches, it is necessary to consider a much more consistent and comprehensive
characterization framework that not only ensures the consistency in the monitoring of aquatic land cover but also
serves the needs of multiple users (e.g. climate users, agricultural users) interested in different aspects of aquatic
lands. In this study, we addressed this issue by 1) reviewing 33 GALC datasets and user needs identified from the
citing papers of current datasets and international conventions, policies and agreements in relation to aquatic
ecosystems, 2) proposing a global characterization framework for aquatic land cover based on the Land Cover
Classification System (LCCS) classifier principles and the identified user needs, and 3) highlighting the opportu-
nities and challenges provided by remote sensing techniques for the implementation of the proposed framework.
Results show that users require or prefer various kinds of information on aquatic types including vegetation type,
water persistence, the artificiality of cover (i.e. artificial vs natural), water salinity, and the accessibility to the sea
(i.e. coastal vs inland). Datasets with medium to high spatial resolution, intra-annual dynamics and inter-annual
changes are needed by many users. However, none of the existing datasets can meet all these requirements and a
rigorous quantitative accuracy assessment is lacking to evaluate its quality for most of the GALC datasets. The
proposed framework has three levels and users are allowed to derive their aquatic land cover types of interest by
combining different levels and classifiers of information. This comprehensive mapping framework can help to
bridge the gap between user needs and current GALC datasets as well as the gap between generic and aquatic land
cover monitoring. The implementation of the framework can benefit from evolving satellite-data availability,
improved computation capability and open-source machine learning algorithms, although at the same time it faces
challenges mainly coming from the complexity of aquatic ecosystems. The framework proposed in this study
provides insights for future operational aquatic land cover monitoring initiatives and will support better under-
standing and monitoring of complex aquatic ecosystems.

1. Introduction present in aquatic environments. As the water table may vary during a
year, land surfaces could be regularly or permanently flooded with an

1.1. Background extensive period of water presence. Depending on the inundation fre-
quency of different types of land surfaces, a variety of water-related

The presence of water on Earth has a significant influence on land land covers and ecosystems have been formed, for example, open water
surfaces and ecosystems. Land cover types that exist in terrestrial areas, (permanent water bodies), mangroves (permanently flooded tree ve-
such as bare lands, croplands, grasslands, shrubs, or trees, can also be getation), rice paddies (regularly flooded cultivated vegetation), and
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mudflats (regularly flooded bare lands). These land cover types share a
common characteristic that water is the dominant factor determining its
formation, soil development or the type of plant communities living on
its surface. The ISO-certified United Nations Land Cover Classification
System (LCCS; Di Gregorio, 2005) refers to these land cover types as
aquatic land cover where the environment is significantly influenced by
the presence of water over an extensive period of the year. This study
follows the LCCS definition and uses “aquatic land cover” to refer to
water-related land cover types, whereas open ocean and snow/ice are
excluded. Wetland is also a typical aquatic ecosystem and the interplay
among its three key components, hydrology, soil and vegetation
(Mitsch and Gosselink, 2007), makes wetland not a uniform land cover
type but comprises diverse aquatic land cover types (Gallant, 2015).

Aquatic land cover types provide many valuable ecosystem services
such as water and food supply, flood mitigation, water purification,
coastal protection, and increasingly tourism and recreation (Gardner
and Finlayson, 2018; Millennium Ecosystem Assessment, 2005). De-
spite their importance, some essential aquatic ecosystems (such as
surface water and wetlands) are reported to suffer great degradation
and loss globally in the past decades (Gardner and Finlayson, 2018; Nel
et al., 2009; Pekel et al., 2016). The Sustainable Development Goal
(SDG) 6 specifically pointed out the significance of protecting and re-
storing water-related ecosystems by 2020. Mapping aquatic land cover
globally is therefore very important for gaining knowledge on its status
and it has recently received renewed interests, particularly in the con-
text of global climate change (Arnell, 1999).

1.2. Global mapping of aquatic land cover based on remote sensing

Observations from remote sensing (RS) platforms can provide con-
tinuous, non-invasive and spatially explicit data over large areas, and
thus become the most effective way to monitor land cover globally and
are increasingly evolving to operational global land monitoring systems
(Buchhorn et al., 2020; Herold et al., 2016; Rebelo et al., 2009). The
capability of RS technology for aquatic land cover observation has
moved forward with the development of new satellite archives such as
the Copernicus programme's Sentinel Constellation (Berger et al., 2012;
Mora et al., 2014) and cloud computing platforms such as the Google
Earth Engine (Gorelick et al., 2017). Although aquatic land cover is
different from most terrestrial land cover because of the presence of
water, there has been no universally applicable classification scheme to
describe aquatic land cover types and RS map producers have devel-
oped different products to characterize aquatic land covers according to
their own understanding and application purposes.

Aquatic land covers are often mapped by global land cover (GLC)
products, but they are represented by very limited classes; for instance,
the high spatial resolution GlobeLand30 (Chen et al., 2015) includes
water bodies and wetlands as aquatic land covers (excluding open ocean
and snow/ice). The spatial distribution and extent regarding aquatic land
covers especially for wetlands usually vary a lot among these different
products (Nakaegawa, 2012). One of the reasons for the inconsistency in
aquatic types and their distribution lies in the fact that different datasets
adopt different classification schemes (Amler et al., 2015; Hu et al.,
2017a; Nakaegawa, 2012). Unlike the aforementioned GlobeLand30, the
global land cover database for the year 2000 (GLC2000; Bartholome and
Belward, 2005) uses four types to define aquatic land covers, namely (1)
tree cover, regularly flooded, fresh and brackish water, (2) tree cover,
regularly flooded, saline water, (3) regularly flooded shrub and/or her-
baceous cover and (4) water bodies. These differing interpretations
among GLC products have directly resulted in the disagreement of spatial
distribution and areal statistics of aquatic land covers.

Apart from GLC products, there are also specific global aquatic land
cover (GALC) datasets. One group of these datasets is delineating the
general extent of aquatic land covers, such as the Global Inundation
Extent from Multi-Satellites (GIEMS; Prigent et al., 2007) and the global
surface water extent dataset (Papa et al., 2010) that captures but does
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not discriminate among inundated wetlands, rivers, small lakes and
irrigated agriculture. The second group of specific GALC datasets is
narrowed down to a single type, for instance, global mangroves (Giri
et al., 2011), global saltmarshes (McOwen et al., 2017), or global lakes
(Messager et al., 2016). The third group of specific GALC datasets
contains multiple types such as the Global Lakes and Wetlands Database
(GLWD; Lehner and Doll, 2004) level-3 dataset, which has 12 aquatic
land cover types covering both vegetated (e.g. freshwater marsh,
swamp forest) and non-vegetated wetlands (e.g. lake, reservoir, river).
Although these datasets are more comprehensive than GLC products
and datasets with a single type, they are still confronted with the issue
of inconsistent classification schemes and varying spatial distribution
and extent of aquatic land covers (Zhang et al., 2017). As a result, it is
necessary to come up with a consistent characterization framework to
describe different aquatic land cover types.

As aquatic ecosystems are essential to almost every aspect of human
life, GALC datasets have attracted a large number of users from dif-
ferent fields. Depending on the purpose of the application, users of
GALC datasets may require different thematic information. For ex-
ample, climate modellers apply GALC datasets, specifically wetland
datasets, to evaluate methane emissions and the information they need
is natural vegetated wetlands with anaerobic conditions to produce
methane, such as bogs, fens, and flooded swamps (Matthews and Fung,
1987), while for hydrological modellers surface water and its dynamics
are key focuses of their models (Luo et al., 2017). Users in the agri-
cultural management domain may apply GALC datasets in irrigation
water management and thus the information about aquatic croplands
(e.g. rice paddy) and freshwater is preferred by them (Zohaib et al.,
2019). Apparently, users from different fields have a different focus on
the characteristics of aquatic land cover types. Some of them care about
the vegetation type, while some others care more about water dy-
namics. A full understanding of user requirements is beneficial for any
mapping purpose, while the investigation of user needs towards aquatic
land cover mapping has not been achieved yet.

Since aquatic land covers exist in many different forms on Earth and
can be characterized by different mapping purposes and approaches, it
is necessary to consider a consistent and comprehensive characteriza-
tion framework that ensures the consistency of the understanding of
aquatic land cover types and serves the needs of multiple users inter-
ested in different aspects of aquatic land covers. Although many
countries have their national classification systems, such as the
Cowardin et al. (1979) classification system adopted by the US National
Wetlands Inventory (NWI) and the Canadian wetland classification
system (Warner and Rubec, 1997), these nation-wide systems have
limitations to represent the wetland types in their own countries (e.g.
the Cowardin et al. classification system has been revised by the Federal
Geographic Committee in 2013 for mapping US wetlands, Tiner et al.,
2015), let alone to be used for global-scale classifications. Up to now,
the most widely used global wetland inventory system is defined by the
Ramsar Convention on Wetlands (Matthews, 1993). However, this
conservation-based classification system has been criticized to be too
broad (Amler et al., 2015) for RS-based mapping, as such level of detail
(e.g. freshwater springs, seasonal streams or creeks) is beyond what
satellite sensors can deliver (Congalton et al., 2014).

It has been agreed that a flexible structure of a classification fra-
mework is preferred for future global wetland datasets (Hu et al.,
2017a) and harmonization efforts of classification schemes have al-
ready taken effect in global land cover monitoring (Herold et al., 2008).
The LCCS (Di Gregorio, 2005) targets on ensuring the comprehensive-
ness, consistency and flexibility of classification schemes (Herold et al.,
2009; Mora et al., 2014) and it was designed to serve the needs of
different user communities. LCCS defines land cover types according to
a series of pre-identified classifiers (Bartholome and Belward, 2005)
making it easy for the developed classification system to be tailored for
different applications, such as forest monitoring, biodiversity con-
servation, and climate modelling (Tsendbazar et al., 2015). Global land
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cover monitoring is becoming increasingly operational and the recently
launched Copernicus Global Land Service fully adopted the LCCS ap-
proach (Szantoi et al., 2020) and considered the connection of land
types and water dynamics (Buchhorn et al., 2020), i.e. permanent water
bodies and temporary water bodies are added to the classification
scheme, but presenting more aquatic land cover characteristics (e.g.
vegetation) has remained limited here. In this study, we intend to go
further by proposing an aquatic land cover classification scheme that
addresses different aspects of aquatic land cover characteristics using
the LCCS approach.

1.3. Objectives

With the aim of coming up with a consistent and comprehensive
global aquatic land cover characterization framework addressing mul-
tiple user requirements, this paper addresses four questions:

(1) What is available currently? Here we provide an overview and
synthesis of the thematic, spatial, and temporal characteristics of
existing GALC datasets.

(2) What is needed by users? A comprehensive and updated user ana-
lysis is conducted, and we summarize user needs to capture the
variety of requirements and specifications for GALC datasets.

(3) How can we conceptually characterize aquatic land cover types in a
consistent way? Based on the understanding of current datasets and
evolving user needs, we propose a novel aquatic land cover char-
acterization framework building upon the LCCS approach.

(4) How to integrate all the types in the proposed framework with re-
mote sensing? For putting the novel framework into practice, we
review recent Earth Observation developments and assess the fea-
sibility in implementing the framework building on existing and
evolving remote sensing capabilities.

With these four objectives, we are developing a comprehensive
approach for improving global aquatic land cover monitoring con-
sidering the limitations of available datasets, refined user requirements
and evolving remote sensing capabilities.

2. Data and methods

In order to come up with a consistent and comprehensive char-
acterization framework towards aquatic land covers, we first evaluated
the thematic (i.e. land cover types), spatial (i.e. spatial resolution) and
temporal (i.e. temporal frequency) characteristics of available GALC
datasets. Then, major user groups and user needs were identified by
analysing international conventions, policies, and agreements in rela-
tion to aquatic ecosystems as well as the papers that cite each dataset,
i.e. citing papers of current GALC datasets. Based on the user required
information on aquatic land cover types and characteristics, the global
aquatic land cover characterization framework was proposed applying
the LCCS approach. Finally, the feasibility of RS capabilities in
achieving the proposed framework was analysed. Fig. 1 summarizes the
main steps taken for this study. The following subsections provide de-
tails on these steps.

2.1. Global aquatic land cover datasets

A total of 33 GALC datasets published until 2019 were reviewed in
this study (Table 1) and these datasets were divided into four groups:

(1) Inundation/Extent datasets not including detailed aquatic land
cover classification types, but only serving as a baseline of aquatic
areas like a general delineation of inundated areas,

(2) Global Land Cover (GLC) datasets that contain many land cover
classes, but only a limited number of land cover classification types
are related to water,

Remote Sensing of Environment 250 (2020) 112034

(3) Single-type GALC datasets which comprise only one type of aquatic
land cover, and

(4) Multi-type GALC datasets that have various aquatic land cover
classification types.

To understand the thematic, spatial, and temporal characteristics of
current GALC datasets, we collected information about the aquatic land
cover class, spatial resolution, and temporal frequency of each dataset
(Table 1). The richness of thematic categories of each dataset was
scored on five aspects with respect to its information on vegetated vs
non-vegetated cover, permanent vs temporal/waterlogged cover, nat-
ural vs artificial cover, inland vs coastal cover, and freshwater vs
brackish/saline water. Score 2 was assigned to an aspect if the dataset
has both types of cover (e.g. both vegetated and non-vegetated types),
score 1 was assigned if the dataset has only one type of cover (e.g. only
vegetated cover), and score 0 was assigned if the dataset has no in-
formation on this aspect (e.g. no information on vegetation type).

The quality of each dataset was assessed based on the result of ac-
curacy assessments found in the published literature. As there exist
prominent variabilities among the completeness of the validation of each
dataset (i.e. some datasets were validated using independent reference
samples, while some datasets were not validated at all), we adopted the
Committee on Earth Observation Satellites (CEOS) validation stage
hierarchy (Land Product Validation Subgroup, 2003) to show the vali-
dation status of each dataset. Five stages (0-4) were defined according to
the CEOS land product validation hierarchy, where Stage 0 indicates no
validation. At Stage 1, the accuracy of the product is evaluated from a
small (typically < 30) set of locations and time periods by comparison
with in-situ or other suitable reference data. At Stage 2, the product
accuracy is assessed over a significant (typically > 30) set of locations
and time periods and, at the same time, the spatial and temporal con-
sistency of the product is evaluated over globally representative locations
and time periods. The Stage 3 is upgraded to a global scale on the basis of
Stage 2. At Stage 4, validation results for Stage 3 are systematically and
regularly updated when new products are released. The detailed result
on the review of accuracy assessments of each dataset was presented in
the supplemental file (Table S1).

2.2. Identification of major user groups and user demands on global aquatic
land cover datasets

2.2.1. Evaluation of user groups

During the past decades, a lot of international conventions, policies,
and agreements have been established for the wise use of aquatic
ecosystems (e.g. Ramsar Convention on wetlands, Davidson, 2016),
biodiversity conservation (e.g. Aichi Biodiversity Targets, Convention
on Biological Diversity, 2018), sustainable development (e.g. Sustain-
able Development Goals, United Nations, 2015), land management (e.g.
Land Degradation Neutrality, [UCN et al., 2015), climate change miti-
gation (e.g. Paris Agreement, FCCC, 2015), and disaster risk reduction
(e.g. Sendai Framework for Disaster Risk Reduction, Aitsi-Selmi et al.,
2015). Most of them are either directly or indirectly linked to aquatic
land covers, which makes them potential users of GALC products. In an
attempt to make the proposed aquatic land cover characterization fra-
mework globally applicable, we focused on eight international con-
ventions, policies, and agreements (Table 2), which have been estab-
lished and implemented by working with a diverse global network of
partners including national governments (Ramsar Convention
Secretariat, 2010) and international or national non-governmental or-
ganizations (Sustainable Brands, 2018). Details about the targets and
goals of these conventions, policies, and agreements are shown in Table
S2 of the supplemental file.

Apart from the international conventions, policies, and agreements
in relation to aquatic ecosystems, the citing papers are also a good
source to find potential users and user needs or preferences. In this
study, we used the Science Citation Index Extended (SCIE) database
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Fig. 1. Flow chart of this study.

from Web of Science, which covers high-quality peer-reviewed pub-
lications for the citation analysis. Statistics on the Web of Science
Categories (Clarivate Analytics, 2019) of the citing papers were gen-
erated. According to the most frequently cited research categories, we
could find potential user groups. Based on the identified research areas
of citing papers as well as the selected international conventions,

policies, and agreements, we finally generalized the major user groups
of GALC datasets.

According to Fig. 2, it is obvious that about 50% (16 out of 33) of
GALC datasets reviewed in this study were produced after 2014, which
indicates that users have more choices among a variety of GALC data-
sets after 2014. To avoid a biased statistic (because older datasets may
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http://www.estellus.fr/index.php?static13/giems-d15
http://www.estellus.fr/index.php?static13/giems-d15
http://www.estellus.fr/index.php?static13/giems-d15
http://www.estellus.fr/index.php?static13/giems-d15
https://wetlands.jpl.nasa.gov/cgi-bin/data.pl
https://doi.pangaea.de/10.1594/PANGAEA.892657?format=html#download
https://doi.pangaea.de/10.1594/PANGAEA.892657?format=html#download
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=930
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
https://modis.ornl.gov/data/modis_webservice_soap.html
http://due.esrin.esa.int/page_globcover.php
http://www.earthenv.org/landcover
https://globalmaps.github.io/glcnmo.html
http://data.ess.tsinghua.edu.cn/
http://www.globallandcover.com/Chinese/GLC30Download/index.aspx
http://www.globallandcover.com/Chinese/GLC30Download/index.aspx
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://lcviewer.vito.be/download
https://developers.google.com/earth-engine/datasets/catalog/GLCF_GLS_WATER
https://developers.google.com/earth-engine/datasets/catalog/GLCF_GLS_WATER
https://global-surface-water.appspot.com/download
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have more citations than new datasets), in this study only the citing
papers of each dataset between 2015 and 2019 were analysed. In ad-
dition, we consider scientists and experts in the field of remote sensing,
computer science, and imaging science as map producers who aim to
improve the map quality and we did not include this group as the
targeted users of GALC datasets. Furthermore, only papers with the
document type of “Article” were counted because they present full in-
formation on original research. To sum up, the citing papers were
pruned based on the following criteria:

=688

life.org/publications/global-lakes-

(1) Refine the papers published between 01,/01/2015 and 31/12/2019.

(2) Exclude papers in the areas of remote sensing, computer science,
and imaging science.

(3) Refine the document type to “Article” papers.

ase-lakes-and-wetlands-grid-level-3

For the citing papers of GLC datasets, we focused only on water-
related studies, so the inquiry was refined using the keyword “water*
OR wetland* OR aquatic OR flooded OR inundated”. A total of 3151
papers were reviewed for the 33 GALC datasets (Table S3 in the sup-
plemental file).

http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.

html
https://dataverse.harvard.edu/dataset.xhtml?persistentld

doi:10.7910/DVN/HKGBGS
http://ftp-earth.bu.edu/public/friedl/GRIPCmap/

https://data.unep-wcmc.org/datasets/43
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id

Not indicated.

Available upon request from the authors
https://www.hydrosheds.org/page/hydrolakes
http://globaldamwatch.org/data/#core_global
https://data.unep-wcmc.org/datasets/4

http://archive.researchdata.leeds.ac.uk/251/

Data access
https://www.worldwi
and-wetlands-de

Not indicated.

2.2.2. Assessment of user demands towards global aquatic land cover
datasets

In this study, the user needs towards aquatic land covers are derived
from two parts: 1) direct user needs identified from international con-
ventions, policies, and agreements, and 2) users' preferences and uptakes
of aquatic land cover information summarized from the citing papers of
existing datasets. The information obtained from the content of inter-
national conventions, policies, and agreements reflects user's require-
ments on specific types, while the citation of a GALC dataset represents a
broad overview of users' preferences towards the general features and
characteristics of aquatic land cover. Although the dataset might be cited
but not used by the user, we assume that if a GALC dataset is frequently
cited by a specific user group, then, to a large extent, the information
contained in this dataset has gained interests by this user group.

The goals, targets, indicators, articles, priorities, or variables (Table
S2 in the supplemental file) of the international conventions, policies,
and agreements with respect to aquatic land covers were reviewed to
collect the information they cared about, including the aquatic land
cover extent, thematic aquatic land cover types, spatial resolution of
data, intra-annual land cover dynamics and inter-annual land cover
changes. For example, according to the Target 11 of the Aichi
Biodiversity Targets, which states that “By 2020, at least 17 percent of
terrestrial and inland water, and 10 percent of coastal and marine areas,

.., and integrated into the wider landscapes and seascapes”, we are
able to conclude that biodiversity researchers need information about
inland water bodies and coastal/marine wetlands as well as the extent
of these classes. The detailed contents of these conventions, policies,
and agreements are listed in Table S2 of the supplemental file.

In order to know how each dataset was cited by different user groups,
an intensive interpretation was done to assign the citing paper to a spe-
cific user group. The title, abstract and keywords were assessed to de-
termine which user group they belonged to. For those that were not clear
enough by looking at the title, abstract and keywords, we further checked
the full paper. After this procedure, the number of citations of each da-
taset cited by each user group was acquired (Fig. 4). Based on this sta-
tistic, we further analysed users' preference and uptake of the thematic,
spatial, and temporal characteristics of GALC datasets. According to the
most frequently cited datasets by each user group and their use cases, we
summarized the general thematic characteristics of aquatic land cover
preferred by each user group and then translated them into the LCCS
language, i.e. classifiers. The spatial and temporal resolution of users'
preference and uptake was evaluated based on the datasets cited by each
user group, and the cited datasets were divided into five spatial ranges,
namely > 1 km, 500 m — 1 km, 100-500 m, 30-100 m and < 30 m and
four temporal ranges including daily, monthly, yearly and static.

2014
2016

al

., 2018
Aselmann and Crutzen, 1989

Yamazaki et al., 2015
Hamilton and Casey, 2016
McOwen et al., 2017
Matthews and Fung, 1987
Lehner and Dall, 2004
Poulter et al., 2017

Salmon et al., 2015
Xu et al

Reference
Verpoorter et
Messager et al.
Lehner et al., 2011
Giri et al., 2011

CEOS
validation
stage
0-1
0-1
0-1
0-1
0-1
0-1

2

0

0-1
0-1
0-1
0-1
0-1

Temporal
frequency
Static
Static
Static
Static
Static
Yearly
Static
Static
Static
Static
Static
Static
Monthly

the 21st Century
Global Rain-fed, Irrigated and Paddy Croplands
Global map of saltmarshes
Global peatland map

Global distribution of natural freshwater wetlands and rice
paddies
Global Lakes and Wetlands Database

Global Database of Continuous Mangrove Forest Cover for

Global Reservoir and Dam database
Global 3 arc-second Water Body Map
The integration of SWAMPS and GLWD

GLObal WAter BOdies database
A global database of wetlands

HydroLAKES
Multi-type GALC datasets

Global Mangrove Forests

Dataset name

Note: The GLOBCOVER 2005 and 2009 were put together in a row in Table 1 because they represent the same series of land cover products. The same applies to GLCNMO 2003 and 2008.

Table 1 (continued)


https://www.hydrosheds.org/page/hydrolakes
http://globaldamwatch.org/data/#core_global
http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html
http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html
https://data.unep-wcmc.org/datasets/4
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HKGBGS
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HKGBGS
http://ftp-earth.bu.edu/public/friedl/GRIPCmap/
https://data.unep-wcmc.org/datasets/43
http://archive.researchdata.leeds.ac.uk/251/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=688
https://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-lakes-and-wetlands-grid-level-3
https://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-lakes-and-wetlands-grid-level-3
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2.3. LCCS-based aquatic land cover characterization framework

The LCCS has been developed as a comprehensive and standardized
classification system specifically for mapping purposes (Mora et al.,
2014). Land cover classes are created at different levels by the combi-
nation of a set of independent diagnostic attributes that are called clas-
sifiers. According to Di Gregorio (2005), the classification system de-
veloped based on the LCCS approach is: 1) comprehensive covering all
possible combinations of classifiers; 2) capable of meeting the needs of a
variety of users; 3) scale-independent that can be used at different scales
and at different levels of detail; 4) with clear class boundary definitions
and internal class consistency. In this study, we adopted the LCCS ap-
proach to build the aquatic land cover characterization framework.

The classification with LCCS comprises a dichotomous phase and a
modular-hierarchical phase (Di Gregorio, 2005). The dichotomous
phase starts with three initially pre-defined classifiers, namely the
presence of vegetation (designed for the differentiation between vege-
tated and non-vegetated land cover types), the edaphic condition (de-
signed for the differentiation between terrestrial and aquatic types),
and the artificiality of cover (designed for the differentiation between
artificial and natural land cover types) (Di Gregorio, 2005). Developers
are allowed to add other classifiers or attributes at different levels of the
classification according to their own application purposes. Since we
only focus on aquatic land cover types in this study, the edaphic con-
dition classifier was not used here. Instead, we adopted several other
classifiers according to the identified user needs of the thematic aquatic
land cover types. In the modular-hierarchical phase, land cover types
were further specified by another set of pre-defined classifiers. For ex-
ample, the vegetated types derived from the presence of vegetation
classifier in the dichotomous phase can be separated into trees, shrubs,
and herbaceous cover by the life form classifier. To derive their classes
of interest, users are required to start with the pure land cover classi-
fiers defined in the dichotomous phase and stop at the level where they
can derive the details they need. In this study, according to the iden-
tified user demands on aquatic land cover types, we split the required
thematic information into different levels and finally developed a
hierarchical aquatic land cover characterization framework (Table 9).

3. Results
3.1. Characteristics of global aquatic land cover datasets

The assessment of the richness of thematic information (i.e. vege-
tated vs non-vegetated cover, permanent vs temporal/waterlogged
cover, natural vs artificial cover, inland vs coastal cover, and freshwater
vs brackish/saline water) of each dataset is shown in Table 3. In gen-
eral, multi-type GALC datasets and GLC datasets are more compre-
hensive than the inundation/extent datasets and the single-type GALC
datasets. However, none of these datasets can be completely filled by all
the five aspects of thematic information (Table 3).

The inundation/extent products were scored as O for all the five
aspects of information because they do not contain any detailed in-
formation on land cover classification types, which means the inunda-
tion/extent products can only serve as a proxy of aquatic areas. Among
the eleven single-type GALC datasets, five of them are water-only
products and six of them are vegetation datasets. Only two datasets (i.e.
GSW and G3WBM) provide information on water seasonality. Few of
the single-type GALC datasets give more useful information on water
salinity and artificiality of cover. The four multi-type GALC datasets
cover both vegetated and non-vegetated types while giving only partial
information on the other four aspects. Among the four multi-type da-
tasets, GLWD is the most comprehensive one containing information
about not only vegetated and non-vegetated types, but also human-
made types, saline wetlands, and coastal wetlands. Some of the GLC
datasets (e.g. GLC2000, Land Cover CCI, GLOBCOVER) are more
comprehensive in terms of the information on vegetation because they
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indicate the specific life form of trees, shrubs, or herbaceous cover.
Many GLC datasets also provide information about water salinity (e.g.
Land Cover CCI) and water seasonality (e.g. GLOBCOVER), but the
information on artificial vs natural cover and inland vs coastal cover is
still lacking among all the GLC datasets.

In general, the single-type GALC datasets tend to be finer than the
other three groups of datasets and about 91% (10 out of 11) of the
single-type datasets have resolutions <100 m (Table 4). Half (3 out of
6) of the inundation/extent products are coarser than 1 km (Table 4),
among which the GIEMS dataset and the GSWE dataset developed by
Papa et al. (2010) have a spatial resolution of 0.25° (~28 km) and
25 km, respectively. The multi-type GALC datasets are even coarser
than the inundation/extent products and they normally have a spatial
resolution larger than 0.5° (~ 55 km). The most comprehensive GLWD
dataset is also the finest among the four multi-type datasets with a
spatial resolution of 1 km. The spatial resolution of GLC datasets is
between 30 m - 1 km and two of the GLC datasets have a fine spatial
resolution of 30 m, namely FROM-GLC and GlobeLand30.

The majority of GLC datasets (83%), as well as single-type (82%)
and multi-type (75%) GALC datasets, are static, while the inundation/
extent products tend to be more dynamic and 67% of these datasets
have a daily or monthly frequency (Table 4), and most of these products
also have a long period of tracking inundated areas. Among the single-
type GALC products, GSW is the only monthly dynamic dataset that
covers 32 years (1984-2015) of surface water changes (Pekel et al.,
2016) and CGMFC-21 is the only yearly map reporting the extent
changes of global mangrove forests (Hamilton and Casey, 2016). Two
GLC datasets (i.e. Land Cover CCI and CGLS-LC100) are yearly updated
to provide dynamic and long-term monitoring of the status and evolu-
tion of the land surface. Among the multi-type GALC datasets, only one
dataset (i.e. SWAMPS-GLWD) provides intra-annual dynamics with a
monthly frequency.

There is a clear gap in the quality assessment levels between GLC
products and other three groups of GALC datasets. As a statistically ro-
bust GALC validation dataset is not available, most of the inundation/
extent datasets as well as the single-type and multi-type GALC datasets
were mainly assessed by the qualitative comparison with previously
published water-related datasets. According to the CEOS land product
validation stage hierarchy, around 81% (17 out of 21) of these three
groups of GALC datasets were under the validation Stage 1, and only two
datasets (i.e. GIW and GRIPC) reached to the validation Stage 2. Most
GLC products were well validated based on independent reference data
and the product accuracy was systematically reported (Table S1),
reaching to the CEOS land product validation Stage 3. Although it is hard
to determine the quality of the datasets without a rigorous quantitative
accuracy assessment, the qualitative assessment gives some useful in-
formation on these datasets. For example, from the comparison it is clear
that GIEMS missed many small water bodies in densely forested regions
in comparison to the IGBP-DISCover dataset (Prigent et al., 2007). The
GLWD level-3 dataset tends to overestimate tropical peatland extents
compared with the PEATMAP (Xu et al., 2018). According to the re-
ported accuracy of GLC products, the classification of water bodies
achieves relatively high accuracies (generally > 80%), while temporarily
flooded vegetated types in GLC datasets are poorly mapped (Table S1).
For instance, the producer's and user's accuracy of marshlands in the
FROM-GLC dataset is 11.48% and 24.82%, respectively, making it less
feasible to be used in further studies.

3.2. Major user groups and user demands on global aquatic land cover
datasets

3.2.1. Major user groups

The top 20 Web of Science Categories that the citing papers fall into
are shown in Fig. 3. A detailed explanation of each category can be
found in the supplemental file (Table S4). These categories cover re-
search about ecological (e.g. Ecology), biological (e.g. Biodiversity
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Table 2
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The international conventions, policies, and agreements reviewed in this study.

Name

Brief description

Ramsar Convention on Wetlands

Sustainable Development Goals (SDGs)

The Sendai Framework for Disaster Risk

Reduction
Aichi Biodiversity Targets

Land Degradation Neutrality (LDN)

Climate change-related agreements and

guidelines

Essential Climate Variables (ECVs)

An intergovernmental treaty whose mission is the “conservation and wise use of all wetlands through local, regional and
national actions and international cooperation, as a contribution towards achieving sustainable development throughout the
world”.

SDGs aim to achieve the prosperity of people and the planet through sustainable development. Aquatic land covers are a key
aspect in achieving the SDGs through the valuable ecosystem services they provide. SDG 6 aims to protect and restore water-
related ecosystems, SDG 15 calls for protecting the inland freshwater ecosystems, and SDG 14 encourages conserving marine
areas.

The Sendai Framework aims to prevent new and reduce existing disaster risk. It contains seven targets and four priorities, of
which the Priority 3 and 4 advises to reduce risks happening in aquatic areas.

The Aichi Biodiversity Targets aim to halt the loss of biodiversity and ensure the resilience of ecosystems. Of the 20 targets,
Target 6 emphasizes on sustainable use of aquatic species and Target 7 on the management of aquaculture. Target 11
underlines conserving at least 17% of terrestrial and inland water, and 10% of coastal and marine areas by 2020.

The LDN aims to halt and reverse land degradation and maintain the world's resource of healthy and productive land. Many
forms of land degradation are linked to water management, and land degradation directly impacts aquatic land covers such as
peatlands, estuaries, and rivers.

1) The Paris Agreement is signed in 2016, dealing with greenhouse-gas-emissions mitigation, adaptation, and finance. It
encourages parties to conserve and enhance sinks and reservoirs of greenhouse gases (GHGs); 2) The 2013 wetland
supplement to the 2006 IPCC Guidelines for National GHG Inventories provides methods for estimating anthropogenic
emissions and removals of GHGs from wetlands (IPCC, 2014).

ECVs are physical, chemical, or biological variables or a group of linked variables that contribute to the characterization of
Earth's climate (Global Climate Observing System, 2019). Water-related ECVs include lakes, anthropogenic water use, land
cover, and marine habitat properties.

25
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Fig. 2. The number and the cumulative number of global aquatic land cover datasets produced each year (until 2019).

Conservation), hydrologic (e.g. Limnology, Oceanography), climatic
(e.g. Meteorology Atmospheric Sciences) and agricultural studies (e.g.
Agronomy) as well as research about water resource management (e.g.
Water Resources), sustainable development (e.g. Green Sustainable
Sciences Technology) and land management (e.g. Engineering Civil).
Among the eight international conventions, policies, and agree-
ments reviewed in this study, the Aichi Biodiversity Targets corre-
sponds to the “Biodiversity Conservation” category mentioned above.
As ecological and biological research are closely related, we put them
together in this study to formulate the ecological/biological user group
(Table 5). The Paris Agreement, the 2013 Wetland Supplement to the
2006 IPCC Guidelines as well as the ECVs correspond to climate studies,
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and together with the “Meteorology Atmospheric Sciences” category,
they form the climate user group. The principal idea of the Ramsar
Convention on Wetlands and water-related SDGs is to conserve and
sustainably use water and wetland resources and the aim of the Sendai
Framework for Disaster Risk Reduction is also sustainably managing
aquatic ecosystems to reduce risks, together with the Web of Science
Categories such as “Water Resources”, “Limnology” and “Green Sus-
tainable Sciences Technology”, they formulate the sustainable water
resource management users. The Land Degradation Neutrality is related
to land management, and together with the Web of Science Categories
of “Engineering Civil” and “Geography Physical”, they are grouped as
land management users. Considering that agricultural activities have a
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close relation with aquatic ecosystems and the Web of Science Category
of “Agronomy” reflects that GALC datasets are used in agricultural
studies, the agricultural user group is investigated in this study.

Concluding from the above analysis, we target on five groups as
major users including sustainable water resource management users,
ecological/biological users, climate users, land management users as
well as agriculture users. The main focuses of each user group are listed
in Table 5. It should be noted that some of the Web of Science Cate-
gories are quite broad, for example, Environmental Sciences and
Geosciences Multidisciplinary, which may overlap with several dif-
ferent categories, thus we did not include them in Table 5 but all the
citing papers falling into these categories were reviewed in the user
demands assessment later on (section 3.2.2).

3.2.2. User demands towards global aquatic land cover datasets

3.2.2.1. Information demanded by international conventions, policies, and
agreements. User needs concerning the general extent (i.e. general
delineation of aquatic land cover), thematic land cover types, spatial
and temporal resolutions of GALC datasets were summarized (Table 6)
according to the international conventions, policies, and agreements in
relation to aquatic land covers. In Table 6, the intra-annual dynamics
correspond to the daily or monthly temporal resolution and the inter-
annual changes correspond to the yearly temporal resolution. It should
also be noted that the requirement about the spatial resolution is only
indicated by the ECVs, while other conventions, policies, and
agreements do not specify this information.

As indicated in section 3.2.1, the Ramsar Convention, SDGs, and the
Sendai Framework for Disaster Risk Reduction represent sustainable
water resource management users. Both the Ramsar Convention and the
SDGs need data on the general extent of aquatic areas. The thematic
aquatic land cover types wanted by the three international conventions,
policies, and agreements cover both non-vegetated (e.g. rivers, lakes) and
vegetated types (e.g. flooded forests), inland and coastal wetlands, nat-
ural and man-made types as well as saline and freshwater wetlands. The
intra-annual dynamics and inter-annual changes are demanded by the
Ramsar Convention and SDGs to track the changes of wetlands (Ramsar
Convention Secretariat, 2016) and restore aquatic ecosystems (SDG 6).

The Aichi Biodiversity Targets (Convention on Biological Diversity,
2018) representing the ecological/biological user group, require not
only a general extent of aquatic land covers but also detailed in-
formation about inland water bodies, vegetated types (e.g. natural
permanently or regularly flooded forests and aquatic plants), marine/
coastal wetlands and aquatic artificial lands (specifically aquaculture
and regularly flooded agriculture). The inter-annual land changes are
also wanted to evaluate the loss of natural habitats and reduce de-
gradation and fragmentation in aquatic ecosystems.

The Land Degradation Neutrality representing the land manage-
ment user group is focused on the land affected by desertification and
floods; thus, besides the general extent data, the thematic information
wanted by this group includes vegetated wetlands and flooded areas.
Inter-annual land changes are also required to assess land degradation.

The Paris Agreement and the 2013 Wetland Supplement focus on
wetlands serving as sinks and sources of greenhouse gases (GHGs), in-
cluding peatlands, coastal wetlands (specifically mangroves, marshes
and seagrass), inland wetlands (specifically riparian wetlands, forested
swamps, marshes, saline and brackish wetlands) as well as artificial
wetlands (specifically wastewater management infrastructure and rice
paddy). To monitor climate changes, the ECVs need surface water
(specifically lakes, rivers, and surface inundation), peatlands, fresh-
water wetlands, and marine or coastal wetlands (mangrove forest,
seagrass bed, etc.). For the purpose of climate change assessment, some
ECVs such as the lake extent and surface inundation are supposed to be
updated daily (Global Climate Observing System, 2019). The spatial
resolution for the monitoring of lakes, rivers, peatlands, and land cover
tends to be fine (= 250 m), while for the monitoring of surface in-
undation the spatial resolution is much coarser (i.e. 1-25 km) (Table 6).
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3.2.2.2. Users' preference and uptake of aquatic land cover information
identified from the citing papers of existing datasets. In general, the GMF,
GRanD, GLOWABO, GSW, and the CGMFC-21 of the single-type dataset
group, the GLWD and the Matthews and Fung (1987) wetland product
of the multi-type dataset group, and the MODIS Collection 5 and IGBP-
DISCover of the GLC dataset group are cited more frequently (i.e. with
more than 100 citations) than other datasets (Fig. 4).

GALC datasets used more often by climate users include GLWD,
GLOWABO, GMF, and the wetland dataset developed by Matthews and
Fung (1987) (Table 7). According to the use cases, the information about
peat-accumulating wetlands, mangroves, surface water, dams/reservoirs
and inundated areas is used to assess greenhouse gas emissions (Ito,
2019; Peltola et al., 2019), and to evaluate the impact of climate change
on aquatic ecosystems (Ellison, 2015) as well as the response of aquatic
ecosystems to climate change (Woolway and Merchant, 2018).

The most frequently used datasets by ecological/biological users
include the GMF, GRanD, GLWD, GLOWABO and accordingly the the-
matic information on mangroves, dams/reservoirs, persistent and nat-
ural wetlands, and surface water is preferred by this user group. They
use GALC datasets for studies about biodiversity conservation (Asaad
et al.,, 2017; Bolivar et al., 2018), biomass estimation (Huang et al.,
2019), species distribution (Cano et al., 2018), and also ecological re-
search like ecosystem services (Duncan et al., 2016) and ecological
models (Janssen et al., 2019).

Sustainable water resource management users utilize datasets in-
cluding GRanD, GLWD, GSW, GMF more frequently. Information about
dams/reservoirs and surface water is essential for water resource mon-
itoring. Freshwater wetlands and forested wetlands (e.g. mangroves) are
also required for sustainable wetland management (Chow, 2018). Topics
related to water resource management include water storage estimation
(Binh et al., 2019), water quality (Rasul, 2019), optimizing water allo-
cation or supply (Martinsen et al., 2019), and the future gap between
water demand and supply under socio-economic development
(Wijngaard et al., 2018). Besides water resource management, they also
use GALC datasets for wetland restoration (Dutta et al., 2018), sustain-
able development strategies (including social, economic and political
ones) towards aquatic ecosystems (Haer et al., 2018), and hazard or risk
(e.g. flooding, drought, contamination) control (Wan et al., 2017).

GALC datasets used more often by agriculture users are GRIPC,
GRanD, MODIS Collection 5, and the GLWD dataset. Information on
dams/reservoirs, surface water and regularly flooded cultivated land (e.g.
rice paddy) is preferred by agriculture users mainly for agriculture and
water management (du Preez et al., 2018; Rodell et al., 2018; Zaussinger
et al,, 2019). In addition, fishery conservation and management are
widely studied by agriculture users (de Graaf et al., 2015; Deines et al.,
2017; Lo et al., 2019) and the information on aquaculture ponds, fresh-
water wetlands and mangroves is required by this user group.

Land management users utilize datasets like GMF, GSW, GLWD and GLC
products including MODIS Collection 5, FROM-GLC, GlobeLand30 and
GLC2000 more frequently. Their primary focus is to monitor aquatic land
cover/use changes (Davidson and Finlayson, 2018) and also to explore the
impact of land change on aquatic ecosystems (Chen et al., 2019; Deb and
Ferreira, 2017) as well as drivers of land cover/use changes (Hao et al.,
2015; Sabic et al., 2018). Of the reviewed cases, the thematic information
covers surface water, mangroves, permanent wetlands, and dams,/reservoirs.

The above results show that different user groups have their prio-
rities on different aquatic land cover types, which indicates to map
producers that a comprehensive dataset containing different types is
helpful to fulfil the needs of most users. For example, the primary focus
of climate users is peat-dominated wetlands, while ecological and bio-
logical users concentrate more on the mangrove forest ecosystem, and
agriculture users are more interested in regularly flooded croplands.
There are cases that users apply GALC datasets as a mask to define their
region of interests, indicating that the broad-level split of aquatic and
non-aquatic land cover is still necessary. By considering the user needs
collectively, it can be found that the thematic information of aquatic
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Table 3
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Thematic characteristics of current global aquatic land cover datasets.
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In this table, the deeper the colour, the more comprehensive the dataset is. “0” represents none of the types of information is
included in the dataset; “1” represents only one type of information is included, or both types of information are included but not
discriminated between each other; “2” represents both types of information are included and the information can be directly

obtained from the dataset.

land covers that are of users' preferences and uptakes includes open
water (e.g. lakes, rivers), vegetation types (e.g. forests, marshes), water
seasonality (e.g. regularly or permanently flooded), man-made aquatic
land covers (e.g. dams/reservoirs, croplands), coastal wetlands, and
freshwater or saline aquatic types. Accordingly, the related LCCS clas-
sifiers are the presence of vegetation, the persistence of water, the ar-
tificiality of cover, the relative accessibility of aquatic land cover to the
sea, and water salinity.

There are variabilities among users' choices towards the spatial re-
solution of the GALC dataset. According to Table 8, 46.6% of climate
users apply coarse to medium (> 500 m) datasets. A large proportion of
climate-related studies are carried out at larger scales (i.e. global or
continental) in which coarser resolution datasets are frequently used
(Tsendbazar et al., 2015). In contrast, 57.6% of land management users
prefer datasets with <30 m resolution showing that these users prefer
more details and may focus more on local studies. Besides land
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Table 4
The characteristics of the spatial and temporal resolution of the four groups of
global aquatic land cover datasets.

Inundation/ Single-type Multi-type GLC
Extent datasets GALC GALC datasets
datasets datasets
Spatial resolution
=30m 0 9 (82%) 0 2 (17%)
30-100 m 1 (17%) 1 (9%) 0 1 (8%)
100-500 m 2 (33%) 1 (9%) 0 5 (42%)
500 m - 1 km 0 0 1 (25%) 4 (33%)
> 1km 3 (50%) 0 3 (75%) 0
Temporal frequency
Daily 1 (17%) 0 0 0
Monthly 3 (50%) 1 (9%) 1 (25%) 0
Yearly 0 1 (9%) 0 2 (17%)
Static 2 (33%) 9 (82%) 3 (75%) 10 (83%)
Total number of 6 11 4 12
datasets

Numbers in the table represent the number (or percentage) of datasets falling
into different ranges of spatial resolution and temporal frequency. For those
GALC datasets that are created by integrating previous maps and offering a
scale as spatial resolution, the spatial resolution of the finest dataset used for
generating the GALC dataset is counted in this table.

management users, the majority of sustainable aquatic resource man-
agement users (55.5%) and ecological/biological users (69.3%) prefer
finer resolution datasets (< 30 m) as well. Results also show that 46.3%
of the climate users apply datasets with <30 m resolution. Therefore,
considering most of the users' requirements on the spatial resolution of
GALC datasets, developing a higher spatial resolution dataset will be an
ongoing trend for future aquatic land cover mapping initiatives
(Mahdianpari et al., 2020; Pickens et al., 2020). Concerning the tem-
poral frequency, static datasets are more widely used by most of the
user groups (Table 8). As there are only nine datasets among the re-
viewed 33 datasets having a daily, monthly, or yearly temporal re-
solution, it is reasonable that citing papers of dynamic datasets are rare.

Environmental Sciences
Geosciences Multidisciplinary
Water Resources

Ecology

Meteorology Atmospheric Sciences
Multidisciplinary Sciences

Marine Freshwater Biology
Limnology

Biodiversity Conservation
Oceanography

Environmental Studies
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Engineering Civil

Geography Physical
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Engineering Environmental

Soil Science

Geography
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Green Sustainable Sciences Technology
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However, the daily and monthly products are still useful for dynamic
water resource management and datasets with a yearly temporal re-
solution are useful for long-term aquatic land cover change monitoring.

3.3. Global aquatic land cover characterization framework

Applying the LCCS approach, the thematic user needs were trans-
lated into a three-level aquatic land cover characterization framework
(Table 9).

At the first level, aquatic land cover is separated from terrestrial
land cover, which corresponds to the split (i.e. masking) between
aquatic and non-aquatic areas and the extent estimate of aquatic areas.
The primary difference between the terrestrial land cover and the
aquatic land cover lies in the edaphic condition, where terrestrial land
covers are influenced by a substratum, while aquatic land covers are
dominated by the presence of water. In addition, the water is supposed
to exist over extensive periods of time so that occasionally flooded land
within a terrestrial environment is not considered as “aquatic”.

At the second level, five classifiers including the persistence of
water, the presence of vegetation, the artificiality of cover, the accessibility
to the sea, and water salinity are adopted in the proposed framework.
The persistence of water classifier divides aquatic land covers into per-
manently flooded, temporarily flooded, and waterlogged types ac-
cording to the inundation frequency and duration. According to LCCS,
permanently flooded areas are covered by water for a substantial
period, while the water in temporarily flooded areas stays less time.
Waterlogged types are not characterized by eminent surface flooding
but by a very high water table. The presence of vegetation classifier
discriminates primarily vegetated areas from the primarily non-vege-
tated areas. The vegetation can have different life forms, e.g. trees or
shrubs, and the non-vegetation can also have various appearances when
no water is covering the surface such as bare rock, bare soil, or sand.
The artificiality of cover classifier corresponds to user needs on artificial
or cultivated types and natural classes, such as the man-made wetlands
required by the Ramsar Convention and the natural permanently or
regularly flooded forests required by Archi Biodiversity Targets. The
accessibility to the sea classifier aims to differentiate coastal aquatic

400 600 800 1000 1200
Records

Fig. 3. The top 20 Web of Science Categories that the reviewed global aquatic land cover datasets fall into.
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Table 5
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Five user groups synthesized from the Web of Science Categories and international conventions, policies, and agreements, as well as the research focuses of each user

group.

Web of Science categories
agreements

International conventions, policies, and

User group Main research focuses

Meteorology Atmospheric Sciences

Essential Climate Variables
Ecology; Marine Freshwater Biology; Aichi Biodiversity Targets
Biodiversity Conservation; Biology
Water Resources; Limnology; Oceanography;
Forestry; Green Sustainable Sciences
Technology for Disaster Risk Reduction

Agronomy -

Ramsar Convention; Sustainable

Engineering Civil; Geography Physical Land Degradation Neutrality

The Paris Agreement; 2013 Wetland
Supplement to the 2006 IPCC Guidelines;

Development Goals; The Sendai Framework

Climate users Meteorological, atmospheric, and climatic

studies.
Ecological/biological users ~ Ecological and biological studies.

Sustainable water resource
management users

Studies related to water resource management
and sustainable use of aquatic resources.
Agriculture users Studies related to agriculture management and
agricultural activities (plantation, fishery,
aquaculture, grazing).

Studies related to aquatic land cover/use changes
or the impact of land cover/use change on aquatic
ecosystems.

Land management users

areas from inland aquatic areas. Though not included in the LCCS, it is
an important layer of information required by users (i.e. marine/coastal
wetlands), so we added this classifier at the second level of the fra-
mework. The classifier water salinity corresponds to user demands on
saline wetlands or freshwater wetlands. According to LCCS, water
salinity can be classified as freshwater, brackish water and saline water
based on the concentration of Total Dissolved Solids (TDS). Freshwater
contains less than 1000 parts per million (ppm) of TDS while saline
water contains more than 10,000 ppm TDS (Cowardin et al., 1979) and
the water in-between “fresh” and “saline” is called “brackish” water.
At the third level, the vegetation in primarily vegetated aquatic
areas is further divided into trees, shrubs, and herbaceous cover ac-
cording to the life form defined by LCCS. The non-vegetated areas are
separated into the open water body and bare rock, soil, or sand based
on the surface type of the land exposed when there is no water. If
needed, developers can also define detailed types for other level-2
classifiers at the third level. The detailed thematic information on
aquatic land cover types required by users mainly comes from the level-
2 and level-3 of the proposed framework and these classifiers cover
almost all the attributes and features demanded by the five user groups.
Inherent to the LCCS approach, the classifiers presented at the same
level are independent from each other. Users can define their aquatic land
cover class of interest by combining different classifiers. The more classi-
fiers added, the more detailed the class. For instance, by combing the
“permanently flooded” cover type defined by the persistence of water
classifier with the “vegetated” cover type defined by the presence of vege-
tation classifier, users can derive the permanently flooded vegetated class.
This class can be further specified into permanently flooded, coastal, saline
water, trees (frequently corresponds to mangrove forests) with the use of
the “coastal” cover type of the accessibility to the sea classifier, the “saline
water” of the water salinity classifier, and the “tree cover” defined by the
life form classifier at level-3. Likewise, by combining “temporarily
flooded”, “herbaceous cover”, “artificial”, and “freshwater”, users can
obtain the “rice paddy” type. Following such a step-by-step process, i.e.,
level by level, classifier by classifier, users can select their preferred
classes, which demonstrates the flexibility of the proposed framework.
This LCCS-based characterization framework also ensures the flexibility in
a way that developers can add their own-defined classifier or feature at
different levels of the framework according to their specific needs. Fig. 5 is
a visual presentation of the proposed aquatic land cover characterization
framework and it emphasizes that a comprehensive land cover char-
acterization is not a matter of providing a few classes but rather different
layers or classifiers of information that can be derived from multiple data
sources and combined in different ways to meet various user demands.
The proposed framework also has its limitations concerning the
scope of user groups and datasets reviewed in this study. For instance,
the water depth which plays an important role in the formation and
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functioning of aquatic ecosystems is not included here because the user
needs identified in this study focus more on the surface aspect of
aquatic land cover. However, it is possible to add water depth and other
classifiers according to the application purpose when developers create
the map, which also reveals the flexibility of our proposed aquatic land
cover characterization framework.

4. Discussion

4.1. Addressing the gap between current global aquatic land cover datasets
and user needs

The analysis of the four groups of GALC datasets shows that existing
inundation/extent products are dynamic but coarse in spatial resolution
(Table 4). The single-type GALC datasets have finer spatial resolutions,
but their thematic information is sometimes too specific to meet mul-
tiple user demands. The multi-type GALC datasets are more compre-
hensive, but in many cases, they are outdated and too coarse in spatial
resolution. The GLC datasets provide a bit more information on land
cover concepts, while the complexity of aquatic land cover is being
underrepresented (Amler et al., 2015).

Inundation/extent datasets are able to be used in the general deli-
neation of aquatic areas. However, although there are several inundation/
extent datasets, the distribution and extent of global aquatic land cover
vary a lot among these datasets with a maximum areal extent estimation
being 29 million km? (Tootchi et al., 2019) and a minimum estimation
being only 2.12 million km? (Prigent et al., 2007). The information on
water persistence is addressed by some of the single-type GALC datasets
and by some GLC products, but it is still incomplete concerning the
variety of aquatic land cover types. For instance, the information on water
persistence of the GSW dataset only exists in open water areas while such
information in vegetated areas is missing. In contrast, the GLOBCOVER
dataset only indicates water persistence in flooded forests and grasslands,
while the persistence of water in waterbody-only areas is not included.
The information about vegetation types is well represented by multi-type
GALC datasets, GLC products and some of the single-type GALC datasets.
However, datasets containing a specific description of the life forms of
vegetation, i.e. trees, shrubs, and herbaceous cover, are rare and mainly
existing in GLC products. Current GALC datasets addressing the in-
formation of man-made aquatic land cover primarily focus on dams/re-
servoirs and rice paddies, while the user demanded aquaculture ponds
have not been mapped over large areas and the constructed wetlands for
wastewater treatment have not been mapped at all yet. The information
on coastal aquatic land cover and freshwater or saline aquatic types re-
ceives little attention from existing GALC datasets.

Concerning the user needs of the spatial and temporal resolution of
GALC datasets, a medium (< 1 km) to high spatial resolution (< 30 m)
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Fig. 4. The number of citing papers of each GALC dataset cited by different user groups.

dominates user needs and a dynamic dataset with intra-annual or inter-
annual dynamics is also needed by users. Current GALC datasets with a
high or medium spatial resolution are mostly single-type and GLC da-
tasets, while most of the multi-type datasets are coarser than user de-
mands. GALC datasets with intra-annual dynamics are mainly inunda-
tion/extent products with daily or monthly frequency, while the majority
of single-type and multi-type datasets, as well as GLC datasets, are static.
Among all the reviewed datasets, only three yearly updated products
with vegetated land cover types (i.e. Land Cover CCI, CGLS-LC100,
CGMFC-21) can be applied to assess inter-annual changes of aquatic
vegetated types. The GSW dataset (Pekel et al., 2016) provides the in-
formation on inter-annual changes of open water extent that can be di-
rectly used by users. However, although it is possible to extrapolate inter-
annual changes of inundated areas using the daily or monthly updated
datasets that have a long-term tracking of water (Aires et al., 2017; Papa
et al., 2010; Prigent et al., 2007; Schroeder et al., 2015), at the same time
it brings challenges and uncertainties when aggregating these daily or
monthly estimates, especially for users who have no expertise in RS.
Dynamic datasets reviewed in this study only provide changes in the
extent of aquatic land covers, while none of them provides information
on the transformation of specific classification types (e.g. the transfor-
mation between natural wetland and artificial wetland).

A rigorous quantitative assessment of the mapping accuracy of the
inundation/extent datasets and the single-type and multi-type GALC
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datasets is lacking, leaving users unsure about the quality of the dataset
they choose, and users may have to consider the uncertainties coming
from the dataset while applying these datasets in their specific research
(Wang et al., 2020). Although GLC datasets are systematically validated,
the mapping accuracy of temporarily flooded vegetated types in GLC
products is too limited to be applied in further studies. Concerning the
gap in the quality assessment levels between the GLC maps and other
GALC datasets, it would be better if future aquatic land cover mapping
initiatives could provide a rigorous quantitative assessment for the pro-
duct. In addition, global land cover mapping programs may have to
enhance the accuracy of flooded vegetated types to promote the usability
of GLC products in the monitoring of vegetated aquatic ecosystems.

4.2. Addressing the aquatic land cover monitoring gaps by the proposed
global aquatic land cover characterization framework

Compared with the user required thematic information on aquatic
land covers, existing GALC datasets are incomplete. One of the causes of
the gaps between current datasets and user needs comes from the in-
complete classification schemes they have adopted. Existing wetland
classification systems are either nationally based (e.g. US National
Wetlands Inventory, Canadian Wetland Inventory), which is not glob-
ally applicable, or using too many details (e.g. Ramsar wetland classi-
fication system), which are beyond RS capabilities. On the other hand,
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Table 8

Remote Sensing of Environment 250 (2020) 112034

User preference and uptake of the spatial and temporal resolution of existing global aquatic land cover datasets.

Climate users Ecological/Biological users

Sustainable aquatic resource management users

Agriculture users Land management users

Spatial resolution

=30m 371 (46.3%) 582 (69.3%) 609 (55.5%) 41 (39.8%) 178 (57.6%)
30-100 m 2 (0.2%) 0 37 (3.4%) 0 5 (1.6%)
100-500 m 54 (6.7%) 61 (7.3%) 129 (11.7%) 37 (35.9%) 51 (16.5%)
500 m - 1 km 183 (22.8%) 148 (17.6%) 237 (21.6%) 23 (22.3%) 50 (16.2%)
> 1km 191 (23.8%) 49 (5.8%) 86 (7.8%) 2 (1.9%) 25 (8.1%)
Temporal frequency

Daily 18 (2.2%) 0 7 (0.6%) 0 2 (0.6%)
Monthly 113 (14.1%) 56 (6.7%) 218 (19.9%) 7 (6.8%) 46 (14.9%)
Yearly 35 (4.4%) 46 (5.5%) 41 (3.7%) 4 (3.9%) 19 (6.1%)
Static 635 (79.3%) 738 (87.9%) 832 (75.8%) 92 (89.3%) 242 (78.3%)
Total number of citations 801 840 1098 103 309

Numbers in the table represent the number (or percentage) of citing papers falling into different ranges of spatial resolution and temporal frequency.

in generic land cover classification systems (e.g. IGBP DISCover Land
Cover Classification System, Belward, 1996) aquatic land covers are
underrepresented. In comparison, the global aquatic land cover char-
acterization framework proposed in this study not only addresses every
aspect of aquatic land cover characteristic required by users but also
considers the mappability of aquatic land cover features by applying a
set of diagnostic criteria. In addition, the proposed framework ensures
flexibility by allowing users to select their aquatic land cover classes of
interest at different levels and with different combinations of classifiers.
The more classifiers added, the more detailed the class.

The citation analysis of current datasets shows that specific GALC
datasets (including both single-type and multi-type) are used more often
than GLC products (Fig. 4), which indicates that there also exist gaps
between aquatic land cover characterization and generic land cover
monitoring. However, characterizing aquatic and non-aquatic land cover
characteristics in a consistent manner is essential and this is particularly
important for evolving operational global land monitoring initiatives such
as those under the Copernicus programme (Buchhorn et al., 2020) aiming
to address a variety of user needs. The implication for future compre-
hensive and consistent land cover monitoring initiatives is that on the one
hand, generic global land monitoring has to consider aquatic ecosystems
together with their complex attributes instead of just a simple class, and on
the other hand, specific aquatic land monitoring has to recognize that
aquatic areas are not disconnected from the surrounding terrestrial areas.
In our study, the proposed global aquatic land cover characterization
framework connects aquatic and generic land cover mapping by applying
LCCS classifier principles to describe aquatic land cover types. Following
this framework, the developed global aquatic land cover maps can serve as
an extension of global land cover products specifically in aquatic areas.

Considering the fact that most GALC datasets fail to report the accu-
racy of the product as well as that different users have various needs on
aquatic land cover, the accuracy assessment could be done on different
levels or classifiers of the proposed global aquatic land cover character-
ization framework. For instance, besides evaluating the overall accuracy of
the whole product, the classification accuracy could be independently
assessed for level-1, level-2, and level-3 of the characterization framework.
The classification accuracy for each classifier, such as the presence of
vegetation, could also be reported separately. Furthermore, the derived
product could be assessed in case users may combine different levels or
classifiers of information to generate their own types of interest.

4.3. Opportunities and challenges in implementing the proposed global
aquatic land cover characterization framework

4.3.1. Opportunities provided by open-source satellite data, cloud computing
platforms and machine learning algorithms

The provision of a large volume of open access RS data has been
advancing in recent years and offers opportunities to address the
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monitoring gaps. Besides Landsat, which provides the longest open-
access satellite data archives (Loveland and Dwyer, 2012), the Co-
pernicus programme's Sentinel missions also started to offer high-re-
solution satellite images at frequent intervals, adding an important
extension to current RS data streams (Drusch et al., 2012). The Sentinel-
1 satellites include a radar system which provides cloud-free C-band
Synthetic Aperture Radar (SAR) images. As SAR is sensitive to water
and moisture, it bears much potential to detect water under vegetation
areas (Tsyganskaya et al., 2018a). The Sentinel-2 satellites incorporate
a multispectral sensor with resolutions of 10 m, 20 m and 60 m and will
orbit with a five-day revisit time (Drusch et al., 2012), which provides
possibilities for the monitoring of water dynamics in aquatic lands.

As the coming of the big data epoch, machine learning techniques are
increasingly used for interpreting RS images (Lary et al., 2016). A mul-
titude of machine learning algorithms such as support vector machines,
random forests, decision trees, and neural networks are available under
open source programming languages (e.g. R, Python) and platforms (e.g.
GitHub). The increased cloud computation capability has also facilitated
global data processing and management. Some powerful large-scale
cloud computing platforms, such as Google Earth Engine (Gorelick et al.,
2017), Amazon Web Services (2016), and the System for Earth Ob-
servation Data Access, Processing and Analysis for Land Monitoring
(SEPAL, Open Foris, 2018) allow users to query and process satellite data
quickly and efficiently and to tailor their own use and create advanced
analyses. These cloud computing platforms have successfully improved
the analysing efficiency in land monitoring applications (Deines et al.,
2019; Hansen et al., 2013; Pekel et al., 2016) and will also benefit future
global aquatic land cover characterization programs.

4.3.2. General classification of aquatic land cover

The delineation of general aquatic areas can be achieved in many
ways, such as hydrological modelling based on water table depth (Fan
and Miguez-Macho, 2010), topographic modelling using both topo-
graphic indices and precipitation data (Hu et al., 2017b), optical and
SAR satellite data classification (Papa et al., 2010), or the combined use
of topographic inputs with optical and SAR images (Hird et al., 2017).
The hydrologic and topographic approaches generate the potential
distribution of aquatic areas according to the relationship between
aquatic land cover formation and water table depth or topography,
which does not consider the surface characteristics (e.g. human influ-
ence, vegetation cover) and tends to overestimate the extent of aquatic
areas (Hu et al., 2017b). In comparison, the combined use of topo-
graphic parameters and satellite images produces more reliable results
(Hird et al., 2017). As aquatic areas are subject to water dynamics, the
reflectance and energy backscatter properties might be substantially
altered within a short period (Gallant, 2015), which poses challenges
for consistent monitoring of the extent of aquatic land covers. Gen-
erating dynamic maps with daily or monthly frequency is a good
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Level 1 Level 2
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cover Coastal
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Terrestrial land
cover

Permanently flooded

Level 3
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Opportunities

Time-series analysis based on
multitemporal SAR/optical images/
ancillary data (topographic/soil

Herbaceous

Water body
or sand

ater table depth)

Increased red-edge and shortwave
infrared bands; different SAR
modes; multi-source data
integration

High-resolution (10-30 m) images;
time-series images with short
revisit time

Ancillary data (e.g. the marine
ecoregion, coastlines)

Challenges

Characterization of waterlogged
areas at the global scale

Heterogeneous landscape; irregular
water flooding

Fragmented landscape; lack of
very high-resolution (< 10 m)
images at the global scale and
reliable reference data (e.g.
aquaculture ponds)

Lack of reliable reference data (e.g.
seagrass meadows); lack of high
spatial-resolution and high

spectral-resolution data

Lack of reliable field data (i.e.

Ancillary data (e.g. coastlines) salinity measurements)

Fig. 5. A visual presentation of the proposed framework and opportunities and challenges in the implementation of the proposed global aquatic land cover char-

acterization framework.

solution (Prigent et al., 2007; Schroeder et al., 2015) and the use of
stable topographic data is also able to compensate for the uncertainties
caused by water dynamics (Hird et al., 2017).

4.3.3. Classification of the persistence of water

The persistence of water is typically monitored through multi-
temporal images (Tulbure et al., 2016; Xu, 2006). According to the de-
finition of permanently and temporarily flooded areas, water persistence
can be determined by the period that water covers the surface. Time-
series approaches are appropriate for the extraction of water persistence
with the inclusion of seasonal or annual fluctuations of water
(Tsyganskaya et al., 2018a). The GSW dataset developed by Pekel et al.
(2016) was created based on a Landsat time-series of 32 years and the
water persistence was presented in one seasonality map. Recently, a new
global surface water dynamics dataset (Pickens et al., 2020) character-
izing the inter-annual and intra-annual open surface water dynamics for
1999-2018 has become available. Compared with GSW, this new dataset
applies a temporally denser time-series and produces water percent
layers at each individual month for the entire period, improving the
characterization of the dynamics of global open surface water extent.
When applying optical images, spectral indices are often used to assess
water seasonality based on time-series analysis, such as the Normalized
Difference Water Index (NDWI; McFeeters, 1996) and the Normalized
Difference Vegetation Index (NDVI; Kriegler, 1969). A lot of efforts have
been devoted to developing automatic extraction methods (Huang et al.,
2018a), while one limitation of optical images is that they are always
obstructed by clouds as aquatic areas are typically cloud-prone.

In comparison, temporally dense SAR data is more useful in char-
acterizing surface water dynamics and flood frequencies (Slagter et al.,
2020). For the detection of water persistence in vegetated areas, SAR
data is more effective than optical imagery because of the ability to
penetrate the vegetation. Time-series features derived from VV (ver-
tical/vertical) polarization work well for characterizing the flooding
frequency under vegetation (Tsyganskaya et al., 2019).

Different from permanently or temporarily flooded areas, water-
logged areas are characterized by a high level of the water table. As a
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result, it is possible to map waterlogged areas using topographic data,
soil moisture and water table depth estimations (Bechtold et al., 2018;
Delancey et al., 2019). Current research towards the characterization of
waterlogged areas mostly focuses on peatlands (i.e. a typical waterlogged
ecosystem) over local or regional scales (Bechtold et al., 2018; Gumbricht
et al., 2017; Kalacska et al., 2018). Efforts are still needed for future
operational identification of the global-scale waterlogged areas.

4.3.4. Classification of the presence of vegetation

Vegetated and non-vegetated aquatic areas can be discriminated
from each other by multispectral optical images and SAR data because
they have different responses in different spectral bands and SAR sig-
nals. Open and smooth water surfaces are able to be identified by low
SAR backscatter values and these areas can be well differentiated from
non-water regions showing higher backscatter values (Huang et al.,
2018b). SAR sensors can also detect water under vegetation canopies
(Tsyganskaya et al., 2018b) and different sets of SAR modes can achieve
the level-3 classification of different vegetation forms, i.e. trees, shrubs,
grasses. SAR data with large incidence angles, short wavelengths (e.g.
C-band), horizontal transmission and vertical reception polarization
(HV) are considered helpful to map herbaceous aquatic vegetation
covers (Henderson and Lewis, 2008; Mahdavi et al., 2018), while SAR
images with small incidence angles, long wavelengths (e.g. L-band),
horizontal transmission and reception polarization (HH) are more ef-
fective in the mapping of flooded trees or shrubs (Mahdavi et al., 2018).
The BIOMASS mission, which will be launched in 2022 by the European
Space Agency, will carry a fully polarimetric P-band SAR (Quegan et al.,
2019). This new archive will achieve more accurate measurements of
forest height at 50 m spatial resolution and is expected to benefit the
characterization of flood extent under tall or very dense flooded forests
(Henderson and Lewis, 2008).

Among various multispectral bands, the red-edge band and the
near-infrared band are particularly helpful because different vegetation
types show the greatest variation at these wavelengths (Schmidt and
Skidmore, 2003; Sims and Gamon, 2002). The freely available Sentinel-
2 imagery provides three red-edge bands (i.e. Band 5, 6 and 7) at 20 m
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resolution and two shortwave infrared bands (i.e. SWIR1 and SWIR2)
that are believed to be effective in detecting water under dense vege-
tation cover (Lefebvre et al., 2019). However, the characterization of
vegetated areas becomes challenging when a heterogeneous landscape
is accompanied by irregular water flooding. Such effect has been re-
flected in the poor mapping of temporarily flooded vegetated areas in
GLC datasets and the difficulty in identifying peatlands in the northern
boreal area, which are patchy and fragmented, with waterlogged soil
and diverse vegetation (Bourgeau-Chavez et al., 2017). To deal with
this issue, the multi-source integration of different types of satellite
images (e.g. optical, topography and SAR data) and high-resolution
images are recommended (Rasanen and Virtanen, 2019).

4.3.5. Classification of the artificiality of cover

Artificial aquatic land covers that are of users' interests include
regularly flooded croplands, dams/reservoirs, aquaculture ponds, and
constructed wetlands for wastewater treatment. Global mapping of
regularly flooded croplands is mainly focused on rice paddy (Dong and
Xiao, 2016; Kuenzer and Knauer, 2013). Multi-temporal analysis and
phenology-based approaches applying time-series images are effective
methods for rice paddy classification. Global rice paddy mapping faces
challenges of cloud-induced noises (rice paddies are usually planted in
cloud-prone areas) and the fragmentation of rice paddy fields (90% of
global rice paddy fields are distributed in Asia, where most cropland
fields are patchy and fragmented) (Dong and Xiao, 2016). However,
these two issues can be solved by the combined use of high-resolution
(e.g. Landsat-like or Sentinel-2) optical and SAR (e.g. Sentinel-1) ima-
gery with a short revisit time (Torbick et al., 2011; Zhang et al., 2009).

The dam/reservoir dataset reviewed in this study (i.e. GRanD that
contains 6862 dams) was generated by compiling existing maps and
datasets. Recently, a new dam dataset (i.e. GOODD, Mulligan et al.,
2020) containing more than 38,000 dams has been produced by the
digitisation of satellite imagery globally. However, the mapping of
dams/reservoirs by remote sensing on a global scale has not been
achieved yet. Current trials of classifying dams and reservoirs are lim-
ited to small scales (Amitrano et al., 2017; Annor et al., 2009) and
dams/reservoirs are extracted by change-detection-based methods
using multi-temporal optical (Zhang et al., 2019) or SAR images
(Amitrano et al., 2017).

Aquaculture ponds are distinguishable from other water bodies
utilizing their distinct rectangular structures, while the relatively small
size and intermingling with lakes or other water bodies make them
difficult to recognize from satellite images (Zeng et al., 2019). A high
spatial resolution (e.g. 10 m) is very important to discriminate not only
between ponds and other land surfaces but also to separate adjacent
ponds from each other (Ottinger et al., 2017). Time-series of optical and
SAR data and object-based feature selection methods are recommended
for the classification of aquaculture ponds (Ottinger et al., 2017; Stiller
et al., 2019; Virdis, 2014; Zeng et al., 2019).

The constructed wetlands for wastewater treatment are wetlands
designed to use natural processes involving vegetation, soils, and as-
sociated microbial assemblages to treat wastewater (IPCC, 2014).
Currently, no study has been carried out to characterize this special
kind of wetland using RS techniques mainly because of its small scale to
be recognized by RS data and the lack of reliable reference and ground
truth data for training and validation.

4.3.6. Classification of the accessibility to the sea and water salinity

The classification of coastal vs inland and freshwater vs brackish/
saline aquatic land cover based on RS techniques is not widely studied.
A general distinction between these areas could be achieved according
to the definition of coastal and inland aquatic land cover (Table 9) or
the potential locations that they may be distributed on. For example,
coastal and inland areas could be discriminated using ancillary data,
such as the marine ecoregion (Spalding et al., 2007), and saline water
can be roughly discriminated from freshwater using coastlines as saline
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water-covered areas are mostly located in coastal areas. Specific coastal
aquatic land cover types demanded by users include mangrove forests,
seagrass meadows, tidal marshes, and floodplains. The mapping of
mangroves, saltmarshes, and floodplains is actually the classification of
permanently flooded trees, temporarily flooded herbaceous cover, and
temporarily flooded bare rock/soil/sand in coastal areas, respectively.
However, the classification of seagrass meadows at the global scale by
remote sensing is difficult due to the confusion between seagrass and
other substrate types in shallow coastal water environments (Hossain
et al., 2015). High spatial and spectral resolution data, as well as reli-
able field samples, are required for an accurate mapping of seagrass
meadows (Knudby and Nordlund, 2011).

According to LCCS, brackish/saline water is water that normally
contains more than 1000 ppm TDS and freshwater is water with salts
less than 1000 ppm TDS (Table 9). As salinity has no direct colour
signals, remote sensing characterization of water salinity can only be
achieved using a proxy that has a direct relationship with salinity
(Chong et al., 2014), such as the chromophoric dissolved organic matter
(CDOM) (Bai et al., 2013; Fang et al., 2019) derived from satellite ocean
colour data. In this case, a large quantity of reliable field data is re-
quired to build the model between CDOM and water salinity (Chong
et al., 2014). Specific freshwater types demanded by users include
freshwater lakes, freshwater marshes and freshwater forested wetlands
(Costanza and Sklar, 1985; Davidson, 2016). Saline aquatic types in-
clude salt pans, salt lakes and saltmarshes (Davidson, 2016; IPCC,
2014). The classification of these categories may use ancillary data such
as the aforementioned marine ecoregions based on the classification
outputs of prior classifiers.

The above analysis shows that a successful implementation of the
proposed global aquatic land cover characterization framework re-
quires the integration of multiple data sources and different analysing
approaches. The improved computation capability, the open-sourced
machine learning algorithms and the evolving satellite data availability
improve the feasibility of implementing the comprehensive aquatic
land cover mapping framework (Fig. 5). Challenges of implementing
the framework mainly come from the complexity of aquatic ecosystems
(e.g. dynamic water flooding, heterogeneous and fragmented land-
scapes), the lack of reliable field data, and the difficulty in acquiring
high quality (i.e. very high-resolution images) data on a global scale
(Fig. 5).

5. Conclusion

Aquatic land cover types provide many valuable ecosystem services
for human well-being, but they have suffered great loss in the past
decades. The global monitoring of aquatic land cover is of high im-
portance. Although plenty of GALC datasets are available for mon-
itoring aquatic ecosystems, map users are confronted with prominent
inconsistencies and uncertainties when applying these datasets in dif-
ferent fields of research and applications. The increased satellite data
availability has promoted global land monitoring coming to an opera-
tional stage that seeks to satisfy multiple user demands. As aquatic land
cover exists in many different forms, it is also important to come up
with a consistent and comprehensive characterization framework that
ensures the universal understanding of aquatic land covers consistent
with those of terrestrial land cover characterization. In this study, we
addressed the gaps in aquatic land cover monitoring through a com-
prehensive approach assessing the limitations of available datasets,
refined user requirements and evolving remote sensing capabilities that
have resulted in a concrete framework for improving global aquatic
land cover monitoring.

Among the four groups of GALC datasets, inundation/extent pro-
ducts are dynamic but coarse in spatial resolution. The single-type
GALC datasets have finer spatial resolutions but they are too specific in
thematic information to meet multiple user needs. The multi-type GALC
datasets are more comprehensive, but they are outdated and too coarse
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in spatial resolution. The GLC datasets address more aspects of aquatic
features, while the complexity of aquatic ecosystems is being under-
represented. The assessment of user requirements indicates that user
required and preferred thematic information on aquatic land covers
concerns open water, vegetation types, water persistence, man-made
aquatic land covers, coastal wetlands, and freshwater or saline aquatic
types. Datasets with medium to high spatial resolution, intra-annual
dynamics and inter-annual changes are also required by users.
However, none of the existing datasets can fully meet such demands
and a rigorous assessment on the quality of most GALC datasets is
lacking.

Based on the identified user needs and the LCCS approach, a three-
level global aquatic land cover characterization framework was pro-
posed. The first level of the framework is a general delineation of
aquatic areas. At the second level, five classifiers including the persis-
tence of water, presence of vegetation, the artificiality of cover, the
accessibility to the sea, and water salinity are adopted. At the third
level, vegetated and non-vegetated categories are further defined. This
framework is highly flexible allowing users to combine different layers
or classifiers of land cover types to meet their specific needs. This LCCS-
based framework is able to bridge the gap between aquatic land cover
characterization and generic land cover mapping, which not only
considers the complexity of aquatic ecosystems but also ensures the
consistency between aquatic and non-aquatic land cover types.

The evolving satellite data availability, improved computation
capability, and open-source machine learning algorithms offer tre-
mendous opportunities to implement the proposed framework, while
the complexity of aquatic ecosystems, the lack of reliable field data, and
the difficulty in acquiring very-high-resolution images on a global scale
also bring challenges for the implementation. This comprehensive
aquatic land cover mapping framework provides a reference for future
operational global aquatic land cover mapping initiatives and will
support better understanding and monitoring of complex aquatic eco-
systems.
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