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A B S T R A C T

Efficient and accurate prediction of river water quality is challenging due to the complex hydrological and
environmental processes affecting their nature. The challenge is even bigger in unmonitored watersheds. Both
process- and data-based approaches are utilized for this purpose, with each having its own strengths and
weaknesses. The development of a hybrid model can potentially give robust solutions in this regard. To improve
the water quality predictions in unmonitored watersheds, we developed a hybrid model by combining a process-
based watershed model and artificial neural network (ANN). Combining these two models helped to optimize the
calibration and validation process while accounting for the complex hydrological and water quality processes.
The developed model was applied to watersheds in the Atlanta metropolitan area, USA, to predict monthly
nitrate, ammonium, and phosphate loads. We treated the watersheds as unmonitored and tested the skill of the
hybrid model accordingly. The hybrid model had good skills in predicting all three constituents. The model
worked especially well for nitrate. As a matter of fact, it even outperformed SWAT models calibrated at each site.
This work emphasizes the potential benefits of the proposed hybrid modeling framework for the prediction of
water quality parameters in unmonitored watersheds.

1. Introduction

Water quality management enhances the ecosystem and human
health and helps sustain drinking water production (Ho et al., 2019).
For these purposes, water quality data are needed to identify long-term
trends, regional variability, emerging problems, etc. Water quality
monitoring and sampling over a continuous time period are costly and
time-consuming. This downside limits datasets to sparse sampling
points throughout the year and restricts conducting water resource
management studies as well as calibrating and validating water quality
models (Libera and Sankarasubramanian, 2018).

To overcome this limitation towards better water quality manage-
ment, the development of water quality models is an important step.
Different modeling techniques have been developed over the past
decades to improve the prediction accuracy of water quality para-
meters. Statistical models such as multiple linear regression models
(Herrig et al., 2015) and regression trees (Stidson et al., 2012), which
have been used for water quality prediction, have certain limitations.
Most statistical models assume linear and normally distributed asso-
ciations among the predictors and response variable (Ahmed et al.,
2019), do not incorporate hydrological processes (Tongal and Booij,
2018), and their predictions are restricted to gauged watersheds (Ho

et al., 2019). On the other hand, process-based models are powerful
tools that can be used to simulate hydrological processes and fate and
transport of pollutants under different scenarios. However, these
models, such as the Soil and Water Assessment Tool (SWAT) (Neitsch
et al., 2011), need a large amount of data and processing time (Ahmed
et al., 2019) and involve several parameters that cannot be measured
(Abdulmohsin et al., 2016). Besides, these models have a long process
of parameter estimation, calibration, and validation.

Machine Learning (ML) based methods, such as Artificial Neural
Networks (ANN), are increasingly being used for solving environmental
problems. These data-based methods can tackle highly nonlinear pro-
blems (Abdulmohsin et al., 2016; Hunter et al., 2018; Barzegar et al.,
2016; Adnan et al., 2019a; Adnan et al., 2019b) and do not require
knowledge of the physical processes, yet often require large volumes of
data. A number of studies have assessed the prediction accuracy of
water quality constituents using ANN models (Haghiabi et al., 2018;
Kalin et al., 2010; Keshtegar and Heddam, 2018; Khataar et al., 2018;
Sarkar and Pandey, 2015; Šiljić Tomić et al., 2018; Sirisha et al., 2008;
Zhang et al., 2016). ANN applications have their own challenges, such
as determining the appropriate network structure, which is obtained
through experience and trial and error, and selecting the best combi-
nation of the input variables. In addition, extrapolation beyond the
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range of original training data could lead to large errors. When the land
use/cover of watershed changes, ML-based models can fail to capture
the impacts of these dynamics on water quality. To develop a more
accurate predictive model and account for the limitations of each
technique, a hybrid approach could work better than a single model
(Rezaeianzadeh et al., 2018; Tongal and Booij, 2018). Previous studies
have shown that coupling different techniques can lead to noticeable
improvements in water quantity and quality predictions. Examples of
such hybrid approaches are developing process-driven ANN and re-
gression models (Hunter et al., 2018), wavelet-ANN model (Alizadeh
and Kavianpour, 2015; Barzegar et al., 2016), machine learning
methods coupled with base flow separation (Rezaeianzadeh et al.,
2018; Tongal and Booij, 2018), adaptive neuro-fuzzy models (Yaseen
and Ramal, 2018), and ANN coupled with SCS Curve Number method
(Isik et al., 2013). Previous studies have not combined an ML method
and a process-based watershed model to predict water quality para-
meters, especially in unmonitored watersheds. In this study, we extend
the hybrid approach developed by Noori and Kalin (2016) for daily
streamflow predictions to water quality prediction in unmonitored
watersheds. In Noori and Kalin (2016), ANN and SWAT were coupled to
overcome the limitations of each model. The coupled model resulted in
significant improvements in daily streamflow predictions. Here, we il-
lustrate the application of the SWAT-ANN approach for water quality
prediction and test the model performance by applying it to the data
from watersheds in and around the Atlanta Metropolitan area, USA.

2. Methods

2.1. Soil water assessment tool (SWAT)

SWAT is a watershed-scale, semi-distributed, and continuous-time
hydrologic and water quality model. SWAT is designed to simulate
discharge, sediments, nutrient and pesticide loads, crop growth, and
management practices over long time periods at daily and sub-daily
scales (Neitsch et al., 2011). The model divides the watersheds into sub-

watersheds, which are further subdivided into hydrological response
units (HRUs). Each HRU has a unique combination of soil type, land
use/cover, and slope. SWAT has been used widely in the field of water
resource management for water quantity and quality prediction as well
as scenario testing such as effects of land use/land cover changes and
climate changes on hydrologic cycle (Bauwe et al., 2019; Chotpantarat
and Boonkaewwan, 2018; Kavian et al., 2018; Malagó et al., 2017; Shi
et al., 2017; Wu et al., 2017; Yan et al., 2019).

SWAT simulates the hydrologic cycle in two phases of land and
water. The land phase controls the amount of water, sediment, and
nutrients loadings into the main channel of each sub-watershed and the
water phase is defined as the process of routing runoff, sediment, and
nutrients through the stream network to the watershed outlet (Neitsch
et al., 2011). Nitrogen is simulated by SWAT in the soil profile, taking
into consideration five different organic and inorganic pools. Nitrate
(NO3

−) and Ammonium (NH4
+) are inorganic forms of nitrogen.

Phosphorus is also simulated by SWAT in the soil by monitoring six
different organic and inorganic pools. A detailed model description can
be found in Neitsch et al. (2011).

For this work, we used the SWAT model developed in the previous
study by Noori and Kalin (2016). In addition to the concentrations and
loads of various constituents in the stream segments (called reach in
SWAT) and watershed outlet, SWAT also provides users partitioning of
sources from the sub-watersheds. The amount of monthly NO3

− loads
transported by surface runoff, lateral flow, and baseflow to streamflow,
as well as simulated monthly streamflow at the watershed outlet were
used as inputs to the NO3

− ANN model. For NH4
+, SWAT estimated

monthly NH4
+ loads at the watershed outlet as well as monthly

streamflows were used as inputs to the NH4
+ ANN model. For phos-

phate (PO4
3−), SWAT simulated monthly mineral phosphorus loadings

at the watershed outlet, and simulated streamflows were used as inputs
to the PO4

3− ANN model.

Fig. 1. USGS stations with their corresponding available‘ water quality data around city of Atlanta, Georgia, USA. All the sites have daily streamflow data as well.
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3. Study area and data

The study area is in the southeast of the United States, the state of
Georgia, Atlanta. Atlanta and its metropolitan area have a warm and
humid climate with an average annual temperature of 16.5 0C and
average annual precipitation of 1200 mm. Urban development has been
very rapid over the past decades in this region, and based on the 2006
National Land Cover Data (NLCD), the dominant land use types are
impervious surfaces as well as evergreen/deciduous/mixed forest.

The input data to the model include daily air temperature data from
the National Climatic Data Center stations in Atlanta area and daily
precipitation data from the North American Land Data Assimilation
System (NLDAS), land use/cover data from the 2006 National Land
Cover Data (NLCD), and soil data from the Soil Survey Geographic
Database (SSURGO). We considered 29 US Geological Survey (USGS)
monitoring stations nearby the city of Atlanta with daily streamflow
data as well as water quality data available over the period 2002–2010.
The locations of these stations with available water quality data are
shown in Fig. 1. The summary of available data for each station is also
given in Supplementary Material, Table 1. Watersheds ranged in size
from 3 to 552 km2. Dominant land cover/use types in these watersheds
are impervious surfaces ranging from 13% to 52%, and deciduous
forests ranging from 2% to 24%. Overall, 15 stations with NO3

− data,
25 stations with NH4

+ data and 13 stations with PO4
3− data were used

in the study. NO3
− concentrations ranged between 0.18 and 13 mg/L.

Station 2,203,700 had the highest NO3
− concentration among 15 sta-

tions, about two times higher than other stations. NH4
+ concentrations

ranged from 0.01 to 10 mg/L. Station 2,334,885 had the highest NH4
+

concentration. Station 2,336,240 overall had very low NH4
+ con-

centrations, which ranged between 0.03 and 0.16 mg/L. PO4
3− con-

centrations ranged from 0 to 1.32 mg/L, and station 2,334,480 had the
highest concentration among 13 stations.

This study focused on predicting nutrient loads, rather than nutrient
concentrations. Accurate prediction of nutrient loads is important for
water bodies. Too much nitrogen and phosphorous in the water can
lead to various problems, such as algal blooms. Not only can some algae
produce toxins, but also, when algae die, they can lead to reductions in
oxygen levels in the water. Since the observed water quality con-
centration data are instantaneous and not in a continuous time scale,
the LOAD ESTimator (LOADEST) tool developed by USGS (Runkel
et al., 2004) was used to generate continuous time series of each con-
stituent loads at each USGS station. This tool combines streamflow time
series with instantaneous water quality concentrations and uses a set of
regression models to estimate mean loads over a specified time interval
on a continuous scale (daily, monthly, or seasonal). This tool has been
used commonly to generate continuous data from discrete data and to
estimate monthly or annual loading in SWAT modeling (Dagnew et al.,
2016; Lee et al., 2018; Niraula et al., 2013; Singh et al., 2015: Wallace
et al., 2018; Wang et al., 2016). The LOADEST performance (R2) ranged
from 0.84 to 0.96 for NO3

−, between 0.53 and 0.95 for NH4
+, and from

0.46 to 0.83 for PO4
3−.

4. Water quality prediction

4.1. Coupling SWAT and ANN

Using the SWAT models from the previous study (Noori and Kalin,
2016) for each station and setting the model parameters at their default
values, monthly water quality loads were simulated. SWAT generated
outputs were then used as inputs to the ANN model. SWAT was in-
tentionally not calibrated because our goal was to develop a model that
can be used in unmonitored watersheds. For each constituent, a sepa-
rate ANN model was developed. The continuous monthly water quality
loads, estimated by LOADEST, served as the observed data to train the
ANN models.

ANN is inspired by the structure of the human brain and has the

ability to model complex nonlinear relationships, without the detailed
knowledge of the internal functions of a system (Kalin et al., 2010).
ANN is classified based on the number of layers and the direction of
information flow. Feed-forward network with Levenberg–Marquardt
back-propagation learning has been successfully applied to hydro-
logical and environmental problems (Kalin et al., 2010). The feed-for-
ward network includes three layers of input, hidden and output. These
layers are connected with each other through neurons. Input and output
layers have neurons equal to the number of inputs and outputs. For the
hidden layers, the optimum number of layers and the number of neu-
rons within hidden layers are usually found through the trial-and-error
approach. In this study, the tangent sigmoid transfer function was
adopted for both hidden and output layers, and the sum of square error
was minimized as the error function. For the model training and testing
purposes, the leave-one- site-out jackknifing technique was used (Sefick
et al., 2015). In this technique, one observation is left out of the training
data set, the model is retrained, and the observation that was left out is
predicted. In this study, out of n stations, one was left for testing, and
the model was trained using the remaining (n-1) stations data. This step
was repeated until all stations had been removed once. This technique
was explained in Noori and Kalin (2016) in more detail. The schematic
of the coupled model is given in Fig. 2. The performances of the models
were evaluated with the coefficient of determination (R2), Nash–Sut-
cliffe efficiency (ENASH) (Nash and Sutcliffe, 1970) and percent bias
ratio (PBIAS) (Salas et al., 2000).

The coefficient of determination is a measure of linear correlation
between two quantities and is given by:
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where, O and S represent observed data and model outputs, and n is the
number of data points. The Nash–Sutcliff efficiency (ENASH) is com-
monly used to assess the predictive power of hydrological models (Nash
and Sutcliffe, 1970). It is defined as:
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The bias ratio measures the degree to which the forecast is under- or
overpredicted. A negative bias ratio indicates underprediction, whereas
a positive bias ratio reflects overprediction (Kalin et al., 2010).

The developed ANN models performances were rated using the
model evaluation guidelines developed by Moriasi et al. (2007) for
nutrients based on PBIAS and ENASH:

Very good: < ≤E0.75 1NASH ; <P| | 25BIAS
Good: < ≤E0.65 0.75NASH ; ≤ <P25 | | 40BIAS
Satisfactory: < ≤E0.50 0.65NASH ; ≤ <P40 | | 70BIAS
Unsatisfactory: ≤E 0.50NASH ; ≥P| | 70BIAS

The architecture of the neural network utilized in this study is
shown in Fig. 3. The proposed feed-forward neural network has three
main layers: input, hidden, and output layers. The input layer has ob-
served streamflow and constituent load obtained from the SWAT
model. The hidden layer has multiple neurons. The number of neurons
in the hidden layer varies with water quality types and sites. Determi-
nation of the optimum number of layers is usually a matter of experi-
mentation. A trial-and-error approach is the most commonly used
method to find the number of hidden neurons and layers (Kalin et al.,
2010). In this study, the number of hidden neurons was searched from 1
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to 30, respectively. The output layer is the predicted constituent i.e.,
NH4

+, NO3
− or PO4

3−.
Mean square error (MSE) and Akaike’s information criterion (AIC)

are used as selection criteria in determining optimal input and hidden
neurons. The AIC is commonly used in the literature to find optimal
ANN architectures (Kalin et al., 2010; Qi and Zhang, 2001). Various
forms of AIC are used in the literature. We used the one proposed by Qi
and Zhang (2001):

= +AIC σ m nlog( ) 2 /MLE
2 if + ≥n m/( 1) 40

= + − −AIC σ m n mlog( ) 2 /( 1)MLE
2 if + <n m/( 1) 40 where, n is

the number of data, and m is the number of parameters in the model.
The term σMLE

2 denotes the maximum likelihood estimate of the var-
iance of the residual term or simply the mean square error (MSE) be-
tween the observed and simulated data. MATLAB version 9.2.0 (2017a)
was used for ANN model simulations.

To show the advantage of the SWAT-ANN model over the traditional
ANN model, we developed ANN models similar to ones in Kalin et al.
(2010) for NO3

−, NH4
+, and PO4

3− using LULC, streamflow, and
temperature as input variables. Again, the jackknifing method was used
for training and testing the models. The performance of the ANN model

was compared with the hybrid model.

5. Swat-CUP

To have another level of assessment for the prediction power of the
SWAT-ANN model, we compared the performance of the coupled model
with SWAT by calibrating the SWAT model for NO3

−, as a check
against possible idiosyncrasies of the hybrid approach. We did not ca-
librate the SWAT model for PO4

3− and NH4
+, considering the main

goal, which solely was for comparison.
The SWAT model was calibrated using the SWAT Calibration

Uncertainty Procedure (SWAT-CUP) (Abbaspour et al., 2007;
Abbaspour, 2015). SWAT-CUP is a calibration, sensitivity, and un-
certainty analysis tool for SWAT. In this study, the Sequential Un-
certainty Fitting (SUFI-2) module (Abbaspour et al., 2007) was used for
model calibration. SUFI-2 determines the most sensitive parameters for
calibration through Latin Hypercube Sampling. SWAT-CUP was run for
each station separately on the monthly time step. The number of
iterations varied from 3 to 10. Each iteration had 500 simulations. For
the first iteration, the parameters that were considered for the daily
streamflow calibration in the previous study (Noori and Kalin, 2016)
were fixed to their best-estimated values, then the monthly NO3

− load
was added as observed data to SWAT-CUP and new set of parameters
were added for NO3calibration with their default ranges. For the next
iterations, SWAT-CUP recommended parameter ranges were used.
When the SWAT-CUP recommended range of a parameter exceeded its
min/max limit, the recommended range was adjusted. Model perfor-
mance was evaluated with R2, ENASH, and PBIAS.

6. Results

The testing results of SWAT-ANN hybrid models are given in Fig. 4.
Figs. 5–7 compare the observed monthly load time series with the
model simulations. It is necessary to emphasize one more time that each
watershed in these figures was treated as an unmonitored watershed for

Fig. 2. Schematic of coupled SWAT-ANN model for nitrate, ammonium and phosphate loads. Q is streamflow.

Fig. 3. The architecture of neural network.
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testing purposes. When a watershed was used for testing, no data from
that watershed was used at all during the training of the SWAT-ANN
model. For the stations with NO3

− data, the training performance
rating was “very good” with ENASH > 0.80 for all the stations
(Supplementary Material, Table 2). For the testing, more than 70% of
the watersheds had the performance rating of “good” to “very good”.
The median ENASH and absolute PBIAS values for NO3

− runs were 0.77
and 7%, respectively. If the two sites with very low performances are
ignored, these values improve to 0.78 and 3%, respectively. As shown
in Fig. 5, SWAT-ANN simulated NO3

− load successfully captured the
observed time series pattern and peaks and troughs for the majority of
the 15 stations. The hybrid model overestimated the NO3

− load in
stations 2,203,603 and 2,336,313 which have small watershed areas, 6
and 4 km2 respectively, with impervious surface and urban grass as the
dominant land use/land cover types. The majority of watersheds used
for training of the NO3

− models had area > 10 km2. The model did
not capture the peak load at the beginning of the time series in station
2,336,517 but captured the observed pattern later in the time series
(Fig. 5). Plotting the ENASH values against the watershed characteristics

(Fig. 8a) showed that as the watershed size increases, the model per-
formance rate increases as well (p-value = 0.003). Also, as the percent
impervious cover increases in these watersheds, the model performance
rate decreases (p-value < 0.001). On the other hand, watersheds with a
higher percentage of forest cover had better model performances (p-
value = 0.03). We found a correlation between watershed area and
level of imperviousness or forest cover in the study region (r = −0.15
and 0.16, respectively), although there is a significant correlation be-
tween forest cover and imperviousness (r = −0.91). Therefore, the
opposite trends between the model performance versus percent im-
pervious cover and the model performance versus watershed size are
not related. One can speculate that as the imperviousness (thus urban
land) increases, the likelihood of having point or any other nutrient
sources, such as combined sewer overflows (cso) or leaky sewer systems
increases. Our modeling framework did not consider such sources.
These results highlight that the developed SWAT-ANN model predicts
the NO3

− load in forested watersheds (or less urbanized) with the area
more than 10 km2 in the Atlanta metropolitan area with higher accu-
racy.

Fig. 4. Testing results of SWAT-ANN model for a) NO3
− load at 15 stations, b) NH4

+ load at 25 stations, c) PO4
3− load at 13 stations.

Fig. 5. SWAT-ANN simulated NO3
− load time series versus observed data for 15 stations.
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For NH4, the training performance rating was “very good” with
ENASH > 0.75 for 24 out of the 25 stations (Supplementary Material,
Table 2). For the testing, 11 out of 25 stations had ENASH > 0.50, and
the performance rating was “satisfactory” to “very good”, with the
median ENASH and absolute PBIAS values at 0.44 and 15%, respectively.
The SWAT-ANN model could not capture the large peaks of the NH4

load for the majority of stations but predicted the small peaks more
accurately. The models, except for stations 2,336,313 and 2203603,
also predicted the variations in the data accurately. NO3

− load at these
two stations was also overestimated by the hybrid model. For some of
the stations, the model underestimated the observed peak loads and
overestimated the troughs (Fig. 6). The majority (88%) of watersheds

with NH4
+ data in this study have less than 37% impervious cover

(median = 23%). However, the watersheds draining to stations
2203603, 2336030, and 2,336,313 have an impervious cover of 46%,
52%, and 51%, respectively, and are the most urbanized watersheds
(Supplementary Material, Table 1). These three stations also have much
higher observed concentrations (mean is 1.31 mg/L) than the other
stations (mean 0.09 mg/L). Therefore, with the leave-one-out jack-
knifing, the trained models are having a hard time predicting NH4

+

levels at these sites. Linking the area of land use/land cover char-
acteristics of these watersheds with the NH4

+ model performance rate
did not add any strong explanation to the analysis. However, if we kick
out the two watersheds with very low performances, then we observe

Fig. 6. SWAT-ANN simulated NH4
+ load time series versus observed data for 25 stations.

Fig. 7. SWAT-ANN simulated PO4
3− load time series versus observed data for 13 stations.
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the same trends we observed with NO3
− (Fig. 8b). Station 2,217,274

has the smallest watershed area at 3 km2, (for the rest,
median = 35 km2, mean = 85 km2).

For PO4
3−, the training performance rating was between “satisfac-

tory” to “good” with ENASH > 0.55 for all the stations (Supplementary
Material, Table 2). For the testing, the developed model of PO4

3− load,
similar to NH4

+, underestimated the large peaks (Fig. 7) and had the
weakest performance ratings with only 4 out of 13 stations with ENASH
value of about 0.50 or higher (Fig. 4c). There were no strong associa-
tions between either of the watershed area, percent imperviousness or
forest cover, and the model performance rate (Fig. 8c). Removing the
watersheds with very low performances did not change results, and no
statistically significant associations were found. However, the percent
of pasture cover was significantly related to the hybrid model perfor-
mance rate (p-value = 0.023). Watersheds with higher pasture cover
had the lowest ENASH values. This result highlights that the source of
phosphorus from the pasture was not accounted for and was not si-
mulated well by the SWAT model. Note that we used the default SWAT
parameterization. No adjustments were made to any of the SWAT

parameters.

7. Discussion

For comparison purposes, we calibrated the SWAT model using
SWAT-CUP for monthly NO3 loads. The SWAT-CUP performance rating
was “unsatisfactory” for all 15 stations with NO3

− data (Fig. 9). The
mean ENASH and absolute PBIAS values for NO3

− runs were 0.06 and 6%,
respectively. The testing step of SWAT-CUP includes selecting the
nearest watershed to the trained watershed and running the SWAT-CUP
model with the trained model’s best-estimated parameters. However,
considering the weak performance of SWAT-CUP for the training set,
we chose to skip the testing step. Comparing the SWAT-CUP calibration
results with the hybrid model testing results, it is clear that the SWAT-
ANN model outperformed the SWAT model, and coupling SWAT and
ANN improved the NO3

− prediction accuracy.
We also compared the predictive power of ANN models developed

using LULC, temperature, and streamflow as input variables with the
hybrid model. Based on the ENASH values, for NO3

−, the hybrid model

Fig. 8. ENASH values of SWAT-ANN model for a) NO3
−, b) NH4

+ and c) PO4
3− versus test watersheds natural logarithm of area, percent imperviousness and percent

forest cover.
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outperformed the ANN model in 85% of the stations. The mean/median
ENASH values were 0.50/0.77 and −4.3/0.73, respectively, for SWAT-
ANN and ANN. For NH4

+, the hybrid model had a better performance
than the ANN model in 56% of the stations. The mean/median ENASH
values were 0.15/0.44 and −1.2/0.48, respectively, for SWAT-ANN
and ANN. For PO4

3−, in 77% of the stations, SWAT-ANN performed
better. The mean/median ENASH values were −0.14/0.32 and −0.32/
0.01, respectively, for SWAT-ANN and ANN. Based on performance
measures, this comparison highlights the superiority of the coupled
model.

Comparing the results of this study with our previous study (Noori
and Kalin, 2016) revealed reverse trends between streamflow model
performance and watershed characteristics. Although many of the sta-
tions used in this study overlap with the ones in Noori and Kalin (2016),
they are not exactly the same. In Noori and Kalin (2016), there were 29
stations. On the other hand, in this study, we had 25 sites for NH4, only
15 sites for NO3

− and 13 sites for PO4
3−. Further, the objective in Noori

and Kalin (2016) was predicting daily streamflow. In this study, the
focus was on predicting monthly nutrient loads. The processes and time
scales of the two studies are completely different. In addition, Noori and
Kalin (2016) had separate models for cool and warm seasons to account
for seasonal variations in contribution of baseflow and stormflow to the
total flow as well as to account for environmental and vegetation var-
iations. Considering all these factors, it is hard to make a comparison
between the two studies.

The SWAT-ANN training performance somewhat mirrors the
LOADEST performance. PO4

3− model performance is lower than NO3
−

and NH4
+ models because the phosphorus cycle is more complex; it is

simulated by SWAT by monitoring six different organic and inorganic

pools. In addition, some of the phosphorous are transported to the main
channels with sediment. If we had sediment data, PO4 predictions
would have been likely better, both for LOADEST and SWAT-ANN. The
LOADEST performance for NO3

− and NH4
+ are not too far apart, with

the former being a little better. The reason for the slightly lower per-
formance of NH4

+ is likely due to the higher variation in NH4
+ mea-

surements. The average coefficient of variation for observed NO3
−

concentrations was 0.38 (0.29–0.50). For observed NH4
+ concentra-

tions, it was 1.17 (0.45–4.2). The SWAT-ANN model performances for
NO3

− and NH4
+ during training are also close. Note that there is no

training/testing sequence with LOADEST. Therefore, comparing SWAT-
ANN testing performance to LOADEST is not meaningful.

8. Summary and conclusions

This work expanded a hybrid-modeling framework, previously de-
veloped for streamflow prediction in ungauged watersheds by Noori
and Kain (2016), to monthly nutrient load prediction in unmonitored
watersheds. Testing of the model for predicting NO3

−, NH4
+, and

PO4
3− in the Atlanta metropolitan area, Southeast USA, showed that

the hybrid model outperformed standalone SWAT and ANN models.
The developed hybrid model improved the water quality prediction
accuracy by accounting for the hydrology as well as fate and transport
of nutrients on land and streams through incorporation of the SWAT
model into ANN.

If reliable water quality data is available, a calibrated and validated
SWAT model can be a robust tool for assessing the impacts of land-use
change, climate change/variability, or any management operations in a
watershed. If water quality data is not available, then SWAT is typically
calibrated and validated at a nearby watershed with similar char-
acteristics, and the model parameters are transferred from the donor
watershed to the target watershed (Wang and Kalin, 2011). The hybrid
model developed in this study eliminates the need for parameter
transferring. In our study, the hybrid model had better skills in pre-
dicting nutrient loads than the SWAT model calibrated at each in-
dividual site.

A comparison of the hybrid model to the ANN model showed that
the prediction accuracy of the hybrid model was higher for the majority
of watersheds for all three nutrients. The input variables to the ANN
model were LULC percentages, temperature, and streamflow. In the
hybrid model, LULC and temperature were replaced with SWAT-simu-
lated nutrient loads, which helped us better represent the hydrological
and water quality processes. SWAT captures effects of LULC on hy-
drology through various processes, such as canopy interception, eva-
potranspiration (ET), plant growth, runoff generation, and infiltration
(CN varies by LULC in the SCS-CN method), and overland flow routing
(through Manning’s roughness). Similarly, SWAT simulates movements
of nutrients from land to the stream network and calculates the nutrient
loadings for each HRU in the watershed, which increases the accuracy
of the loading prediction from the watershed. SWAT also accounts for
the loadings from point sources, such as the wastewater treatment
plant, and atmospheric deposition. Best Management Practices (BMPs),
implemented for nutrient and sediment load reduction, can easily be
represented in the SWAT model. Capturing such detailed information is
not possible with ANN.

The hybrid model developed for monthly NO3
− load outperformed

NH4
+ and PO4

3− hybrid models substantially. This could be due to
including the SWAT-simulated lateral flow, surface flow, and ground-
water NO3

− contributions to streamflow as inputs to the ANN model.
Overall, the hybrid model could capture the observed variations in all
three nutrients load; however, it underestimated the large peaks of
NH4

+ and PO4
3− data. The results of this study highlight the potential

benefits of the proposed framework for water quality components
prediction. The hybrid model can be considered as a regionalized ap-
proach in an area with unmonitored watersheds where there are water
quality and flow data available in neighboring watersheds with similar

Fig. 9. Model performance of SWAT for NO3
− load at 15 stations after cali-

bration with SWAT-CUP.
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landscape characteristics. Application of our hybrid model in such re-
gions leads to optimization of the water quality monitoring by lowering
the cost and process time.

Last but not least, although the developed hybrid models can be
reliably implemented in watersheds with similar characteristics in and
near the Atlanta metropolitan area, the methodology is universal and
can be developed in any other region in the world with low landscape
heterogeneity, since extrapolation beyond the range of original training
data would lower the model accuracy. Similar hybrid models can be
developed using other watershed models, such as HSPF, SWMM, MIKE-
SHE, etc., and machine learning techniques (random forest, gradient
boosting machine, extreme learning machine, M5-cubist, elastic net,
etc.). The idea of coupling process-based models and machine learning
techniques, with the goal of optimizing the computational process and
increasing the prediction accuracy, can be extended beyond predicting
streamflow and stream water quality to solve many other complex
problems.
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