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Abstract Our understanding on phytoplankton diver-

sity has largely been progressing since the publication of

Hutchinson on the paradox of the plankton. In this paper,

we summarise some major steps in phytoplankton

ecology in the context of mechanisms underlying

phytoplankton diversity. Here, we provide a framework

for phytoplankton community assembly and an over-

view of measures on taxonomic and functional diversity.

We show how ecological theories onspecies competition

together with modelling approaches and laboratory

experiments helped understand species coexistence and

maintenance of diversity in phytoplankton. The non-

equilibrium nature of phytoplankton and the role of

disturbances in shaping diversity are also discussed.

Furthermore, we discuss the role of water body size,

productivity of habitats and temperature on phytoplank-

ton species richness, and how diversity may affect the

functioning of lake ecosystems. At last, we give an

insight into molecular tools that have emerged in the last

decades and argue how it has broadened our perspective

on microbial diversity. Besides historical backgrounds,

some critical comments have also been made.
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Introduction

Phytoplankton is a polyphyletic group with utmost

variation in size, shape, colour, type of metabolism,

and life history traits. Due to the emerging knowledge

in nutritional capabilities of microorganisms, our view

of phytoplankton has drastically changed (Flynn et al.,

2013). Phagotrophy is now known from all clades

except diatoms and cyanobacteria. At the same time,

ciliates, which have not been considered as part of

‘phytoplankton’, span a gradient in trophic modes that

render the distinction between phototrophic phyto-

plankton and heterotrophic protozoa meaningless.

This complexity has been expressed in the high

diversity of natural phytoplankton assemblages.

Diversity can be defined in many different ways and

levels. Although the first diversity measure that

encompassed the two basic components of diversity

(i.e., the number of items and their relative frequen-

cies) appeared in the early forties of the last century

(Fisher et al., 1943), in phytoplankton ecology,

taxonomic richness has been used the most often as

diversity estimates. Until the widespread use of the

inverted microscopes, phytoplankton ecologists did

not have accurate abundance estimation methods and

the net plankton served as a basis for the analyses.

Richness of taxonomic groups of net samples, and

their ratios were used for quality assessment (Thun-

mark, 1945, Nygaard, 1949).

The study of phytoplankton diversity received a

great impetus after Hutchinson’s (1961) seminal paper

on the paradox of the plankton. The author not only

contrasted Hardin’s competitive exclusion theory

(Hardin, 1960) with the high number of co-occurring

species in a seemingly homogeneous environment, but

outlined possible explanations. He argued for the non-

equilibrium nature of the plankton, the roles of

disturbances and biotic interactions, moreover the

importance of benthic habitats in the recruitment of

phytoplankton. The ‘paradox of the plankton’ largely

influenced the study of diversity in particular and the

development of community ecology in general

(Naselli-Flores & Rossetti, 2010). Several equilibrium

and non-equilibrium mechanisms have been devel-

oped to address the question of species coexistence in

pelagic waters (reviewed by Roy & Chattopadhyay,

2007). The paradox and the models that aimed to

explain the species coexistence in the aquatic envi-

ronment have been extended to terrestrial ecosystems

(Wilson, 1990). Wilson reviewed evidences for twelve

possible mechanisms that potentially could explain the

paradox for indigenous New Zealand vegetation, and

found that four of them, such as gradual climate

change, cyclic successional processes, spatial mass

effect and niche diversification, were the most impor-

tant explanations. By now, the paradox has been

considered as an apparent violation of the competitive

exclusion principle in the entire field of ecology

(Hening & Nguyen, 2020).

Although Hutchinson’s contribution (Hutchinson,

1961) has given a great impetus to research on species

coexistence, the number of studies on phytoplankton

diversity that time did not increase considerably

(Fig. 1), partly because in this period, eutrophication

studies dominated the hydrobiological literature.

Understanding the drivers of diversity has been

substantially improved from the 70 s when laboratory

experiments and mathematical modelling proved that

competition theory or intermediate disturbance

hypothesis (IDH) provided explanations for species

coexistence. Many field studies also demonstrated the

role of disturbances in maintaining phytoplankton

diversity, and these results were concluded by

Reynolds and his co-workers (Reynolds et al., 1993).

From the 2000 s a rapid increase in phytoplankton

research appeared (Fig. 1), which might be explained

by theoretical and methodological improvements in

ecology. The functional approaches—partly due to

Colin Reynolds’s prominent contribution to this field

(Reynolds et al., 2002)—opened new perspectives in

phytoplankton diversity research. Functional trait and

functional ‘group’-based approaches have gained

considerable popularity in recent years (Weithoff,
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Fig. 1 Annual number of hits on Google Scholar for the

keywords ‘‘phytoplankton diversity’’
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2003; Litchman & Klausmeier, 2008; Borics et al.,

2012; Vallina, et al., 2017; Ye et al., 2019).

Analysis of large databases enabled to study

diversity changes on larger scales in lake area,

productivity or temperature (Stomp et al., 2011).

Recent studies on phytoplankton also revealed that

phytoplankton diversity was more than a single metric

by which species or functional richness could be

described, instead, it was an essential characteristic,

which affects functioning of the ecosystems, such as

resilience (Gunderson 2000) or resource use efficiency

(Ptacnik et al., 2008; Abonyi et al., 2018a, b).

The widespread use of molecular tools that reor-

ganise phytoplankton taxonomy and reveal the pres-

ence of cryptic diversity, has changed our view of

phytoplankton diversity. In this study, we aim to give

an overview of the above-mentioned advancements in

phytoplankton diversity. Here we focus on the

following issues:

• measures of diversity,

• mechanisms affecting diversity,

• changes of diversity along environmental gradients

(area, productivity, temperature),

• the functional diversity–ecosystem functioning

relationship, and

• phytoplankton diversity using molecular tools.

More than eight thousand studies have been pub-

lished on ‘‘phytoplankton diversity’’ since the term

first appeared in the literature in the middle of the last

century (Fig. 1), therefore, in this review we cannot

completely cover all the important developments

made in recent years. Instead, we focus on the most

relevant studies considered as milestones in the field,

and on the latest relevant contributions. This study is a

part of a Hydrobiologia special issue dedicated to the

memory of Colin S. Reynolds, who was one of the

most prominent and influential figures of phytoplank-

ton ecology in the last four decades, therefore, we have

placed larger emphasis on his concepts that helped our

understanding of assembly and diversity of

phytoplankton.

Measures of diversity

In biology, the term ‘‘diversity’’ encompasses two

basic compositional properties of assemblages: spe-

cies richness and inequalities in species abundances.

Verbal definitions of diversity cannot be specific

enough to describe both aspects, but these can be

clearly defined by the mathematical formulas that we

use as diversity measures.

Richness metrics

The simplest measure of diversity is species richness,

that is, the number of species observed per sampling

unit. However, this metric can only be used safely

when the applied counting approach ensures high

species detectability.

In case of phytoplankton, species detectability

depends strongly on counting effort, therefore, mea-

sures that are standardised by the number of individ-

uals observed, e.g. Margalef and Mehinick indices

(Clifford & Stephenson, 1975) safeguard against

biased interpretations. Ideally, standardization should

take place in the process of identification. Pomati et al.

(2015) gave an example how a general detection limits

could be applied in retrospect to data stemming from

variable counting efforts.

Species richness can also be given using richness

estimators. These can be parametric curve-fitting

approaches, non-parametric estimators, and extrapo-

lation techniques using species accumulation or

species-area curves (Gotelli & Colwell, 2011; Magur-

ran, 2004). These approaches have been increasingly

applied in phytoplankton ecology (Naselli-Flores

et al., 2016; Görgényi et al., 2019).

Abundance-based metrics

Classical diversity metrics such as Shannon and

Simpson indices combine richness and evenness into

univariate vectors. Though used commonly in the

literature, they are prone to misinform about the actual

changes in a community, as they may reflect changes

in evenness and/or richness to an unknown extent (a

change in Shannon H’ 1948) may solely be driven by a

change in evenness or richness). Dominance metrics

emphasise the role of the most important species

(McNaughton, 1967). Rarity metrics, in contrast,

focus on the rare elements of the assemblages (Gotelli

& Colwell, 2011).

Species abundance distributions (SAD) and rank

abundance distributions (RAD: ranking the species’

abundances from the most abundant to the least

abundant) provide an alternative to diversity indices

(Fisher et al., 1943; Magurran & Henderson, 2003).
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These parametric approaches give accurate informa-

tion on community structure and are especially useful

when site level data are compared. Most RADs follow

lognormal distributions and allow to estimate species

richness in samples (Ulrich & Ollik, 2005).

Mechanisms affecting diversity

Community assembly

Understanding the processes that shape the commu-

nity structure of phytoplankton requires some knowl-

edge on the general rules of community assembly.

Models and mechanisms, which have been proposed

to explain the compositional patterns of biotic com-

munities, can be linked together under one conceptual

framework developed by Vellend (2010, 2016). Vel-

lend proposed four distinct processes that determine

species composition and diversity: speciation (cre-

ation of new species, or within-species genetic mod-

ifications), selection (environmental filtering, and

biotic interactions), drift (demographic stochasticity)

and dispersal (movement of individuals). The four

processes interact to determine community dynamics

across spatial scales from global, through regional to

local. The importance of the processes strongly

depends on the type of community, and the studied

spatial and temporal scales (Reynolds, 1993).

Importance of evolutionary processes in the com-

munity assembly have been demonstrated by several

phylogenetic ecological studies (Cavender-Bares

et al., 2009) and also indicated by the emergence of

a new field of science called ecophylogenetics (Mou-

quet et al., 2012). As far as the phytoplankton is

concerned, the role of speciation can be important

when the composition and diversity of algal assem-

blages are studied at large (global) spatial scales.

However, we may note that although microscopic

analyses cannot grasp it, short-term evolutionary

processes do occur locally in planktic assemblages

(Balzano et al., 2011; Padfield et al., 2016; Bach et al.,

2018).

Demographic stochasticity influences growth and

extinction risk of small populations largely (Parvinen

et al., 2003; Méndez et al., 2019). Similarly, it might

also act on large lake phytoplankton since population

size in previous years affects the success of species in

the subsequent year. Small changes in initial abun-

dances may have strong effects on seasonal

development. Demographic stochasticity, however,

is crucial in small isolated waters (especially in newly

created ones) where the sequence of new arrivals and

small differences in initial abundances likely have a

strong effect on the outcome of community assembly.

Theoretical models, laboratory experiments and

field studies demonstrated that the other two pro-

cesses, selection and dispersal, have a pivotal role in

shaping community assembly and diversity. Although

this statement corresponds well with the Baas-Becking

(1934) hypothesis (everything can be everywhere but

environment selects), importance of selection and

dispersal depends on the characteristics of the aquatic

systems. Selection and dispersal can be considered as

filters (Knopf, 1986, Pearson et al., 2018), and using

them as gradients, a two-dimensional plane can be

constructed, where the positions of the relevant types

of pelagic aquatic habitats can be displayed (Fig. 2).

At high dispersal rate, the mass effect (or so-called

source-sink dynamics) is the most decisive process

affecting community assembly (Leibold & Chase,

2017). Phytoplankton of rhithral rivers is a typical

example of the sink populations because its compo-

sition and diversity are strongly affected by the

propagule pressure coming partly from the source

populations of the benthic zone and from the limnetic

habitats of the watershed (Bolgovics et al., 2017). The

relative importance of the mass effect decreases with

time and with the increasing size of the river, while the

role of selection (species sorting) increases. Due to

their larger size, the impact of the source-sink

dynamics in potamal rivers must be smaller, and

selection becomes more important in shaping

Fig. 2 Positions of the relevant types of pelagial aquatic

habitats in the selection/dispersal plane
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community assembly. Although the role of spatial

processes in lake phytoplankton assembly cannot be

ignored, their importance is considerably less than that

of the locally acting selection. Relevance of the spatial

processes have been demonstrated for river floodplain

complexes (Vanormelingen et al., 2008; Devercelli

et al., 2016; Bortolini et al., 2017), or for the lakes of

Fennoscandia (Ptacnik et al., 2010a, b), where the

large lake density facilitates the manifestation of

spatially acting processes. High selection and low

dispersal represent the position of phytoplankton

inhabiting isolated lakes. Reviewing the literature of

algal dispersal Reynolds concluded (2006) that cos-

mopolitan and pandemic distribution of algae is due to

the fact that most of the planktic species effectively

exploit the dispersal channels. However, he also noted

that several species are not good dispersers, therefore,

endemism might occur among algae.

Composition and diversity of these assemblages are

controlled by the locally acting environmental filtering

and by biotic interactions, frequently, by competition.

The environmental filtering metaphor appears in

Reynolds’ habitat template approach (Reynolds,

1998), where the template is scaled against quantified

gradients of energy and resource availability. The

template represents the filter, while the habitats mean

the porosity (Reynolds, 2003). Species that manage to

pass the filter are the candidate components of the

assemblages. Finally, low-level biotic interactions

(Vellend, 2016) determine the composition and

diversity of the communities.

The four mechanisms, proposed by Vellend, act

differently on the various metric values of diversity.

Using the special cases of Rényi’s entropy (a: ? 0, 1,

2, ?) (ESM Box 1) we can show how mechanisms

influence species richness and species inequalities,

and how they act on the metrics between these

extremes (ESM Table 1). Drivers of functional diver-

sity are identical with that of species diversity, but

their impacts are attenuated by the functional redun-

dancy of the assemblages.

The role of competition in the maintenance of diversity

The concept of competition and coexistence has been

first proved experimentally both for artificial two-

species systems (Tilman & Kilham, 1976; Tilman,

1977) and for natural phytoplankton assemblages

(Sommer, 1983). However, limitations by different

nutrients are responsible only for a small portion of

diversity, even if the micronutrients are also included.

Therefore, it was an important step when Sommer

(1984) applying a pulsed input of one key nutrient in a

flow-through culture managed to maintain the coex-

istence of several species; although they were com-

peting for the same resource. Several competition

experiments have been carried out in recent years

demonstrating the role of inter- (Ji et al., 2017) and

intra-specific competition (Sildever et al., 2016) in the

coexistence of planktic algae.

The fact that one single resource added in pulses

can maintain the coexistence of multiple species has

been also proved by mathematical modelling (Eben-

höh, 1988). Using deterministic models, Huisman &

Weissing (1999) showed that competition for three or

more resources result in sustained species oscillations

or chaotic dynamics even under constant resource

supply. These oscillations in species abundance make

possible the coexistence of several species on a few

limiting resources (Wang et al., 2019).

The non-equilibrium nature of phytoplankton

and the role of disturbances

One of the underlying assumptions of the classical

competition theories is that species coexistence

requires a stable equilibrium point (Chesson & Case,

1986). However, the stable equilibrium state is not a

fundamental property of ecosystems (DeAngelis &

Waterhouse, 1987; Hastings et al., 2018). Hutchinson

put forward the idea that phytoplankton diversity

could be explained by ‘‘permanent failure to achieve

equilibrium’’ (Hutchinson, 1941). On a sufficiently

large timescale, ecosystems seem to show transient

dynamics, and do not necessarily converge to an

equilibrium state (Hastings et al., 2018). However, the

virtually static equilibrium-centred view of ecological

processes cannot explain the transient behaviour of

ecosystems (Holling, 1973; Morozov et al., 2019).

Today, there is a broad consensus in phytoplankton

ecology that composition and diversity of phytoplank-

ton can be best explicable by non-equilibrium

approaches (Naselli-Flores et al., 2003). The non-

equilibrium theories do not reject the role of compe-

tition in community assembly but place a larger

emphasis on historical effects, chance factors, spatial

inequalities, environmental perturbations (Chesson &

Case, 1986), and transient dynamics of the ecosystems
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(Hastings, 2004). The interactions among the inter-

nally driven processes and the externally imposed

stochasticity of environmental variability as an expla-

nation of community assembly have been conceptu-

alized in the Intermediate Disturbance Hypothesis

(IDH) (Connell, 1978). This hypothesis predicts a

unimodal relationship between the intensities and

frequencies of disturbances and species richness.

Although this hypothesis has been developed for

macroscopic sessile communities, it has become

widely accepted in phytoplankton ecology (Sommer,

1999). It has been proposed that the frequency of

disturbances has to be measured on the scale of

generation times of organisms (Reynolds, 1993;

Padisák, 1994). Field observation suggested that

diversity peaked at disturbance frequency of 3–5

generation times (Padisák et al., 1988), which was also

corroborated by laboratory experiments (Gaedeke &

Sommer, 1986; Flöder & Sommer, 1999). The IDH,

however, is not without weaknesses (Fox, 2013).

Recognition and measurement of disturbance are

among the main concerns (Sommer et al., 1993).

Diversity changes are measured purely as responses to

unmeasured events (disturbances) (Juhasz-Nagy,

1993), which readily leads to circular reasoning.

Repeated disturbances might change the resilience of

the system, which modifies the response of commu-

nities and makes the impact of disturbances on

diversity unpredictable (Hughes, 2012).

Amalgamation of the equilibrium and non-equilibrium

concepts

The existence of the equilibrium and non-equilibrium

explanations of species coexistence represents a real

dilemma in ecology. Being sufficiently different, and

thus avoid strong competition, or sufficiently similar

with ecologically irrelevant exclusion rates (as it is

suggested by Hubbell’s neutral theory (2006)) are both

feasible strategies for species (Scheffer & van Nes,

2006). Coexistence of species with these different

strategies is also feasible if the many sufficiently

similar species create clusters along the niche axes (in

accordance with Hubbel’s (2006) neutral theory), and

the competitive abilities within the clusters are

sufficiently large. It has been demonstrated that the

so-called ‘‘lumpy coexistence’’ is characteristic for

phytoplankton assemblages (Graco-Roza et al., 2019).

Lumpy coexistence arises in fluctuating resource

environments (Sakavara et al., 2018; Roelke et al.,

2019), and show higher resilience to species invasions

(Roelke & Eldridge, 2008) and higher resistance to

allelopathy (Muhl et al., 2018).

The model of lumpy coexistence has its roots in

mechanistic modelling of species coexistence (Schef-

fer & van Nes, 2006). Analysing lake phytoplankton

data Reynolds (1980, 1984, 1988) demonstrated that

species with similar preferences and tolerances to

environmental constraints like nutrients or changes in

water column stratification frequently coexist. These

empirical observations were formalised later in the

functional group (FG) concept (Reynolds et al., 2002).

Despite their different theoretical backgrounds, the

two approaches came to identical conclusions: species

having similar positions on the niche axes form

species clusters (or FGs), and in natural assemblages

clusters or FGs coexist. Thus, the concept of lumpy

coexistence can also be considered as a mechanistic

explanation of the Reynolds’s FG concept.

The mechanisms and forces detailed above can

explain how diversity is maintained at the local scale.

Recent metacommunity studies, however, indicate

that spatial processes have a crucial role in shaping

phytoplankton diversity (Devercelli et al., 2016;

Bortolini et al., 2017; Guelzow et al., 2017; Benito

et al., 2018). Despite the increasing research activity in

this field, spatial processes are far less studied than

local ones. More in-depth knowledge on the role of

connectivity of aquatic habitats and dispersal mech-

anisms of the phytoplankters will contribute to better

understand phytoplankton diversity at regional or

global scales.

Changes of diversity along environmental scales

Species–area relationships across systems

The area dependence of species richness deserved

special attention in ecology both from theoretical and

practical points of view. The increase of species

number with the area sampled is an empirical fact

(Brown & Lomolino, 1998). The first model that

described the so-called species–area relationship

(SAR) appeared first by Arrhenius (1921) who

proposed to apply power law for predicting species

richness from the surveyed area. Because of the

differences in the studied size scale and the studied

organism groups, several other models have also been
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proposed such as the exponential (Gleason, 1922), the

logistic (Archibald, 1949) and the linear (Connor &

McCoy, 1979) models. However, the power-law

(S = c 9 Az, where S: number of species; A: area

sampled; c: the intercept, z: the exponent) is still the

most widely used formula in SAR studies. The rate of

change of the slope with an increasing area (z value)

depends on the studied organisms, and also on the

localities. High values (z: 0.1–0.5) were reported for

macroscopic organisms (Durrett & Levin, 1996),

while low z values characterised (z: 0.02–0.08) the

microbial systems (Azovsky, 2002; Green et al. 2004;

Horner-Devine et al. 2004).

The phytoplankton SAR appeared first in Hutchin-

son’s (1961) paper, where he analysed Ruttner’s

dataset on Indonesian (Ruttner, 1952), and Järnefelt’s

(1956) data on Finnish lakes. He concluded that there

was no significant relationship between the area and

species richness. Hutchinson reckoned that contribu-

tion of the littoral algae to the phytoplankton might be

relevant, and because the littoral/pelagic ratio

decreases with lake size, this contribution also

decreases. Therefore, species richness cannot increase

with lake area. In a laboratory experiment, Dickerson

& Robinson (1985) found that large microcosms had

significantly smaller species richness values than

small ones. Based on laboratory studies, published

species counts from ponds lakes and oceans, Smith

et al. (2005) studied phytoplankton SAR in the

possible largest size scale (10-9 to 107 km2). They

demonstrated a significant positive relationship

between area and species richness. The calculated

z value (z = 0.134) was higher than those reported in

other microbial SAR studies. However, we note that

this study suffers from a methodological shortcoming,

because of differences in compilation of species

inventories. Therefore, the results are only suggestive

of possible trends that should be investigated more

thoroughly.

Analysing phytoplankton monitoring data of 540

lakes in the USA Stomp et al. (2011) found only a

slight increase in richness values with a considerable

amount of scatter in the data. The covered size range

was small in this study, and the applied counting

techniques could lead to bias in richness estimation.

Phytoplankton species richness showed a similar weak

relationship with lake size for Scandinavian lakes

(Ptacnik et al., 2010a, b), although the counting effort

was much better standardised. All the above studies

suggested that species richness was not independent of

water body size. However, because of the method-

ological differences, and differences in the covered

water body size, in richness estimation or the type of

the water bodies, any conclusions based on these

results should be handled with caution.

Nutrients, latitudinal and altitudinal differences

(Stomp et al., 2011) or the size of the regional species

pool (Fox et al., 2000, Ptacnik et al., 2010a, b) also

influence phytoplankton diversity. To reduce the

impact of these factors, Várbı́ró et al. (2017)

investigated phytoplankton SAR in a series of

standing waters within the same ecoregion and with

similar nutrient status. The water bodies covered ten

orders of magnitude size range (10-2 to 108 m2). In

this study, both the sampling effort and the sample

preparation was standardised. The authors demon-

strated that species richness did not scale mono-

tonously with water body size. They managed to show

the presence of the so-called Small Island Effect (SIE,

Lomolino & Weiser, 2001), the phenomenon, when

below a certain threshold area (here 10-2 to 102 m2

size range) species richness varies independently of

island size. A right-skewed hump-shaped relationship

was found between the area and phytoplankton species

richness with a peak at 105–106 m2 area. This

phenomenon has been called as Large Lake Effect

(LLE) by the authors, and they explained it by the

strong wind-induced mixing, which acts against

habitat diversity in the pelagic zones of large lakes.

The significance of this study is that its results help

explain the controversial results of earlier phytoplank-

ton SAR studies. The LLE explains why the species

richness had not grown in the case of the Ruttner’s and

Jarnefelt’s dataset. The SIE, however, explains why

Dickerson & Robinson (1985) found opposite tenden-

cies to SAR in microcosm experiments. Detailed

analysis of the phytoplankton in those water bodies

that produced the peak in the SAR curve in the study of

Várbı́ró et al. (2017) demonstrated that high diversity

has been caused by the intrusion of metaphytic

elements to the pelagic zone (Görgényi et al., 2019),

which can be considered as a within-lake metacom-

munity process.

Productivity–diversity relationships

Despite the more than half a century-long history of

investigations on the productivity/diversity
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relationship (PDR), the shape of the relationship and

the underlying mechanisms still remain a subject of

debate. The models describing the PDR vary from the

monotonic increasing, through the hump shaped and

u-shaped to the monotonic decreasing types in the

literature (Waide et al., 1999). In the PDR studies,

there are great differences in the applied scale (local/

regional/global), in the metric used to define produc-

tivity (e.g., nutrients, biomass, production rate, pre-

cipitation, evaporation), in the used diversity metrics,

and also in the studied group of organisms (special

phylogenetic groups, functional assemblages) (Mit-

telbach et al., 2001). PDR studies also have other

methodological and statistical problems (Mittelbach

et al., 2001). These differences in approaches may

generate different patterns, which lead to confusion

and inconclusive results (Whittaker & Heegaard,

2003; Hillebrand & Cardinale, 2010). Despite these

uncertainties, the most general PDR patterns are the

hump-shaped and positive linear relationships; the first

has been observed mostly in the case of local, while

the second in the case of regional scale studies (Chase

& Leibold, 2002; Ptacnik et al., 2010a). These patterns

are so robust that they have been shown for various

organisms independently from the highly different

proxies applied to substitute the real productivity.

The number of studies that explicitly focus on

phytoplankton PDR is few. The view that phytoplank-

ton diversity peaks at intermediate productivity level

has been demonstrated by several authors (Ogawa &

Ichimura, 1984; Agustı́ et al., 1991; Leibold, 1999).

This is greatly due to the fact that phytoplankton

studies fortunately do not suffer from scaling problem:

most studies use sample-based local a–s as diversity

metrics and nutrients or biomass (Chl-a) as a surrogate

measure of productivity. Unimodal relationships were

found for Czech (Skácelová & Lepš, 2014) and

Hungarian water bodies (Borics et al., 2014). Diversity

peaked in both cases at the 101–102 mg L-1 biovol-

ume range, characteristic for eutrophic lakes.

It has also been demonstrated that the unimodal

relationship was also true for the functional richness/

productivity relationship (Borics et al., 2014; Török

et al., 2016). Differences were also found between the

species richness and functional richness peaks; the

latter peaked at smaller biovolume range (Török et al.,

2016). We note here that all three studies were based

on monitoring data, and because of the applied sample

processing, species richness values might be slightly

underestimated.

Several theories have been proposed to explain this

unimodal pattern. Moss (1973) reckoned that the

relationship could be accounted for by that the

populations of oligotrophic and eutrophic lakes over-

lapping at the intermediate productivity range. Rosen-

zweig’s (1971) paradox of enrichment hypothesis

explained the unimodal relationship by the destabi-

lized predator–prey relationship at enhanced produc-

tivity level. Tilman’s resource heterogeneity model

(1985) predicts that the coexistence of competing

species is enhanced when the supply of alternative

resources is heterogeneous both spatially and tempo-

rally. This heterogeneity increases with resource

supply together with species richness up to the point

when richness declines because the correlation

between spatiotemporal heterogeneity and resource

supply disappeares. The resource-ratio hypothesis can

also provide an explanation of the hump shaped PDR

(Tilman & Pacala, 1993; Leibold, 1997). This theory

suggests that relative supply of resources generates

variations in species composition. Identity of the most

strongly limiting resource changes, and at very high

resource supply (on the descending end of the curve)

only a few K-strategist specialists will prevail. The

species pools overlap at intermediate productivity

level, resulting in high species richness. This expla-

nation seems to be reasonable for phytoplankton PDR

studies.

Investigating the PDR in fishless ponds, Leibold

(1999) found that his results could be best explained

by the keystone predation hypothesis (Paine, 1966).

This theory asserts that at low productivity exploita-

tive competition is the main assembly rule, while with

increasing productivity range the role of predator

avoidance becomes more important.

The number of various explanations illustrates the

complexity of processes affecting the shape of the

PDR. The shifting effects of bottom-up vs. top-down

control on the trophic gradient, the size of the regional

species pool, that is, the number of potential coloniz-

ers, or the history of the studied water bodies

(naturally eutrophic lakes are studied, or eutrophicated

formerly oligotrophic ones) can considerably modify

the properties of the PDRs.

With a few exceptions (Irigoien et al., 2004),

phytoplankton PDRs have been studied almost exclu-

sively in standing waters.
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Investigating the phytoplankton PDRs in rivers

Borics et al. (2014) found monotonic increasing

pattern in rhithral and monotonic decreasing PDR in

potamal rivers. They explained the positive linear

PDR with the newly arriving species from the various

adjacent habitats of the watershed, which resulted in

high phytoplankton diversity even at highly eutrophic

conditions. This phytoplankton is a mixture of those

elements that enter the river from the connected water

bodies of various types. In contrast, potamal rivers are

highly selective environments in which the phyto-

plankton succession frequently terminates in low

diversity plankton dominated by K strategist centric

diatoms (Cyclotella and Stephanodiscus spp.).

We note here that study of the regional phyto-

plankton PDR should be an important and challenging

area of future work, which is presently hindered by the

disconnected databases and by difficulties in measur-

ing regional productivity.

Linkage between diversity and the metabolic theory

of ecology

Metabolism controls patterns, processes and dynamics

at each level of biological organisation from single

cells to ecosystems, summarised as the metabolic

theory of ecology (Brown et al., 2004). Metabolic

theory (MTE) provides alternative explanations for

observations on various fields of ecology such as in

individual performance, life history, population and

community dynamics, as well as in ecosystem pro-

cesses. According to MTE, dynamics of metabolic

processes have implications for species diversity.

Metabolic processes influence population growth and

interspecific competition, might accelerate evolution-

ary dynamics and the rate of speciation (Brown et al.,

2004). The direct linkage between temperature and

metabolic rate raises the possibility of new explana-

tions of the well-known latitudinal dependence of

species richness. Allen et al. (2002) found that for both

terrestrial and aquatic environments natural logarithm

of species richness should be a linear function of the

mean temperature of the environment. This model has

been tested both for lake and oceanic phytoplankton.

Investigating more than 600 European, North and

South American lakes Segura et al. (2015) found a

pronounced effect of temperature on species diversity

between 11 and 17 �C. Righetti et al. (2019) analysed

the results of more than 500,000 phytoplankton

observations from the global ocean, and also showed

the relationship between temperature and species

richness, but similarly to freshwater lakes the rela-

tionship was not monotonic for the whole temperature

gradient. These results suggest that the MTE can be a

possible explanation for the temperature dependence

of diversity. However, we note that other theories

emphasising longer ‘‘effective’’ evolutionary time

(Rohde, 1992) or higher resource availability (Brown

& Lomolino, 1998) can also explain this general

pattern.

The functional diversity–ecosystem functioning

relationship in phytoplankton

More diverse communities perform better in terms of

resource use and ecosystem stability (Naeem & Li,

1997); known as the biodiversity-ecosystem function-

ing relationship (BEF). Similar to BEF relationships

shown in terrestrial plant communities (Tilman et al.,

1996, 1997), positive BEF relationships have also

been evidenced in both natural and synthetic phyto-

plankton communities (Ptacnik et al., 2008; Striebel

et al., 2009; Stockenreiter et al., 2013). The BEF

relationship itself, however, does not explain the

mechanisms underlying the relationship. The most

often recognised mechanisms are complementarity

(Loreau & Hector, 2001) and sampling effect (Fridley,

2001). Complementarity means that more diverse

communities complement each other in resource use

in a more efficient way. Sampling effect, on the other

hand, means that the chance increases for the presence

of species with effective functional attributes in more

diverse communities (Naeem & Wright, 2003).

In an attempt to get mechanistic understanding of

diversity-functioning relationships, there is a growing

interest in quantifying functional diversity of ecolog-

ical communities (Hillebrand & Matthiessen, 2009).

Functional diversity summarizes the values and ranges

of traits that influence ecosystem functioning (Petchey

& Gaston, 2006). By translating taxonomic into

functional diversity, we may eventually also distin-

guish complementarity from sampling effect.

In phytoplankton ecology, two functional perspec-

tives have been developing. First, the identification of

morphological, physiological and behavioural traits

(Weithoff, 2003; Litchman & Klausmeier, 2008) that

affect fitness (Violle et al., 2007) and are, therefore,

functional traits. Traits have been used in
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phytoplankton ecology at least since Margalef’s ‘life

forms’ concept (Margalef, 1968; 1978), even if they

were not referred to ‘traits’ explicitely (Weithoff &

Beisner, 2019). Second, the recognition of character-

istic functional units within phytoplankton assem-

blages led to the development of functional group

(ecological groups) concepts (see Salmaso et al.,

2015). These are the phytoplankton functional group

concept sensu Reynolds (FG, Reynolds et al., 2002),

the morpho-functional group concept (MFG, Salmaso

& Padisák, 2007), and the morphological group

concept (MBFG, Kruk et al., 2011).

The functional trait concept has been advocated in

trait-based models (Litchman et al., 2007) and aimed

at translating biotic into functional diversity, which

eventually would allow quantify functional diversity

at the community level. The functional trait concept

has recently been reviewed in context of measures and

approaches in marine and freshwater phytoplankton

(Weithoff & Beisner, 2019). On the other hand, the

‘functional group’ concepts have rather been devel-

oped in the context of describing characteristic

functional community compositions in specific set of

environment conditions (that is, the functional com-

munity–environment relationship).

The simplest functional diversity measure of phy-

toplankton is the number of ‘functional units’ in

assemblages. That is, either the number of unique

combinations of functional traits or the number of

ecological groups indentified. One way to use func-

tional units is to convert them into univariate measures

corresponding to those calculated from taxonomic

information (e.g., richness, evenness). Or, trait data

also allow the calculation of community-level means

of trait values (CWM) as an index of functional

community composition (Lavorel et al., 2008).

Second, one may consider calculate the components

of functional diversity (FD) such as functional rich-

ness, functional evenness, and functional divergence

(Mason et al., 2005); all representing independent

factes of functional community compositions. The

same FD concept has been developed further account-

ing also for the abundance of taxa within a multidi-

mensional trait space based on functional evenness,

functional divergence and functional dispersion (Lal-

iberté & Legendre, 2010). The recently developed

‘FD’ R package enables one to calculated easily all the

aforementioned FD measures (Laliberté & Legendre,

2010; Laliberté et al., 2014). The use of FD

components in the context of BEF in phytoplankton

has only started very recently (Abonyi et al., 2018a, b;

Ye et al., 2019). Trait-based functional diversity

measures in BEF have recently been reviewed by

Venail (2017).

The functional community composition–environment

relationship

Functional traits can be classified as those affecting

fitness via growth and reproduction (i.e., functional

effect traits) and those responding to alterations in the

environment (i.e., functional response traits) (Hooper

et al., 2002, 2005; Violle et al., 2007). Since many

ecophysiological traits, such as nutrient and light

utilization and grazer resistance, correlate with phy-

toplankton cell size (Litchman & Klausmeier, 2008),

size has been recognized as a master trait. Phyto-

plankton cell size responds to alterations in environ-

mental conditions, like change in water temperature

(Zohary et al., 2020), and also affects ecosystem

functioning (Abonyi et al., 2020). The response of

freshwater phytoplankton size to water temperature

changes seems to be consequent based on both the cell

and colony (filament) size (Zohary et al., 2020).

However, one may consider that cell and colony

(filament) sizes are affected by multiple underlying

mechanisms, and the choose of cell or colony size as

functional trait might be question specific.

The functional group (ecological group) composi-

tion of phytoplankton can be predicted well by the

local environment (Salmaso et al., 2015). However,

the different functional approaches have rarely been

compared in terms of how they affect the community

composition–environment relationship. Kruk et al.

(2011) showed that the morphological group (MBFG)

composition of phytoplankton could be predicted from

the local environment in a more reliable way than

Reynolds’s functional groups (FG), or taxonomic

composition. In a broad-scale phytoplankton dataset

from Fennoscandia, Abonyi et al. (2018a, b) showed

that phytoplankton functional trait categories, as a

community matrix, corresponded with the local envi-

ronment better than Reynolds’s functional groups or

the taxonomic matrix. Along the entire length of the

Atlantic River Loire, Abonyi et al. (2014) showed that

phytoplankton composition based on Reynolds’s FG

classification provided more detailed correspondence

to natural- and human-induced changes in
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environmental conditions than based on the morpho-

functional (MFG) and morphological (MBFG)

systems.

The aggregation of taxonomic information into

functional units reduces data complexity that could

come along with reduced ecological information

(Abonyi et al., 2018a, b). Reduced data complexity

can be useful as long as it does not imply serious loss

of ecological information. Information lost can happen

when functional traits are not quantified adequately,

cannot be identified, or when ecologically diverse

taxa, such as benthic diatoms are considered similar

functionally (Wang et al., 2018). Otherwise, the

aggregation of taxonomic to functional data highlights

ecological similarities among taxa (Schippers et al.,

2001) and should lead to better correspondence

between community composition and the environment

(Abonyi et al., 2018a, b).

The functional diversity–ecosystem functioning

relationship

Based on taxonomic data, recent studies support a

positive biodiversity–ecosystem functioning relation-

ship in phytoplankton clearly (Naeem & Li, 1997;

Ptacnik et al., 2008; Striebel et al., 2009). The well-

known paradox of Hutchinson asking how so many

species may coexist in phytoplankton (Hutchinson,

1961) has been reversed to how many species ensure

ecosystem functioning (Ptacnik et al., 2010b). Based

on functional traits, however, almost half of the studies

reported null or negative relationship between func-

tional diversity and ecosystem functioning (Venail,

2017). Recently, Abonyi et al. (2018a, b) argued that

functional diversity based on trait categories (i.e.,

functional trait richness—FTR) and Reynolds’ eco-

logical groups (i.e., functional group richness—FGR)

represented different aspects of community organisa-

tion in phytoplankton. While both functional measures

scaled with taxonomic richness largely, FTR sug-

gested random or uniform occupation of niche space

(Dı́az & Cabido, 2001), while FGR more frequent

niche overlaps (Ehrlich & Ehrlich, 1981), and there-

fore, enhanced functional redundancy (Dı́az &

Cabido, 2001). A key future direction will be to

understand mechanisms responsible for the co-occur-

rence of functional units (‘functional groups’) within

phytoplankton assemblages, and detail phytoplankton

taxa within and among the ecological groups in a trait-

based approach. This will enhance our ability to

disentangle the ecological role of functional redun-

dancy (within groups) and complementarity (among

groups) in affecting ecosystem functioning in the

future.

Phytoplankton diversity using molecular tools

The assessment of phytoplankton diversity in water-

bodies is strongly dependent from the methods used in

the taxonomic identification of species and the quan-

titative estimation of abundances. The adoption of

different methods can strongly influence the number

of taxa identified and the level of detail in the

taxonomic classifications.

Premise: advantages and weaknesses of light

microscopy

Traditionally, phytoplankton microorganisms have

been identified using light microscopy (LM). The

use of this technique was instrumental to lay the

foundation of phytoplankton taxonomy. Many of the

most important and well-known species of nano-

(2–20 lm), micro- (20–200 lm) and macrophyto-

plankton ([ 200 lm) have been identified by several

influential papers and manuals published between the

first half of the 1800 s and first half of 1900 s (e.g.

(Ehrenberg, 1830; de Toni, 1907; Geitler & Pascher,

1925; Guiry & Guiry, 2019). LM is an inexpensive

method providing plenty of information on the mor-

phology and size of phytoplankton morphotypes,

allowing also obtaining, if evaluated, data on abun-

dances and community structure. Conversely, in

addition to being time-consuming, the correct identi-

fication of specimens by LM requires a deep knowl-

edge of algal taxonomy. Further, many taxa have

overlapping morphological features so that the num-

ber of diacritical elements often is not enough to

discriminate with certainty different species (Krienitz

& Bock, 2012; Whitton & Potts, 2012; Wilmotte et al.,

2017). The identification can be further complicated

by the plasticity that characterise a number of

phenotypic characteristics and their dependence from

environmental conditions (Komárek & Komárková,

2003; Morabito et al., 2007; Hodoki et al., 2013;

Soares et al., 2013). The adoption of electron

microscopy for the study of ultra-structural details

has represented an important step in the
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characterization of critical species (e.g. Komárek &

Albertano, 1994) and phyla. For example, in the case

of diatoms, scanning electron microscopy had a huge

impact on diatom taxonomy, making traditional LM

insufficient for the recognition of newly created taxa

(Morales et al., 2001). Since aquatic samples usually

contain many small, rare and cryptic species, a precise

assessment of the current biodiversity is unbearable

with the only use of classic LM (Lee et al., 2014) and

electron microscopy. Nonetheless, despite its limita-

tions, the analysis of phytoplankton by LM still

continues to be the principal approach used in the

monitoring of the ecological quality of waters (Hötzel

& Croome, 1999; Lyche Solheim et al., 2014).

Culture-dependent approaches—classical genetic

characterization of strains

Owing to the above limitations, the identification of

phytoplankton species by LM has been complemented

by the adoption of genetic methods. These methods

are based on the isolation of single strains, their

cultivation under controlled conditions, and their

characterization by polymerase chain reaction (PCR)

and sequencing of specific DNA markers able to

discriminate among genera and species, and some-

times also between different genotypes of a same

species (Wilson et al., 2000; D’Alelio et al., 2013;

Capelli et al., 2017). After sequencing, the DNA

amplicons obtained by PCR can be compared with the

sequences deposited in molecular databases, e.g. those

included in the International Nucleotide Sequence

Database Collaboration (INSDC: DDBJ, ENA, Gen-

Bank) using dedicated tools, such as BLAST queries

(Johnson et al., 2008). Further, the new sequences can

be analysed, together with different homologous

sequences, to better characterize the phylogenetic

position and taxonomy of the analysed taxa in specific

clades (Rajaniemi et al., 2005; Krienitz & Bock, 2012;

Komárek et al., 2014). The phylogenetic analyses

provide essential information also for evaluating the

geographical distribution of species (Dyble et al.,

2002; Capelli et al., 2017) and their colonization

patterns (Gugger et al., 2005), to infer physiological

traits (Bruggeman, 2011), and to evaluate relation-

ships between phylogeny and sensitivity to anthro-

pogenic stressors in freshwater phytoplankton (Larras

et al., 2014). The selection of primers and markers, and

their specificity to target precise algal groups is an

essential step, which strictly depends on the objectives

of investigations and availability of designated

databases. For example, though 16S and 18S rRNA

genes are the most represented in the INSDC

databases, dedicated archives have been curated for

the blast and/or phylogenetic analyses of cyanobacte-

ria (e.g. Ribosomal Database Project; Quast et al.,

2013; Cole et al., 2014) and eukaryotes (e.g. Quast

et al., 2013; Rimet et al., 2019). Further, an increase in

the sensitivity of the taxonomic identification based on

DNA markers can be obtained through the concurrent

analysis of multiple genes using Multilocus Sequence

Typing (MLST) and Multilocus Sequence Analysis

(MLSA) (see Wilmotte et al., 2017, for details).

A potential issue with the single use of only

microscopy or genetic methods is due to the existence

of genetically almost identical different morphotypes

and to the development of uncommon morphological

characteristics in strains cultivated and maintained in

controlled culture conditions. To solve these prob-

lems, a polyphasic approach has been proposed, which

makes use of a set of complementary methods, based

besides genetics, on the analysis of phenotypic traits,

physiology, ecology, metabolomics and other charac-

ters relevant for the identification of species of

different phyla (Vandamme et al., 1996; Komárek,

2016; Salmaso et al., 2017; Wilmotte et al., 2017).

Considering the existence of different genotypes

within a single species (D’Alelio et al., 2011; Yarza

et al., 2014), the genetic characterizations of phyto-

plankters have to be performed at the level of single

strain. Excluding single cell sequencing analyses (see

below), the methods have to be therefore applied to

isolated and cultivated strains. This represents a huge

limitation for the assessment of biodiversity, because

the analyses are necessarily circumscribed only to the

cultivable organisms. The rarest and the smaller ones

are equally lost. Further, the genetic and/or the

polyphasic approaches are time-consuming, allowing

to process only one species at a time. To solve this

limitation, a set of culture-independent approaches to

assess biodiversity in environmental samples have

been developed since the 1980s.

Culture independent approaches—traditional

methods

A consistent number of molecular typing methods

based on gel electrophoresis and a variety of other
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approaches (e.g. quantitative PCR-qPCR) have been

applied since the 1980 s and 1990 s in the analysis of

microbial DNA, including ‘‘phytoplankton’’ (for a

review, see Wilmotte et al., 2017). These approaches

are tuned to target common regions of the whole

genomic DNA extracted from water samples or other

substrata, providing information on the existence of

specific taxonomic and toxins encoding genes (Campo

et al., 2013; Capelli et al., 2018), and the taxonomic

composition of the algal community without the need

to isolate and cultivate individual strains. In this latter

group of methods, probably one of the most used in

phytoplankton ecology is the denaturing gradient gel

electrophoresis (DGGE; (Strathdee & Free, 2013).

Taking advantage of the differences in melting

behaviours of double-stranded DNA in a polyacry-

lamide gel with a linear gradient of denaturants,

DGGE allows the differential separation of DNA

fragments of the same length and different nucleotide

sequences (Jasser et al., 2017). This technique is able

to discriminate differences in single-nucleotide poly-

morphisms without the need for DNA sequencing,

providing information at level of species and geno-

types. For example, analysing samples from eight

lakes of different trophic status, Li et al. (2009)

identified complex community fingerprints in both

planktic eukaryotes (up to 52 18S rDNA bands) and

prokaryotes (up to 59 16S rDNA bands). If coupled

with the analyses of excised DNA bands (Callieri

et al., 2007), or with markers composed of cyanobac-

terial clone libraries (Tijdens et al., 2008), DGGE can

provide powerful indications on the diversity and

taxonomic composition of phytoplankton. More

recent examples of the application of this technique

to phytoplankton and eukaryotic plankton are given in

Dong et al. (2016), Batista & Giani (2019). A recent

comparison of DGGE with other fingerprint methods

(Terminal restriction fragment length polymorphism,

TRFLP) was contributed by Zhang et al. (2018).

A second method that has been used in the

characterization of phytoplankton from microbial

DNA is fluorescence in situ hybridization (FISH),

and catalysed reporter deposition (CARD)-FISH

(Kubota, 2013). In freshwater investigations, this

technique has been used especially in the evaluation

of prokaryotic communities (Ramm et al., 2012). A

third method deserving mention is cloning and

sequencing (Kong et al., 2017).

In principle, compared to LM and traditional

genetic methods, these techniques can provide an

extended view of freshwater biodiversity. Neverthe-

less, they suffer from several limitations, due to the

time, costs and expertise required for the analysis, and

the incomplete characterization of biodiversity due to

manifest restrictions in the methods (e.g. finite reso-

lution of gel bands in DGGE and number and

sensitivity of markers to be used in CARD-FISH).

Part of these limits have been solved with the adoption

of new generation methods based on the analysis of

environmental and microbial DNA.

Culture independent approaches—metagenomics

The more modern methods boost the sequencing

approach over the traditional constraints, allowing

obtaining, without gel-based methods or cloning,

hundreds of thousands of DNA sequences from

environmental samples using high throughput

sequencing (HTS). Under the umbrella of metage-

nomics, we can include a broad number of specialized

techniques focused on the study of uncultured

microorganisms (microbes, protists) as well as plants

and animals via the tools of modern genomic analysis

(Chen & Pachter, 2005; Fujii et al., 2019). The

methods based on HTS analysis of microbial DNA can

be classified under two broad categories, i.e. studies

performing massive PCR amplification of certain

genes of taxonomic or functional interest, e.g. 16S

and 18S rRNA (marker gene amplification metage-

nomics), and the sequence-based analysis of the whole

microbial genomes extracted from environmental

samples (full shotgun metagenomics) (Handelsman,

2009; Xia et al., 2011). While full shotgun metage-

nomics techniques were used in the first global

investigations of marine biodiversity (Venter et al.,

2004; Rusch et al., 2007; Bork et al., 2015), the use of

marker gene amplification metagenomics in the study

of freshwater phytoplankton has shown an impressive

increase in the last decade. The reasons are still due to

the minor costs (a few tens of euros per sample) and

the simpler bioinformatic tractability of sequences of

specific genes compared to full shotgun

metagenomics.

The large progress and knowledge obtained in the

study of microbial communities (Bacteria and

Archaea) based on the analysis of the 16S rDNA

marker in the more disparate terrestrial, aquatic and
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host-organisms’ habitats (e.g. gut microbial commu-

nities) had a strong influence in directing the type of

investigations undertaken in freshwater environments.

At present, the majority of the investigations in

freshwater habitats are focused on the identification

of microbial (including cyanobacteria) communities,

with a minority of studies focused on the photosyn-

thetic and mixotrophic protists (phytoplankton) eval-

uated through deep sequencing of the 18S rDNA

marker (e.g. (Mäki et al., 2017; Li & Morgan-Kiss,

2019; Salmaso et al., 2020).

The results obtained from the applications of HTS

to freshwater samples are impressive and are unveiling

a degree of diversity in biological communities

previously unimaginable, including a significant pres-

ence of the new group of non-photosynthetic

cyanobacteria (Shih et al., 2013, 2017; Salmaso

et al., 2018; Monchamp et al., 2019; Salmaso, 2019).

Nonetheless, the application of these techniques is not

free from difficulties, due to (among the others) the

semiquantitative nature of data, the short DNA reads

obtained by the most common HTS techniques, the

variability in the copy number per cell of the most

common taxonomic markers used (i.e. 16S and 18S

rDNA), the incompleteness of genetic databases,

which are still fed by information obtained by the

isolation and cultivation approaches (Gołębiewski &

Tretyn, 2020; Salmaso et al., 2020). Despite these

constraints, the use of HTS techniques in the study of

phytoplankton, which is just at the beginning, is

contributing to revolutionize the approach we are

using in the assessment of aquatic biodiversity in

freshwater environments, opening the way to a next

generation of investigations in phytoplankton ecology

and a new improved understanding of plankton

ecology.

Conclusions

In this study, we reviewed various aspects of phyto-

plankton diversity, including definitions and mea-

sures, mechanisms maintaining diversity, its

dependence on productivity, habitat size and temper-

ature, functional diversity in the context of ecosystem

functioning, and molecular diversity.

Phytoplankton diversity cannot be explained with-

out the understanding of mechanisms that shape

assemblages. We highlighted how Vellend’s

framework on community assembly (speciation,

selection, drift, dispersal) could be applied to phyto-

plankton assemblages. Competition theories and non-

equilibrium approaches fitted also well into this

framework.

The available literature on phytoplankton species–

area relationship contains information on isolated

habitats. These studies argue that richness depends on

habitat size. However, findings on eutrophic shallow

water bodies suggest that habitat diversity can modify

the monotonous increasing tendencies and hump-

shaped relationship might occur. The literature on

lake’s phytoplankton productivity–diversity relation-

ship supports trends reported for terrestrial ecosys-

tems, i.e. a humped shape relationship at local scale if

a sufficiently large productivity range is considered.

However, the shapes of the curves depend also on the

types of the water bodies. In rivers, both monotonic

increasing (rhithral rivers) and decreasing (potamal

rivers) trends could be observed.

The aggregation of phytoplankton taxonomic data

based on functional information reduces data com-

plexity largely. The reduced biological information

could come along with ecological information loss,

e.g. when traits cannot be quantified adequately, or,

when ecologically diverse taxa are considered similar

functionally. Since pelagic phytoplankton is relatively

similar functionally, the aggregation of taxonomic into

functional data can highlight ecological similarities

among taxa in a meaningful way. Accordingly,

functional composition and diversity may help better

relate phytoplankton communities to their environ-

ment and predict the effects of community changes on

ecosystem functioning.

The adoption of a new generation of techniques

based on the massive sequencing of selected DNA

markers and planktonic genomes is beginning to

change our present perception of phytoplankton

diversity. Moreover, being ‘‘all-inclusive’’ techniques,

HTS are contributing to change also the traditional

concept of ‘‘phytoplankton’’, providing a whole pic-

ture not only of the traditional phytoplankton groups,

but of the whole microbial (including cyanobacteria)

and protist (including phytoplankton) communities.

The new molecular tools not only help species

identification and unravel cryptic diversity, but

provide information on the genetic variability of

species that determine their metabolic range and

unique physiological properties. These, basically
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influence speciation and species performances in

terms of biotic interactions or colonisation success,

and thus affect species assembly.

Outlook

Overexploitation of ecosystems and habitat destruc-

tions coupled with global warming resulted in huge

species loss on Earth. The rate of diversity loss is so

high that scientists agree that the Earth’s biota entered

the sixth mass extinction (Ceballos et al., 2015). While

population shrinkage or extinction of a macroscopic

animal receive large media interest (writing this

sentence we have the news that the Chinese paddle-

fish/Psephurus gladius/declared extinct), extinction

rate of poorly known taxa can be much higher

(Régnier et al., 2015). Phytoplankton, invertebrates

and microscopic organisms belongs to groups where

extinctions do occur, but the rate of extinctions cannot

be assessed. Worldwide, thousands of phytoplankton

samples are investigated every day, mostly for water

quality monitoring purposes. However, assessment

methods focus on the identification of the dominant

and subdominant taxa, because these determine

mostly the values of quality metrics. Since species

richness or abundance-based diversity metrics are not

considered as good quality indicators (Carvallho et al.,

2013), investigators are not forced to reveal the overall

species richness of the samples. To give an accurate

prediction for the species richness of a water body, an

extensive sampling strategy and the use of species

estimators would be required. Nevertheless, high local

species richness does not necessarily mean good

ecosystem health and high nature conservation value;

e.g. if weak selection couples with high number of new

invaders. Small water bodies with low local alpha

diversity but with unique microflora can have high

conservation value (Bolgovics et al., 2019). Preserva-

tion of large phytoplankton species diversity at the

landscape or higher geographic level needs to main-

tain high beta diversity by the protection of unique

habitats (Noss, 1983). Because of the multiple human

impacts and global warming, small water bodies

belong to the most endangered habitats whose protec-

tion is of paramount importance.

Our understanding about phytoplankton diversity

has progressed in the recent decades. These were

mainly motivated by elucidating mechanisms that

drive diversity, and by the emergence of new

approaches for analysing relationships between diver-

sity and ecosystem functioning.

Increasing human pressure and global warming-

induced latitudinal shifts in climate zones, resulting in

hydrological regime shifts with serious implications

for aquatic ecosystems including phytoplankton.

These timely challenges will also affect near future

trends in phytoplankton studies. The sound theoretical

principles, together with the new molecular and

statistical tools open new perspectives in diversity

research, which, may let us hope that the Golden Age

of studying phytoplankton diversity lies before us and

not behind.

Dedication

Each study in this special issue of Hydrobiologia is

dedicated to the memory of the late Colin S. Reynolds,

who made an outstanding contribution to aquatic

science, and considered one of the most prominent

phytoplankton ecologists of the last three decades. His

encyclopedic work, The ecology of phytoplankton

(2006) considered by many as the Bible for lake

phytoplankton ecology, and serves still as a reference

for many recent works. His oeuvre covers a wide range

of topics within aquatic ecology, including community

assembly, functional approaches, modelling of bio-

mass production, resilience and health of aquatic

ecosystems. Reynolds’s contribution to our under-

standing of diversity maintenance mechanisms is still

relevant and served as a basis for shaping our

manuscript.
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phytoplankton diversity metrics in shallow lake and river

quality assessment. Ecological Indicators 45: 28–36.

Bork, P., C. Bowler, C. de Vargas, G. Gorsky, E. Karsenti & P.

Wincker, 2015. Tara Oceans Tara Oceans studies plankton

at planetary scale. Introduction. Science 348: 873.

Bortolini, J. C., A. Pineda, L. C. Rodrigues, S. Jati & L. F. M.

Velho, 2017. Environmental and spatial processes influ-

encing phytoplankton biomass along a reservoirs river

floodplain lakes gradient: a metacommunity approach.

Freshwater Biology 62: 1756–1767.

Brown, J. H. & M. V. Lomolino, 1998. Biogeography. Sinauer,

Sunderland, MA.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G.

B. West, 2004. Toward a metabolic theory of ecology.

Ecology 85: 1771–1789.

Bruggeman, J., 2011. A phylogenetic approach to the estimation

of phytoplankton traits. Journal of Phycology 47: 52–65.

Callieri, C., G. Corno, E. Caravati, S. Galafassi, M. Bottinelli &

R. Bertoni, 2007. Photosynthetic characteristics and

diversity of freshwater Synechococcus at two depths dur-

ing different mixing conditions in a deep oligotrophic lake.

Journal of Limnology 66: 81–89.
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