
Water Research 185 (2020) 116236 

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

The role of phosphorus and nitrogen on chlorophyll a : Evidence from 

hundreds of lakes 

� 

Zhongyao Liang 

a , ∗, Patricia A. Soranno 

b , Tyler Wagner c 

a Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 407 Forest Resources Building, University Park, 

Pennsylvania 16802, USA 
b Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, Michigan 48824, USA 
c U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, 

University Park, Pennsylvania 16802, USA 

a r t i c l e i n f o 

Article history: 

Received 10 May 2020 

Revised 24 July 2020 

Accepted 25 July 2020 

Available online 27 July 2020 

Keywords: 

Bayesian network 

Eutrophication 

Limiting nutrient 

Macroscale 

Data-limited lakes 

a b s t r a c t 

The effect of nutrients on phytoplankton biomass in lakes continues to be a subject of debate by aquatic 

scientists. However, determining whether or not chlorophyll a (CHL) is limited by phosphorus (P) and/or 

nitrogen (N) is rarely considered using a probabilistic method in studies of hundreds of lakes across 

broad spatial extents. Several studies have applied a unified CHL-nutrient relationship to determine nu- 

trient limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity in eco- 

logical contexts. To examine whether or not CHL is limited by P, N, or both nutrients in hundreds of 

lakes and across diverse ecological settings, a probabilistic machine learning method, Bayesian Network, 

was applied. Spatial heterogeneity in ecological context was accommodated by the probabilistic nature 

of the results. We analyzed data from 1382 lakes in 17 US states to evaluate the cause-effect relation- 

ships between CHL and nutrients. Observations of CHL, total phosphorus (TP), and total nitrogen (TN) 

were discretized into three trophic states (oligo-mesotrophic, eutrophic, and hypereutrophic) to train the 

model. We found that although both nutrients were related to CHL trophic state, TP was more related 

to CHL than TN, especially under oligo-mesotrophic and eutrophic CHL conditions. However, when the 

CHL trophic state was hypereutrophic, both TP and TN were important. These results provide additional 

evidence that P-limitation is more likely under oligo-mesotrophic or eutrophic CHL conditions and that 

co-limitation of P and N occurs under hypereutrophic CHL conditions. We also found a decreasing pattern 

of the TN/TP ratio with increasing CHL concentrations, which might be a key driver for the role change 

of nutrients. Previous work performed at smaller scales support our findings, indicating potential for ex- 

tension of our findings to other regions. Our findings enhance the understanding of nutrient limitation at 

macroscales and revealed that the current debate on the limiting nutrient might be caused by failure to 

consider CHL trophic state. Our findings also provide prior information for the site-specific eutrophication 

management of unsampled or data-limited lakes. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nutrients, including phosphorus (P) and nitrogen (N), are con-

idered as main drivers of phytoplankton growth ( Conley et al.,

009 ). However, which nutrient is the primary limiting nutrient
� Disclaimer: This draft manuscript is distributed solely for purposes of scientific 

eer review. Its content is deliberative and predecisional, so it must not be disclosed 

r released by reviewers. Because the manuscript has not yet been approved for 

ublication by the US Geological Survey (USGS), it does not represent any official 

nding or policy. 
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emains a topic of substantial debate. Generally, debate focuses on

hether or not lakes are solely P limited or co-limited by P and

. Some researchers propose that P is the only limiting nutrient,

ased on results of whole-lake experiments and historical obser-

ations ( Correll, 1999; Schindler, 1974; Schindler et al., 2016 ). They

ound that N fixation was sufficient for phytoplankton growth in

roportion to P ( Schindler et al., 2008 ). Other researchers chal-

enged the P control paradigm, mainly based on results of bottle

r mesocosm experiments, in which they found that the addition

f N could also significantly promote phytoplankton growth ( Elser

t al., 2007; Xu et al., 2009 ). While these small-scale experiments

f short duration were criticized to give spurious and confus-

ng results ( Schindler, 2012 ), a few recent studies used long-term

https://doi.org/10.1016/j.watres.2020.116236
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Table 1 

Concentration thresholds used to determine the trophic state of TP, TN, and CHL 

(modified from USEPA (2009) . Please refer to Fig. 1 for the distributions of lake 

trophic states in our study). For our analysis, we combined the oligotrophic and 

mesotrophic states into a single category ( USEPA, 2009 ). 

Trophic state TP (μg/L) TN (mg/L) CHL (μg/L) 

Oligo-mesotrophic (‘O’) ≤ 25 ≤ 0.75 ≤ 7 

Eutrophic (‘E’) > 25 & ≤ 50 > 0.75 & ≤ 1.4 > 7 & ≤ 30 

Hypereutrophic (‘H’) > 50 > 1.4 > 30 
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observations to reveal N limitation in summer, which was believed

to support the notion of co-limitation by P and N ( van Gerven

et al., 2019; Shatwell and Köhler, 2019 ). However, short-term N

limitation as the evidence for controlling N has long been doubted

( Carpenter, 2008; Schindler et al., 2008 ). 

Although whole-lake experiments or historical observations

provide useful information for informing lake eutrophication man-

agement ( Schindler et al., 2016 ), previous studies typically focused

on a few, selected lakes, e.g. lakes in the Experimental Lakes Area

of Canada ( Schindler, 2012 ), the Laurentian Great Lakes ( Chaffin

et al., 2013; Dove and Chapra, 2015 ), and Lake Taihu ( Paerl et al.,

2011; Xu et al., 2009 ). However, several studies have shown that

the spatial heterogeneity of ecological contexts, including lake

characteristics and phytoplankton and fish community structure,

could impact the relationship between chlorophyll a (CHL) and

nutrients ( Malve and Qian, 2006; Phillips et al., 2008; Wagner

et al., 2011 ). The CHL-nutrient relationship could vary among lakes

even in the same ecoregion and under the same trophic condi-

tions ( Liang et al., 2019 ). The variation of CHL-nutrient relation-

ships might further change relative limitation strength of nutri-

ents ( Kolzau et al., 2014 ). Moreover, the spatial heterogeneity of

other factors, e.g. climate and residence time, could determine the

availability of nutrients and thereby impact the limiting nutrient

for phytoplankton ( Genkai-Kato and Carpenter, 2005; Lewis et al.,

2011; Maranger et al., 2018 ). Therefore, inferences deduced from a

limited numbers of lakes might be constrained to certain ecologi-

cal contexts. 

Large datasets of lakes located across varied ecological con-

texts have long been used to explore CHL-nutrient relationships

( Canfield and Bachmann, 1981; Dillon and Rigler, 1974; Oliver

et al., 2017; Rast et al., 1983 ). A few studies also determined the

limiting nutrient based on the performance of CHL-nutrient log-

linear regressions. For example, Seip (1994) explored the limiting

nutrient of 46 north temperate lakes based on the predictive abil-

ity of the CHL-nutrient model. Abell et al. (2012) found that the

CHL-nutrient relationship varied with latitude and further explored

the nutrient limitation patterns based on the statistical significance

of regression coefficients. Similarly, Zou et al. (2020) determined

the limiting nutrient of lakes in the Chinese Eastern Plains. These

aforementioned studies always spatially aggregated data and then

developed a unified CHL-nutrient relationship (space-for-time sub-

stitution) that was believed to be suitable for all lakes in the anal-

ysis. As such, the deduced limiting nutrient(s) for aggregated lakes

are the same. However, because of the spatial heterogeneity of eco-

logical contexts of lakes, the regional relationship might not be ap-

plicable for some lakes. More importantly, as revealed in some re-

cent studies ( Liang et al., 2020; Qian et al., 2019 ), the regional rela-

tionship might entirely over- or under-estimate the nutrient effect

of all the lakes, which is a typical phenomenon of ecological fallacy

( Maashebner et al., 2015 ). The deduced regional limiting nutrient

could be thereby misleading. 

Classifying lakes into several types based on ecological con-

texts, e.g. lake characteristics, land use, meteorological factors, and

phytoplankton community structure, could improve CHL-nutrient

model performance ( Hayes et al., 2015; Phillips et al., 2008; Yuan

and Pollard, 2014 ) and thereby provide more accurate information

for deducing the limiting nutrient. However, the number of poten-

tial factors effecting nutrient limitation could be large. In practice,

it is extremely difficult to collect data for many drivers and across

hundreds of lakes. As such, if only a limited number of drivers are

included in the modeling exercise, there is still no guarantee that

ecological fallacy won’t occur. Therefore, it is critical to apply ef-

fective tools to accommodate the spatial heterogeneity in ecologi-

cal contexts that exists for inland lakes, and at the same time, help

to overcome the data-limitation often present when exploring nu-

trient limitation of lakes at macroscales. 
c  
As a probabilistic machine learning method, Bayesian Network

BN) can implicitly reflect the impacts of drivers in a probabilistic

anner ( Rigosi et al., 2015 ), rather than including many potential

rivers in the model. BN is therefore suitable for handling the spa-

ial heterogeneity of ecological contexts and does not require ad-

itional data for potential drivers. In a BN, it is straightforward to

onduct an analysis that provides easily communicated probability

istributions of the response given the predictors’ conditions. BN is

lso capable of accommodating nonlinear relationships ( Chen and

ollino, 2012 ). In this study, our objective was to examine whether

r not CHL is limited by P, N or both nutrients in hundreds of

akes located across diverse ecological settings. We applied BN to

nalyzed data from a temporally and spatially extensive database

or lakes in 17 Northeastern and Midwest US states (LAGOS-NE;

oranno et al., 2017 ). The usage of BN in developing CHL-nutrient

elationships of one or multiple lakes is not new ( Nojavan et al.,

017 ), but its application as a tool to explore nutrient limitation

f lakes that span a range of ecological contexts at macroscales is

ovel. 

. Methods 

Although nutrients have many different forms, total phosphorus

TP) and total nitrogen (TN) were used here as the indicators of nu-

rients due to data availability. Also, TP and TN are the most widely

sed indicators in determining the limiting nutrient of phytoplank-

on ( Cha et al., 2016; Liang et al., 2019; Søndergaard et al., 2017 ).

n north temperate lakes, summer is the most sensitive season for

hytoplankton growth, so we focused our analysis on the summer

eriod (June 15 to September 14) ( Wagner and Schliep, 2018 ). Be-

ause there might be interannual dynamics of nutrient limitation

ven in the same lake, we averaged TP, TN, and CHL concentrations

n the summer period of each year to obtain yearly lake-summer

verage values. This resulted in 6424 average values of TP, TN, and

HL from 1382 lakes. The lake-summer average values were then

sed to determine the trophic state of TP, TN, and CHL, according

o the classification method of the National Lake Assessment (NLA)

 Table 1 ) ( USEPA, 2009 ). 

.1. Bayesian network 

BN is a probabilistic machine learning method. It is defined

n terms of a directed acyclic graph and conditional distributions

 Aguilera et al., 2011 ). BN models are based on a relatively simple

ausal graphical structure, making them easy to build and under-

tand ( Chen and Pollino, 2012 ). In addition, the probabilistic rep-

esentation of a BN model enables it to be a proper method to

eal with uncertainties ( Aguilera et al., 2011 ). Moreover, the be-

ief propagation makes BN models an effective tool for reasoning,

hich makes them useful for helping to inform and support de-

ision making ( Chen and Pollino, 2012 ). As such, BN models have

een increasingly used in modeling ecological systems ( Marcot and

enman, 2019; McLaughlin and Reckhow, 2017; Yuan and Pollard,

018 ). 

To build a credible BN model, three key steps should be in-

luded, namely the determination of model structure, learning of
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Fig. 1. Structure of the Bayesian Network model. Horizontal bars show the propor- 

tion of lakes classified into each of the three trophic states. TP = total phosphorus, 

TN = total nitrogen, CHL = chlorophyll a. Structure of BN model. Horizontal bars 

show the proportion of lakes classified into each of the three trophic states. 
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odel parameters, and model evaluation. In this study, the model

tructure was very simple and was determined based on the basic

nderstanding of lake ecosystems. As shown in Fig. 1 , TP and TN

ere drivers (parents nodes) and CHL was the response variable

child node). Note that although we gave the prior that both TN

nd TP could impact CHL when determining the BN model struc-

ure, that did not have to lead to the conclusion that both nutrients

ust have effects on the CHL trophic state. If a nutrient has no ef-

ect on the CHL state, the change of that nutrient will not cause

ny change on the distribution of the CHL state. Distributions of

he trophic state of the three variables are also shown in Fig. 1 . 

The categorized data (data that represent the trophic state of TP,

N, and CHL) were used as the input and output of the BN model.

lthough there are many other supervised or unsupervised meth-

ds to discretize nutrients and CHL concentrations ( Beuzen et al.,

018 ), our NLA-guided data discretization method ( Table 1 ) is

anagement-oriented and thus was expected to provide useful in-

ormation for lake eutrophication management. Parameters esti-

ation was based on Bayes’ theorem, which is embedded in the

nlearn package ( Scutari, 2010 ) in the R software. We conducted

 10-fold cross-validation for the BN model, in which the model

as fitted 10 times to 90% of the observations while the remain-

ng 10% was retained for out of sample prediction ( Wagner and

chliep, 2018 ). We used classification accuracy to evaluate model

erformance. The classification accuracy was calculated by com-

aring highest probability predictions to observed real outcomes

 Marcot, 2012 ). The classification accuracy was high (76.4%), ensur-

ng the reliability of model results and corresponding inferences. 

The ‘top-down’ reasoning of the calibrated BN model allows us

o determine the probability of a CHL tropic state under certain

rophic states of TP and TN. For example, we can obtain the prob-

bility of CHL being oligo-mesotrophic (‘O’) when setting TP to be

ligo-mesotrophic and TN to be eutrophic or hypereutrophic (‘E’ or

H’), as expressed by: P(CHL = O | TP = O, TN = (E or H)). Expres-

ions before and after the vertical bar (“|”) represent the event and

vidence, respectively. And we obtain the probability of the event

the trophic state of CHL) under the evidence (trophic states of nu-

rients) via ‘top-down’ reasoning. 

Note that we aggregated data from a large number of lakes

ocated across diverse ecological contexts. A unified deterministic

HL-nutrient relationship (e.g. a linear regression model) to deter-

ine nutrient limitation could be misleading because of ecological
allacy ( Qian et al., 2019 ). In our study, the key advantage of the

pplication of BN is the implicit accounting of the effects of po-

ential drivers by the probabilistic results of CHL state given the

rophic state of the nutrients. We emphasize that the probability

f a CHL trophic state should be interpreted as the proportion of

akes whose CHL concentration is in that certain state rather than

he possibility of that certain CHL state in a given lake. For exam-

le, P(CHL = O) = 0.3 means there are 30% of the lakes whose CHL

tate are oligo-mesotrophic – rather than that for a certain lake the

robability of CHL being oligo-mesotrophic is 0.3. 

By comparing probabilities of the CHL trophic state under dif-

erent combinations of nutrient trophic states, we can explore the

ole of TP and TN on phytoplankton. Specifically, we addressed the

ollowing three questions: 

1) Is CHL limited by nutrients? Although the answer to this ques-

tion seems to be well established, it is rarely discussed based

on the results of analyses that examine hundreds of lakes using

a BN, in which the potential effects of spatial heterogeneity of

ecological contexts are implicitly accounted for. 

2) If CHL is limited by nutrients, is CHL limited by both nutrients

or only one? 

3) If CHL is limited by both nutrients, is there one nutrient that is

more important than the other one? 

While there are many combinations of TP and TN trophic state

hat are used as the evidence to calculate the probability of the

HL trophic state in the BN, we focused on the nutrient trophic

tate combinations which were helpful to answer the above ques-

ions. All the computations were conducted in R software (Ver-

ion 3.6.0) ( R Core Team, 2019 ). We developed the BN using the

nlearn package ( Scutari, 2010 ). 

. Results 

Probabilities of CHL trophic states under different combinations

f TP and TN trophic states are shown in Fig. 2 . To answer the

uestion of whether nutrients affect the CHL trophic state, we

an compare the results of the CHL trophic state when both nu-

rients are oligo-mesotrophic ( Fig. 2 g) and when both nutrients

re eutrophic ( Fig. 2 e) or hypereutrophic ( Fig. 2 c). When both nu-

rients are oligo-mesotrophic, the probability of CHL being oligo-

esotrophic is high (0.793) and the probability of CHL being eu-

rophic or hypereutrophic is small (0.201 and 0.006, respectively).

owever, if nutrient trophic state becomes eutrophic or hypereu-

rophic, the probability of CHL being oligo-mesotrophic decreases

reatly to 0.104 and 0.023, respectively. That is, on one hand, the

rophic state of 68.9% (0.793 - 0.104) of lakes will shift to a more

nriched CHL trophic state when both nutrients become eutrophic

nd 78.7% (0.793- 0.006) of lakes will shift to a more enriched CHL

tate when both nutrients become hypereutrophic. On the other

and, when nutrient trophic state becomes oligo-mesotrophic from

utrophic or hypereutrophic the proportion of lakes being classi-

ed as eutrophic and hypereutrophic based on the CHL concen-

rations is greatly reduced (e.g., compare Fig. 2 b, e, and h). There-

ore, TP and TN are indeed very important for determining the CHL

rophic state of lakes, indicating that CHL is limited by nutrients at

acroscales. 

Next, we address the question of whether or not a single nu-

rient or both nutrients affect CHL trophic state - given that we

ave established that nutrients are important determinants of CHL

rophic state. To explore the effect of one nutrient independent of

he other, we kept the trophic state of the other nutrient constant.

or example, we can determine the effect of TP on CHL trophic

tate by comparing Fig. 2 a, d, and g. When setting the TN trophic

tate to be oligo-mesotrophic, changing the TP trophic state from

ligo-mesotrophic ( Fig. 2 g) to eutrophic ( Fig. 2 d) or hypereutrophic
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Fig. 2. Probabilities of the CHL trophic state under different combinations of nutrient trophic states. ‘Oligo-meso’ = oligo-mesotrophic, ‘Eutro’ = eutrophic, ‘Hyper’ = hyper- 

eutrophic, TP = total phosphorus, TN = total nitrogen. Probabilities of the CHL trophic state under different combinations of nutrient trophic states. 
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( Fig. 2 a) will lead to a large decrease of the probability of CHL

being oligo-mesotrophic (a decline from 0.793 when TP is oligo-

mesotrophic to 0.056 when TP is hypereutrophic). Concurrently,

we see an increase in the probability of CHL being eutrophic and

hypereutrophic ( Fig. 2 g, d, & a). When holding the TN state con-

stant at eutrophic ( Fig. 2 b, e, & h) or hypereutrophic ( Fig. 2 c, f,

& i), we obtain similar results to the results for TP on the proba-

bility change of the CHL trophic state. To determine the effect of

TN on CHL trophic state, we compare plots holding the TP trophic

state constant. If the TP state is oligo-mesotrophic ( Figs. 2 g, h,

& i), changing the trophic state of TN from oligo-mesotrophic to

eutrophic or hypereutrophic will cause a decrease in the prob-

ability of CHL being oligo-mesotrophic (from 0.793 when TN is

oligo-mesotrophic to 0.609 when TN is hypereutrophic) and an

increase of the probability of CHL being eutrophic and hypereu-

trophic ( Figs. 2 g, h, & i). If the TP state is eutrophic ( Fig. 2 d, e, &

f) or hypereutrophic ( Fig. 2 a, b, & c), changing the trophic state of

TN from oligo-mesotrophic to eutrophic or hypereutrophic will pri-

marily lead to the shift of the CHL state from eutrophic to hyper-

eutrophic, since the probability of CHL being oligo-mesotrophic is

already very small. Therefore, according to the change of the prob-

ability of different CHL trophic states, both TP and TN could influ-
nce the CHL trophic state, showing that both nutrients could be

imiting. 

To determine the relative importance of nutrients - since both

utrients could influence the CHL trophic state - we assume that

oth nutrients are oligo-mesotrophic, and then shift either nutri-

nt to a more nutrient enriched trophic state. The shift of the TP

rophic state to a eutrophic state will lead to 67.7% (0.793 - 0.126)

f the lakes transferring from an oligo-mesotrophic trophic state

o a eutrophic or hypereutrophic state and 74.7% (0.793 - 0.056)

f lakes transferring from an oligo-mesotrophic trophic state to a

utrophic or hypereutrophic state if TP shifts to a hypereutrophic

tate ( Figs. 2 g, h, & i). In contrast, the shift of TN to a eutrophic

tate or hypereutrophic state will only cause such a change for

2.7% (0.793 - 0.664) and 18.4% (0.793 - 0.609) of the lakes, re-

pectively ( Fig. 2 g, d, & a). In addition, the shift of the TP state

o a hypereutrophic state will lead to a larger proportion of lakes

eing classified as hypereutrophic based on CHL (0.374), a much

arger proportion than that resulting from the shift of TN (0.015).

oreover, when TP trophic state is hypereutrophic the probabil-

ty of CHL being oligo-mesotrophic is as small as 0.006 ( Fig. 2 a)

nd changing the TN trophic state from oligo-mesotrophic to hy-

ereutrophic has little influence on that probability ( Fig. 2 c). How-
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Fig. 3. The relationship between log e TN/TP ratio and log e CHL for lakes in the 

LAGOS-NE database. Solid line is fitted regression line (R 2 = 0.262, p < 0.001), verti- 

cal lines indicate breaks in trophic status (indicated at the top of the figure), white 

points are average TN/TP for each trophic state, and dashed horizontal line indi- 

cates the Redfield Ratio on a log e -scale. The relationship between log e TN/TP ratio 

and log e CHL for lakes in the LAGOS-NE database. 
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ver, when the TN trophic state is hypereutrophic, changing the TP

rophic state from oligo-mesotrophic to hypereutrophic results in

 large decrease in the probability of CHL being oligo-mesotrophic

from 0.609 to 0.023) ( Fig. 2 i & c). Therefore, although TN has an

nfluence on the CHL state, TP is substantially more important than

N. Considering the huge difference between the TP and TN effect

nd the large effect of TP on CHL trophic state, TP generally plays

 dominant role in determining the CHL state, indicating that TP

eems more important for limiting CHL compared to TN. 

Finally, we examined if TP and TN could interactively impact

he CHL trophic state. We found that when the TP trophic state

as oligo-mesotrophic, changing the TN trophic state from oligo-

esotrophic to eutrophic or hypereutrophic would only cause a

mall increase in the probability of CHL being hypereutrophic

 Fig. 2 g, h & i). However, when the TP state was eutrophic or

ypereutrophic, the probability of CHL being hypereutrophic in-

reased substantially when changing the TN trophic state from

ligo-mesotrophic to eutrophic or hypereutrophic ( Fig. 2 d, e & f for

P in a eutrophic state and Fig. 2 a, b, & c when TP is in a hypereu-

rophic state). That is, the impact of the TN state on the CHL state

s much larger when the TP state is eutrophic or hypereutrophic,

ndicating that there is a positive interaction between TP and TN

n determining the hypereutrophic state of CHL. When either TP

r TN goes to oligo-mesotrophic from being eutrophic or hypereu-

rophic, this will lead to a relatively large decrease in the proba-

ility of CHL being hypereutrophic. Therefore, when the CHL state

s hypereutrophic, both nutrients are likely important and suggests

otential co-limitation by TP and TN. 

We further checked the robustness of the above results by

hanging the sampling period, lake depth, and thresholds to de-

ermine the CHL state. We set the sampling years < 20 0 0, < 20 05,

 2010, ≥ 1995, ≥ 20 0 0, and ≥ 20 05, and the mean lake depth

 3 m, < 5 m, ≥ 3 m, and ≥ 5 m. We tried another popular method

etermining the CHL state proposed by Smith et al. (1999) , by

hich the lake is oligo-mesotrophic when CHL < 9 μg/L, is eu-

rophic when CHL > 9 μg/L but < 25 μg/L, and is hypereutrophic

hen CHL > 25 μg/L. Note that thresholds in Smith et al. (1999) are

imilar to those in USEPA (2009) . We found that all the results

ad a similar pattern. Therefore, our results are very robust, which

ives strength to the reliability of the analysis. 

. Discussion 

.1. The role of TP and TN on limiting CHL 

We summarized whether or not CHL is limited by TP, TN, or

oth nutrients in inland lakes at macroscales. Although both nutri-

nts affect CHL trophic state, TP generally plays a dominant role.

owever, when the CHL trophic state is hypereutrophic, both TP

nd TN are important. Our findings on the role of nutrients indi-

ate P-limitation when the CHL trophic state is not hypereutrophic

nd the co-limitation of P and N when the CHL trophic state is

ypereutrophic. 

The TN/TP ratio is one of the most widely used indicators to

xplain the nutrient limitation for phytoplankton ( Cha et al., 2016;

iang et al., 2018; Redfield, 1958 ). It is well recognized that a

igher TN/TP ratio indicates a higher possibility of P-limitation. We

ound a significant decreasing trend (the fitted linear regression

ine in Fig. 3 ) of the TN/TP ratio with increasing CHL concentra-

ion for the lakes in the LAGOS-NE database ( Fig. 3 ). As the TN/TP

atio approaches the Redfield Ratio (7.2 by mass, the dashed hori-

ontal line in Fig. 3 ), the nutrient limitation condition shifts from

-limitation to that of co-limitation by P and N. Average values of

he TN/TP ratio are 54.1, 26.8, and 18.1 (white points in Fig. 3 ),

hen the CHL state is oligo-mesotrophic, eutrophic, and hyper-

utrophic, respectively. According to the linear regression line be-
ween log(TN/TP) and log(CHL), we can set the CHL concentration

o be 30 μg/L (the threshold to determine the eutrophic and hy-

ertrophic state) and calculate the corresponding TN/TP ratio as a

ough estimation of the TN/TP ratio to classify the P-limitation and

o-limitation of P and N. The estimated TN/TP ratio is 20.2, which

s close to the proposal of 22 by Guildford and Hecky (20 0 0) . 

There are several mechanisms that may influence the TN/TP ra-

io in lakes, such as watershed nutrient input and atmospheric de-

osition of nutrients ( Downing and McCauley, 1992; Elser et al.,

009 ). Two processes that are most related to the CHL trophic

tate are the release of P from the sediment and the denitrifica-

ion of N in the waterbody ( Cottingham et al., 2015; Zhang et al.,

018 ). The decomposition of phytoplankton was identified as the

ey process to the release of P from the sediment by providing the

ow dissolved oxygen and proper pH environment supporting the

ron(II)-P coupling ( Chen et al., 2018 ). Moreover, lake eutrophica-

ion often leads to nuisance blooms of some phytoplankton species

e.g. Cylindrospermopsis raciborskii ) which are able to regulate their

etabolism to accommodate conditions of low dissolved inorganic

hosphorus ( Araujo et al., 2018; Figueredo et al., 2014; Wu et al.,

012 ). P thereby would increase faster in the waterbody than N.

eanwhile, the decomposition of phytoplankton leads to the in-

rease of total organic carbon which could fuel the potential den-

trification rate ( Zhang et al., 2018 ). Moreover, N-fixation usually

annot compensate for the loss of N caused by denitrification ( van

erven et al., 2019; Hayes et al., 2018 ). At the continental scale,

et denitrification will lead to a larger N deficit in more produc-

ive lakes ( Scott et al., 2019 ). As such, it appears that P accumulates

aster than N in more eutrophic lakes that are heavily impacted by

nthropogenic activities ( Yan et al., 2016 ). 

Globally, a decreasing trend of the TN/TP ratio with increasing

HL concentration has also been shown. Yan et al. (2016) found a

imilar negative relationship between the TN/TP ratio and CHL us-

ng worldwide data compiled from 157 publications. Some studies

lso found a decreasing trend of the TN/TP ratio with the increase

f TP concentration based on compiled datasets ( Downing and Mc-

auley, 1992; Sterner, 2008 ), which also indicated the negative cor-

elation of the TN/TP ratio with CHL concentrations – considering

he high positive correlation between CHL and TP. Across a larger

atitudinal range (from 70 ◦S to 83 ◦N), Abell et al. (2012) found
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Table 2 

Documented cases of nutrient limitations. The CHL state is determined by the average CHL concentration. 

CHL state Limiting nutrient Lake name Country Location References 

oligo-mesotrophic or Eutrophic TP Lake 227 Canada 50 ◦N, 94 ◦W Schindler et al. (2008) 

Lake 261 50 ◦N, 94 ◦W Schindler (2012) 

Lake 303 50 ◦N, 94 ◦W 

Lake 304 50 ◦N, 94 ◦W 

Lake Erie Canada, US 42 ◦N, 81 ◦W Dove and Chapra (2015) 

Lake Ontario US 44 ◦N, 78 ◦W 

Lake Huron 44 ◦N, 82 ◦W 

Lake Michigan 44 ◦N, 87 ◦W 

Scharm ̈u tzelsee Germany 52 ◦N, 14 ◦E Kolzau et al. (2014) 

Untere Havel 52 ◦N, 13 ◦E 

Lake Chenghai China 26 ◦N, 100 ◦E Yan et al. (2019) 

Hypereutrophic TP & TN Langer See Germany 52 ◦N, 14 ◦E Kolzau et al. (2014) 

M ̈u ggelsee 52 ◦N, 14 ◦E 

Lake Taihu China 31 ◦N, 120 ◦E Paerl et al. (2011) ; Xu et al. (2009) 

Lake Dianchi 24 ◦N, 102 ◦E Wu et al. (2017) 
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that TN/TP ratios were smaller in lakes with a higher trophic state.

The same negative relationship between the TN/TP ratio and CHL

has also been shown in the same lake over time. For example, the

TN/TP ratio decreased with the increasing eutrophication in lakes

such as Dianchi, Taihu, and Okeechobee ( Yan et al., 2016 ). Similarly,

the TN/TP ratio increased during the lake recovery period in the

Laurentian Great Lakes ( Dove and Chapra, 2015 ) and some Chinese

lakes ( Tong et al., 2018 ). Besides, the TN/TP ratio would be smaller

in summer than that in the other seasons because of the higher

CHL concentration in summer ( Ding et al., 2018 ). 

Our findings on the role of limiting nutrients are deduced from

cross-sectional data. However, our results are supported by several

case studies (i.e., non compiled, cross-sectional databases) world-

wide ( Table 2 ). For example, for some lakes in the Experimental

Lakes Area of Canada ( Schindler, 2012; Schindler et al., 2008 ) and

the Laurentian Great Lakes ( Dove and Chapra, 2015 ), whose CHL

states were oligo-mesotrophic or eutrophic, the limiting nutrient

was identified as TP. In some hypereutrophic lakes (e.g. Lake Di-

anchi and Lake Taihu) in China, both TN and TP were determined

as limiting nutrients ( Wu et al., 2017; Xu et al., 2009 ). In addi-

tion, Søndergaard et al. (2017) found that CHL was generally more

strongly related to TP than to TN, but TN could be important to the

variability of CHL at high TP concentrations ( > 107 μg/L) based on

the observations of 817 Danish lakes. Similarly, Filstrup and Down-

ing (2017) revealed that CHL was weakly related to TN when TP

concentration was low, but displayed a much stronger response to

TN at higher TP concentrations ( > 100 μg/L) for lakes located in

an agricultural region in the Midwestern US. These high TP con-

centrations in both studies always corresponded to the hypereu-

trophic state of CHL. Considering the high correlation between CHL

and TP, the importance of TN at high TP concentrations indicates

the importance of TN when the CHL state is hypereutrophic. These

studies also support the dominant role of TP when the CHL state

is not hypereutrophic and the dual role of TP and TN when CHL is

hypereutrophic. 

Because our analysis was performed using data from over 1300

lakes that spanned a wide range of trophic states and ecological

contexts, and because our results are supported be several single-

lake and multi-lake studies from across the globe, we believe that

our findings have great potential for generalizing to other lakes.

Therefore, our findings are helpful to better understand the role

of limiting nutrients and provide further insight to the current

controversy on limiting nutrients. For example, the debate over

limiting nutrients might be caused by trying to answer the same

question, but under two different CHL trophic state conditions. Re-

searchers insisting on P-limitation might focus on the lakes with

oligo-mesotrophic or eutrophic CHL trophc state, while researchers
 e
nding evidence of co-limitation by P and N might have focused

ffort s in lakes with hypereutrophic CHL conditions ( Table 2 ). It

ppears likely that the difference in CHL state was neglected in

revious studies. 

.2. Implications for management of lake eutrophication 

It is impossible to propose a unique strategy for lake eutrophi-

ation management that is applicable for all lakes, given the spatial

nd temporal variability of ecological contexts ( Moal et al., 2019;

ian et al., 2019; Wagner et al., 2011 ). Although deductions based

n our findings cannot be generalized to all lakes, since our find-

ngs are deduced from spatially aggregated data, they are suitable

or providing some general guidance for lake eutrophication man-

gement for many lakes. Considering the impossibility of a unified

aw, general guidance suitable for a large number of lakes is crit-

cal. Our findings would provide important prior information for

ite-specific eutrophication management, particularly for unsam-

led or data-limited lakes. 

Firstly, for the recovery of hypereutrophic lakes, decreasing con-

entrations of both TP and TN would likely be advantageous. The

robability of CHL being hypereutrophic reduced by a large propor-

ion when the TP state changed from hypereutrophic to eutrophic

r oligo-mesotrophic state (left panel in Fig. 4 ). The probability of

HL being hypereutrophic would be reduced by more than a half

from 25.6% and 25.2% to 11.4%) when the TN state becomes oligo-

esotrophic (right panel in Fig. 4 ). 

Secondly, note that the co-limitation by P and N when CHL is

ypereutrophic does not have to lead to the strategy that both nu-

rients should be controlled in practice ( Harpole et al., 2011 ), be-

ause the reduction of either nutrient would be helpful. However,

e should be aware that controlling TP solely imposes a high risk

f causing a hypereutrophic state of CHL ( Fig. 2 c & e) if, for ex-

mple, there is an abrupt TP concentration increase caused by a

udden or extreme event. In other words, an oligo-mesotrophic or

utrophic lake with a higher TN concentration has less resiliency

the ability to keep the original state) to an abrupt increase in TP

oncentration than a lake with a lower TN concentration. 

Finally, to maintain the oligo-mesotrophic state of a lake, main-

aining an oligo-mesotrophic TP state will be important. Maintain-

ng an oligo-mesotrophic TP state would result in a more than

0 % of lakes being in an oligo-mesotrophic CHL state. However,

he change of TN trophic state will not lead to a large proportion

hange of CHL oligo-mesotrophic state. Similarly, to further recover

 lake to the oligo-mesotrophic state, a decrease in TP will be more

ffective than a decrease in TN. 
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Fig. 4. Probablities of CHL state given the state of one nutrient. Probablities of CHL state given the state of one nutrient. 
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.3. Importance of a large dataset and the use of a Bayesian Network

The novelty of our research is due to two primary factors: ex-

mining effects of N and P across hundreds of lakes and the appli-

ation of BN at macroscales. We emphasize the importance of us-

ng a dataset with large numbers of lakes and with a wide-range

f different ecological contexts, rather than using a limited num-

er of lakes to explore the role of TP and TN as potential lim-

ting nutrients. The extension of results deduced from a limited

umber of lakes to a broader population of lakes might improp-

rly identify the limiting nutrient and misinform lake eutrophica-

ion management. For example, as shown by our probabilistic re-

ults, there is a proportion of lakes whose CHL trophic state will be

ligo-mesotrophic when the TP state is hypereutrophic (left panel

n Fig. 4 ). If research focused only on these lakes we might con-

lude that TP is not related to the CHL trophic state (i.e., that CHL

s not limited by TP), while TP is in fact very important for many

ther lakes. The extension of the corresponding strategy for lake

utrophication control might be also ineffective for other lakes.

imilarly, there are a large proportion of lakes whose CHL state is

utrophic or hypereutrophic when TP state is hypereutrophic (left

anel in Fig. 4 ). The generalization of nutrient limitation deduction

rom these lakes to other lakes could also be misleading. 

Our work also highlights the novel application of BN in ex-

loring the role of P and N on CHL at macroscales. As shown in

igs. 2 and 4 , under certain nutrient states, the CHL state is not

eterministic but probabilistic, reflecting impacts of spatial hetero-

eneity of drivers that were not included in the analysis. We argue

hat the application of BN could be encouraged as an effective tool

or use in macrosystem studies. Firstly, BN implicitly accounted for

mpacts of spatial heterogeneity of ecological contexts and avoided

he risk of ecological fallacy. Secondly, although classifying ecosys-

ems is useful for improving our understanding of ecological pro-

esses, data used for classification could be rare, particularly for

any systems at macroscales. Under this circumstance, BN allows

he probabilistic exploration of response-drivers relationship. Fi-

ally, if we are also interested in the effect of other factors or the

ata of potential drivers become available, adding other factors as

redictors in BN is straightforward. 

In the future, it will be critical to identify drivers of the limiting

utrient at both the regional and site-specific scales so the limiting

utrient of a lake can be determined more accurately according to

ts ecological context. This would enable predicting limiting nutri-

nts to unsampled (or data-limited) lakes which could better in-

orm the site-specific eutrophication management at macroscales. 
. Conclusions 

We explored the TP vs. TN limitation in inland lakes at

acroscales. The novel application of BN allowed us to directly

uild CHL-nutrient relationships without collecting extra data of

otential drivers of nutrient limitation. Results showed that TP

enerally played a more important role on driving phytoplankton

iomass than TN. When CHL is in a hypereutrophic state, both

P and TN are important. We revealed that the current debate on

he limiting nutrient might be caused by failure to consider CHL

rophic state. Our findings enhance the understanding of nutrient

imitation at macroscalea, which could also facilitate eutrophica-

ion management of unsampled or data-limited lakes. 
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