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Abstract
The relative importance of top-down vs. bottom-up control of phytoplankton biomass in aquatic ecosystems

has been long debated and studied. However, few studies have considered the relative importance of top-down
vs. bottom-up control on phytoplankton vertical distributions and characteristics of deep chlorophyll maxima
(DCMs), and fewer still have investigated the importance of these drivers for multiple phytoplankton groups.
We examined depth profiles of four phytoplankton spectral groups and a suite of top-down (zooplankton) and
bottom-up (nutrients, temperature, and light) drivers from 51 north temperate lakes varying on gradients of
size, trophic state, light availability, and thermal stratification. We used regression trees to identify the most
important drivers of different vertical distribution metrics for each phytoplankton spectral group. The relative
importance of top-down vs. bottom-up control varied across spectral groups and was related to the characteris-
tics of the dominant taxa within each spectral group, as assessed by microscope counts. Zooplankton biomass
was the most important driver of brown algae vertical distributions, likely because this group contained highly
edible taxa (primarily chrysophytes), while thermal stratification predicted vertical distributions of buoyancy-
regulating cyanobacteria. Our work highlights the importance of examining phytoplankton community compo-
sition to improve understanding of DCM characteristics and top-down vs. bottom-up control of phytoplankton
in aquatic systems.

The relative importance of top-down vs. bottom-up control
of phytoplankton biomass in aquatic ecosystems has been the
subject of much research (Taylor et al. 2015 and references
therein), with substantial evidence supporting the significance
of both processes (Benndorf et al. 2002; Ellis et al. 2011;
Bunnell et al. 2014). To date, most research considering top-
down vs. bottom-up control has considered the effect of these
controls on the total biomass of phytoplankton (Jeppesen
et al. 2003; Sawatzky et al. 2006; Bunnell et al. 2014). How-
ever, it is well-recognized that the spatial distribution of phy-
toplankton biomass is highly structured across depth in
stratified lakes, with aggregations often occurring in deep
chlorophyll maxima (DCM) (Fee 1976; Abbott et al. 1984;
Hamilton et al. 2010; Latasa et al. 2017; Leach et al. 2018).
These subsurface maxima are widespread across both marine
and freshwater ecosystems and have been the focus of much

research (Durham and Stocker 2011; Cullen 2015 and references
therein). Nonetheless, we still have very little understanding of
the relative importance of top-down vs. bottom-up controls in
determining the vertical distribution of different phytoplankton
groups in lakes.

The depth and magnitude of DCMs may be driven by
multiple physical, chemical, or biological factors, as DCMs can
exist due to phytoplankton migration, growth, settling, or
entrainment (Moll et al. 1984; Arvola et al. 1992; Durham and
Stocker 2011). DCM depth may be determined by light attenua-
tion, in which water columns with greater light penetration
display deeper, broader DCMs (Varela et al. 1994; Hamilton
et al. 2010; Leach et al. 2018), or by a combination of light atten-
uation and nutrients, in which phytoplankton select a depth to
optimize both down-welling light and greater nutrient availabil-
ity in hypolimnetic waters (Klausmeier and Litchman 2001;
Karpowicz and Ejsmont-Karabin 2017; Hamre et al. 2018). Motile
or buoyant phytoplankton will migrate to take advantage of
these gradients of light, nutrients, or temperature and develop
DCMs in layers with optimal resources (Moll et al. 1984;
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Camacho et al. 2001; Sengupta et al. 2017). Conversely, in some
conditions, DCMs may exist because senescent phytoplankton
settle to a depth of neutral buoyancy or because phytoplankton
are entrained via shear-induced mixing or interflows (Alldredge
et al. 2002; Cullen 2015; Lewis et al. 2017). Biotic factors may
also alter phytoplankton vertical structure, such as when zoo-
plankton grazing mediates the magnitude and depth of the DCM
or causes shifts in community structure due to preferential graz-
ing (Lynch and Shapiro 1981; Arvola et al. 1992; Pilati and
Wurtsbaugh 2003; Moeller et al. 2019). Alternatively, DCMs may
exist due to niche differentiation among phytoplankton taxa in
heterogeneous environmental conditions. For example, low-light
tolerant taxa such as Planktothrix may either persist at the surface
in well-mixed, eutrophic conditions or form a DCM in the
shaded, deep layer under dominant surface-dwelling taxa in ther-
mally stratified conditions (Yoshiyama et al. 2009; Ryabov and
Blasius 2014). Notably, the currently identified ensemble of
potential drivers of DCM depth and biomass include both
bottom-up (light, nutrients, and thermal stratification) and top-
down (zooplankton) controls, making DCMs especially interest-
ing for examining the relative importance of these controls on
the spatial distribution of organisms.

The majority of previous studies of DCMs examined only the
vertical distributions of total phytoplankton biomass or of a
single taxon (Christensen et al. 1995; Jeppesen et al. 2003;
Kononen et al. 2003; Hamilton et al. 2010; Hamre et al. 2018;
Leach et al. 2018), which could in part explain why there are so
many different hypotheses and explanations for different DCM
characteristics. Examination of total biomass obscures differences
in the relative importance of top-down and bottom-up controls
for different phytoplankton taxa. For example, the vertical distri-
bution of diatoms, chrysophytes, and cryptophytes, which are
highly nutritious and preferentially grazed by zooplankton, may
be more driven by top-down control than inedible cyanobacteria
(Brett et al. 2000, 2006), although cyanobacteria may also experi-
ence indirect top-down effects as their abundance increases due
to zooplankton grazing down more edible taxa (Lynch and
Shapiro 1981; Holm et al. 1983). In contrast, the vertical distri-
bution of taxa that can control their motility or buoyancy in the
water column, such as cyanobacteria with gas vesicles and green
algae, dinoflagellates, cryptophytes, chrysophytes, and eugle-
noids with flagella, may be more driven by pH or bottom-up
resource gradients of light, nutrients, or CO2 (Shapiro 1973;
Oliver 1994; Clegg et al. 2004, 2007; deNoyelles Jr et al. 2016).
Thermal stratification can act as a physical control affecting
migration strategy or settling location of phytoplankton in the
water column, potentially allowing motile taxa to take advantage
of well-stratified water columns by migrating to or maintaining
buoyancy at a layer with optimal resources (Alldredge et al. 2002;
Sengupta et al. 2017). Thus, it is likely that vertical distributions
of different phytoplankton respond differently to top-down and
bottom-up controls depending on their functional traits.

The few studies that have considered the vertical distribu-
tion of multiple phytoplankton groups find that different taxa

can disperse and exhibit multiple, distinct DCMs (Barbiero
and McNair 1996; Longhi and Beisner 2009; Selmeczy
et al. 2016; Latasa et al. 2017). The degree of aggregation
vs. segregation in the vertical distribution of different phyto-
plankton groups can be quantified by a spatial overlap statistic
that characterizes the proportion of phytoplankton vertical
profiles that co-occur across depth (Beisner and Longhi 2013).
Low spatial overlap indicates vertical segregation of phyto-
plankton taxa into discrete, separate layers and high spatial
overlap indicates aggregation of taxa into a single region of
the water column (Beisner and Longhi 2013). Low spatial
overlap among taxa may result from limitation by different
resources; e.g., light-limited taxa are more likely to remain in
the shallower region of the water column while low-light
tolerant, nutrient-limited taxa will inhabit deeper waters
(Longhi and Beisner 2009; Selmeczy et al. 2016). Beisner and
Longhi (2013) found that strong thermal stratification, low
light attenuation, and oligotrophic conditions promoted high
spatial overlap of phytoplankton groups. However, we are
unaware of any work explicitly considering top-down
vs. bottom-up control of the vertical distributions of multiple
phytoplankton groups as mediated by the functional traits of
the dominant taxa observed in those communities.

The development of new multi-wavelength fluorescence
sensors has the potential to advance our understanding of
how different environmental variables affect vertical distribu-
tions of multiple phytoplankton groups (Beutler et al. 2002;
Gregor and Maršálek 2004; Ghadouani and Smith 2005;
Catherine et al. 2012; Kring et al. 2014). Historically, there
has been a tradeoff in methods between optimizing the spatial
and taxonomic resolution of phytoplankton vertical profiles:
chlorophyll a (Chl a) sensors provide high-resolution vertical
profiles but no taxonomic resolution, while microscope
counts provide high taxonomic resolution but are often
prohibitively labor- and cost-intensive for obtaining high
spatial resolution (Catherine et al. 2012). Within the past two
decades, new multi-wavelength fluorescence sensor technol-
ogy has enabled a compromise between these two alternatives,
providing both high-resolution vertical profiles and broad tax-
onomic information determined by assigning phytoplankton
to “spectral groups” based on the known pigment fluores-
cence signature of different taxa (Beutler et al. 2002). While
not as resolved taxonomically as species-level microscope
counts, multi-wavelength fluorescence sensors provide a rela-
tively cost-effective, portable alternative for measuring high-
resolution vertical profiles of multiple phytoplankton groups
across many lakes (Catherine et al. 2012).

We used a multi-wavelength fluorescence sensor to exam-
ine the relative importance of top-down and bottom-up con-
trols on vertical distribution and DCMs of four phytoplankton
spectral groups across 51 north temperate lakes spanning gra-
dients of size, trophic state, light availability, and thermal
stratification. We further verified the taxa represented by each
of these spectral groups in our study lakes via microscope
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counts of phytoplankton from vertical tows across the photic
zone of each lake. We note that spectral groups may be com-
prised of taxa with a range of functional traits, and thus we
formulated hypotheses that were as specific as possible given
the limitations of what can be measured with a spectral probe
and the data available to validate these measurements.

Based on the range of taxa encompassed within spectral
groups, we predicted that the relative importance of top-down
vs. bottom-up control on vertical distributions would vary
among spectral groups. Specifically, we hypothesized that the
vertical distribution of phytoplankton groups with either high
light requirements (e.g., green algae and some cyanobacteria)
or tolerance of low-light conditions (e.g., cryptophytes), would
be responsive to bottom-up control by light attenuation (H1);
the vertical distribution of “brown algae,” which is comprised
of highly edible or grazer-preferred groups such as chrysophytes
and diatoms, would be most susceptible to top-down control
by zooplankton (H2); and the vertical distribution of buoyant
and motile groups (e.g., cryptophytes and some cyanobacteria)
would be sensitive to bottom-up control by thermal stratifica-
tion, which would allow them to preferentially select a layer for
growth and reproduction (H3). Furthermore, we predicted that
overall spatial overlap of the spectral groups would be driven
primarily by thermal stratification and the consequent forma-
tion of vertical resource gradients. This prediction generates
two conflicting hypotheses: increased thermal stratification
leads to increased spatial overlap by limiting all phytoplankton
groups to a narrow region of the water column where resources
are optimal (H4A), or increased thermal stratification allows for
vertical segregation of spectral groups into distinct layers due to

different resource requirements and motility or buoyancy,
thereby decreasing spatial overlap (H4B).

Methods
Study sites and field sampling

We sampled the phytoplankton communities and potential
top-down and bottom-up drivers in 51 lakes in the Laurentian
and Eastern Township regions of southern Québec province,
Canada (Fig. 1). Sampling was conducted during the period of
maximum summer thermal stratification in July 2004 and July
2005. Both region and sampling year were controlled for in
our analysis and shown to have a minimal effect (see below).
The lakes were selected to cover gradients of lake size, trophic
state, and light availability (Table 1, Fig. 2; Table S1). Impor-
tantly, while these lakes span a range of morphometric and
chemical characteristics representative of north temperate
lakes, they are geographically close enough to experience simi-
lar climatic conditions (Fig. S1).

Sampling was conducted at the deepest site in each lake
and included a measure of Secchi depth, which was used to
calculate photic zone depth (Margalef 1983):

Zphotic = 2:79×ZSecchi ð1Þ

Integrated samples for phytoplankton were then collected
across the photic zone using a flexible polyvinyl chloride tube
sampler, and a 125 mL aliquot was preserved using Lugol’s
solution for later microscope analysis. Integrated tows of zoo-
plankton across the water column (starting at 1 m above the

Fig. 1. Map of study lakes in Québec, Canada, with a regional inset map for reference. Each study lake is marked by a hexagon (n = 51). The color of
the hexagon indicates the number of DCM present in each lake, with a maximum possible total of five (four spectral group profiles for green algae, cya-
nobacteria, brown algae, and cryptophytes, and one total biomass profile). Montréal is indicated by the yellow star. The gray rectangle in the inset map
indicates our study area.
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sediment) were collected using a 100 μm mesh net (2 m long
with a 0.5 m opening) and fixed in 75% ethanol. In addition,
water was collected from a depth of 0.5 m with a 2 L Van
Dorn sampler for analysis of total phosphorus (TP), total nitro-
gen (TN), dissolved organic carbon (DOC), pH, and absor-
bance at 440 nm as a measure of light attenuation potential.
While depth-specific measurements of phytoplankton and
zooplankton as well as environmental variables such as nutri-
ents would have been useful, the substantial effort involved in

sampling 20–30 lakes within �1 month each year at the peak
of summer stratification precluded depth-specific measure-
ments of all variables.

The vertical distribution of the phytoplankton community
was assessed with high-frequency (�10-cm resolution) depth
profiles of four phytoplankton spectral groups as well as total
phytoplankton biomass. We collected the depth profiles with
a FluoroProbe (bbe Moldaenke, Schwentinental, Germany;
Catherine et al. 2012) across the top 20 m of the water

Table 1. Summary of characteristics of 51 study lakes. Mean phytoplankton biomass was calculated from fluorescence-based profiles
across the photic zone.

Lake characteristic Range Mean Median SD

Maximum depth (m) 1.8–84.8 20.6 16.7 16.8

Volume (m3) 2.85×105–7.29×108 3.48×107 8.05×106 1.06×108

Area (km2) 0.086–18.710 2.392 1.210 3.8

pH 6.56–9.40 7.80 7.70 0.54

Total nitrogen (μg L−1) 166–927 377 333 174

Total phosphorus (μg L−1) 5–102 20 16 15

Dissolved organic carbon (mg L−1) 2.1–18.5 6.3 5.9 2.7

Absorbance at 440 nm (A440) 0.2303–10.3635 1.7433 1.4970 1.6215

Secchi depth (m) 0.75–9.5 3.75 3.5 1.75

Thermocline depth (m) 2.3–16.3 7.4 6.9 3.2

Total zooplankton biomass (μg L−1) 4–362 60 36 76

Mean phytoplankton biomass (μg L−1) 0.4–21.9 3.5 1.9 4.4

Fig. 2. Range of selected driver variables for regression tree analysis across all 51 study lakes. Driver variables were selected to represent a suite of
bottom-up controls (nutrients, light, thermal stratification) as well as top-down control (zooplankton predation) on phytoplankton. Pairwise Spearman’s
correlation coefficients for all selected driver variables were less than 0.5 (Fig. S3). Number of DCMs per lake is the number of spectral group profiles that
exhibited a fluorescence-based biomass peak below the top 10% of the water column (each lake had four spectral group profiles and one total phyto-
plankton biomass profile, for a maximum possible total of 5 DCMs).
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column, or the whole water column for lakes < 20 m deep.
FluoroProbes are submersible, in situ fluorometers that report
biomass of four phytoplankton spectral groups: (1) “green
algae” based primarily on Chl a and Chl b fluorescence,
(2) “cyanobacteria” based primarily on phycocyanin fluores-
cence, (3) “brown algae” based primarily on xanthophyll fuco-
xanthin and peridinin fluorescence, and (4) “cryptophytes”
based primarily on phycoerythrin fluorescence (Beutler
et al. 2002). FluoroProbes also report “total biomass,” which is
the sum of the biomass of the four spectral groups, resulting
in five fluorescence-based biomass profiles per lake: one for
each spectral group, and one more for total biomass. Hereaf-
ter, we will refer to “fluorescence-based profiles” as any of the
five profiles collected by the FluoroProbe, and “total biomass”
profiles as the subset of FluoroProbe profiles that represents
the sum of the four spectral group profiles for each lake.

Our FluoroProbe was calibrated to factory standards using
monospecific cultures of the following species to develop algal
“fingerprints” for each of the four spectral groups: Chlorella
vulgaris for green algae, Microcystis aeruginosa for cyano-
bacteria, Cyclotella meneghiniana for brown algae, and Crypto-
monas sp. for cryptophytes (Beutler et al. 2002). FluoroProbes
are often used to track the concentration and vertical distribu-
tion of these four phytoplankton spectral groups in aquatic
ecosystems (Kring et al. 2014). In addition, FluoroProbes
simultaneously record water temperature at the same resolu-
tion as fluorescence.

Laboratory analyses
All water chemistry samples were analyzed following stan-

dard methods. TP and TN were determined after alkaline
persulfate digestion using an Ultraspec 2100 pro spectropho-
tometer (Biochrom, Cambridge, U.K.) and an Alpkem
autoanalyzer (OI Analytical, College Station, TX, U.S.A.),
respectively. DOC of filtered water samples (surfactant-free
membrane filters) was determined after acidification with 5%
sulfuric acid and sodium persulfate oxidation on a 1010 TOC
analyzer (OI Analytical, College Station, TX, U.S.A.). The
absorption coefficient at 440 nm (A440) of filtered (Whatman
GF/F) water samples was measured using a 2 cm quartz cuvette
and calculated as in (Kirk 2011), where 2.303 is the factor for
converting natural to decadal logarithms:

A440 = 2:303×
absorbanceat440nm

0:02m

� �
ð2Þ

To characterize the taxa represented within each spectral
group, phytoplankton in fixed whole-water samples were iden-
tified to species and counted using the Ütermohl method at
640× on an Olympus (model IX 71) inverted microscope. Sub-
samples were counted until no new species were seen in five
consecutive fields of view, and the counting chamber was
scanned along one transect at 200× for rare species. Biovolumes
of each species were estimated based on measurements of

major dimensions of �20 cells of each taxon and calculated
according to corresponding geometric forms (Hillebrand
et al. 1999). We subsequently aggregated biovolumes of species
to genus and used genus-level data for all our analyses.

Zooplankton were identified on Olympus dissecting
(20–32×) and upright (200–400×) microscopes to the species
level. Individuals were counted in 2 mL concentrated subsam-
ples until 200 organisms had been enumerated, and subsam-
ples were taken until no new species were found after two
consecutive subsamples. Zooplankton biomass was estimated
by measuring the length of the first 10 individuals of each spe-
cies, which was then converted to biomass using previously
published length-weight regressions (McCauley 1984). We
subsequently aggregated biomass of all species to total bio-
mass for each lake and used total zooplankton biomass for all
of our analyses. However, we note that both copepods and cla-
docerans were commonly present across the study lakes, with
33 lakes dominated by cladoceran taxa and 18 by copepods
(Table S1).

Verification of FluoroProbe data and spectral group taxa
Because FluoroProbe determination of spectral group bio-

mass is based on the fluorescence of a set of pigments that are
found in multiple phytoplankton taxa with varying pigment
concentration-to-biomass ratios, it is important to validate
fluorescence-based data with other measures of the phyto-
plankton community (Fennel and Boss 2003; Derks et al. 2015;
Selmeczy et al. 2016). While our sampling campaign did not
permit multiple depth samples of phytoplankton at each lake,
we were able to collect integrated tows across the photic zone
of each lake and use these samples to verify the dominant
phytoplankton taxa within each FluoroProbe spectral group
across lakes (Text S1). This verification was done a priori as a
check on the FluoroProbe data.

We found that mean biomass across the photic zone
reported by the FluoroProbe corresponded well to biovolume
calculated from microscope counts for most spectral groups
across our study lakes (Figs. S2, S3). Genera identified micro-
scopically were assigned to spectral groups based on the fol-
lowing taxonomic associations: chlorophytes, euglenoids, and
desmids were classified as the green algae spectral group; dino-
flagellates, diatoms, and chrysophytes were classified as the
brown algae spectral group; cyanobacteria were classified as
the cyanobacteria spectral group; and cryptophytes were clas-
sified as the cryptophyte spectral group.

After running our regression tree analysis based on
FluoroProbe data, we also compiled lists of the top 10 domi-
nant genera in each spectral group across the study lakes to
aid in interpretation of FluoroProbe analysis results. We used
the top 10 dominant genera because this included all genera
that were the dominant genus within each spectral group in
two or more lakes. Dominance within each lake was deter-
mined according to biovolume estimates from microscope
counts. Across lakes, dominance was determined by tallying of
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the number of lakes in which a genus was the dominant repre-
sentative of its spectral group.

Calculation of thermal stratification metrics
To assess thermal stratification in our study lakes, we used

temperature profiles obtained from the FluoroProbe
(accuracy � 0.1�C) to calculate seasonal thermocline depth
and the maximum buoyancy frequency, or Brunt-Väisälä fre-
quency, in the top 20 m of the water column following
methods outlined in Read et al. (2011). Fifty of 51 lakes had
an identifiable seasonal thermocline. We performed calcula-
tions using rLakeAnalyzer (Albers et al. 2018), an open-source
package to calculate thermal stability metrics in lakes in the R
statistical environment (R version 3.5.2, R Core Development
Team, 2018). We chose these two metrics because they are
localized metrics that enabled characterization of thermal sta-
bility in the region of the water column where phytoplankton
are most likely to occur (Read et al. 2011) and for which we
had corresponding phytoplankton spectral group data. Fur-
thermore, these metrics do not require a bathymetric or tem-
perature profile of the whole water column, which were not
available for some lakes.

Calculation of depth profile characteristics
To characterize phytoplankton vertical distributions across

our study lakes, we analyzed FluoroProbe depth profiles.
While the use of fluorescence-based biomass data comes with
some caveats, such as the possibility of non-photochemical
quenching under high light conditions (Derks et al. 2015),
increased cell pigment concentration at depth (Fennel and
Boss 2003), and misclassification of fluorescence signals to
spectral groups due to mixed assemblages (Selmeczy
et al. 2016), we argue that there is currently no better method-
ological alternative for studies explicitly examining high-
frequency vertical distributions of phytoplankton across many
lakes. In cross-site studies it is critical to use comparable
methods across study lakes, which requires an easily portable
instrument such as the FluoroProbe. As a check on the
FluoroProbe, we collected depth-integrated phytoplankton
samples for microscopic analysis from all 51 lakes (described
above) to inform our interpretation of all fluorescence-
based data.

We used fluorescence profiles to calculate four different
metrics describing phytoplankton vertical distributions for
each spectral group measured as well as total biomass: mean
biomass aggregated across the photic zone, depth of maxi-
mum fluorescence-based biomass, width of the fluorescence-
based biomass peak (if present), and spatial overlap of spectral
group profiles (Fig. 3). Taken together, these metrics describe
the magnitude, depth, breadth, and co-occurrence, respec-
tively, of the spectral groups in each depth profile.

Two of our four vertical distribution metrics (depth of max-
imum fluorescence-based biomass and peak width) were
depth-specific, and this presented a challenge as our study

includes lakes ranging in depth from 1.8 to 84.8 m (Table S1).
Phytoplankton occurring in a fluorescence-based biomass peak
with a width of 1 m and at a depth of 1 m in a very shallow
lake are likely not experiencing or responding to the same

Fig. 3. Phytoplankton vertical distribution characteristics. (a) Example
depth profile depicting three of the four vertical distribution characteris-
tics: Mean biomass across the photic zone, the depth of maximum bio-
mass standardized to lake depth, and peak width, calculated by running a
curve-fitting procedure on each depth profile and then calculating the
width of the fitted curve at � 1 SD from the peak of the curve, which cor-
responds to the maximum biomass value observed in the profile. Peak
width was standardized to lake depth. (b) Example depth profiles
depicting spatial overlap, or the proportion of depth profiles of two differ-
ent spectral groups that overlap.
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environmental conditions as in a peak of the same width and
depth in a very deep lake; thus, we considered it necessary to
standardize these two metrics across lakes. To avoid standard-
izing the vertical distribution metrics using a variable that was
to be subsequently used as a driver in our analysis
(i.e., thermal stability or light attenuation), we standardized
by dividing the depth of maximum biomass or the width of
the peak by the maximum depth of each lake to permit com-
parisons among lakes. We recognize that in some cases, this
standardization may complicate interpretation of results relat-
ing to these two vertical distribution metrics, which we
address in the Discussion.

We classified a fluorescence-based vertical profile as
exhibiting a DCM if: (1) a peak was present, with a biomass
maximum at least 0.5 μg L−1 greater and 1.5× the magnitude
of mean photic zone biomass (following Leach et al. 2018);
and (2) the peak was deep, with a depth of maximum biomass
below the top 10% of the water column. Not all fluorescence
peaks met the second criterion to be classified as a DCM, but
regardless, we estimated depth of maximum biomass and peak
width for every fluorescence peak. The width of all fluores-
cence peaks was calculated by running a curve-fitting proce-
dure on each depth profile following Leach et al. (2018) and
then finding the width of the fitted curve at plus and minus
1 SD from the peak of the fitted curve, which is equivalent to
the maximum biomass value observed in the profile (Fig. 3a;
Script S1; Script S2; all R scripts accessible at https://github.
com/melofton/Top-down-vs.-bottom-up-control-of-DCMs).
All profiles were manually inspected to ensure goodness-of-fit
of the curve-fitting procedure.

Spatial overlap, or the proportion of spectral group depth
profiles that overlap, was calculated following methods in
Beisner and Longhi (2013) (Fig. 3b; Script S3). Briefly, a kernel
density function was fit to each standardized spectral group
profile, and the mean proportion of overlap between all
pairwise combinations of spectral group vertical distributions
within a lake represents spatial overlap, a unitless index rang-
ing from 0 (no overlap among spectral groups vertical distribu-
tions) to 1 (complete overlap among all spectral groups;
Beisner and Longhi 2013). If a spectral group or total biomass
profile did not have a defined peak, we only calculated mean
photic zone biomass and spatial overlap for that profile.

Regression tree analysis
We used a regression tree analysis to assess the relative

importance of top-down and bottom-up controls on each of
the four depth profile characteristics. Regression trees identify
the most important predictors of a continuous response vari-
able by dividing the variable into sequentially more homoge-
neous groups based on the values of the predictors (Breiman
et al. 1984). They are well-suited for use with ecological data
because they can use both categorical and continuous explan-
atory variables as input (although by definition a regression
tree has a continuous response variable), identify relationships

between drivers and responses even when those relationships
are non-linear, and provide clear, readily interpretable output
(De’ath and Fabricius 2000).

When conducting regression tree analyses, it is important
to ensure that driver variables are not strongly correlated, as
this may compromise the ability to identify the most impor-
tant driver of the response variable. To ensure that the driver
variables for our regression tree analysis were not too collinear,
we conducted Spearman’s correlations among all candidate
driver variables and selected the driver variables representing
both bottom-up and top-down control for which Spearman’s
ρ coefficients were <0.5 (Fig. S5): total zooplankton biomass in
the photic zone (top-down), A440 as a measure of water color
and therefore light attenuation potential (bottom-up), maxi-
mum buoyancy frequency in the top 20 m of the water col-
umn as a metric of thermal stratification (bottom-up), and
total nitrogen (TN) to represent lake trophic state (bottom-
up). We used TN to represent nutrient conditions because the
first axis of a principal components analysis incorporating
both TN and TP (following Hamre et al. 2017) showed that
most of the variation among study lakes was due to TN
(Fig. S4), and TN and TP concentrations were too highly corre-
lated (ρ = 0.80) to include as separate drivers in the regression
tree analysis. Collinearity among response variables is not a
concern because separate regression tree analyses are con-
ducted for each response variable. Before running the regres-
sion tree analysis, all driver and response variable distributions
were tested for Pearson’s moment coefficient of skewness with
and without a natural log transformation. On the basis of that
test, A440, total photic zone zooplankton biomass, mean pho-
tic zone phytoplankton biomass, and standardized depth of
maximum biomass were natural log-transformed to reduce
skewness prior to analysis.

Using the selected driver variables, we constructed regres-
sion trees to predict mean photic zone biomass, standardized
depth of maximum biomass, and peak width for total phyto-
plankton biomass and each of the four spectral groups indi-
vidually from the 51-lake dataset. We also constructed a single
additional tree to predict the mean spatial overlap between all
pairwise combinations of spectral groups in a lake (n = 16 trees
total; Figs. S6–S10). All trees were constructed using the rpart
package in the R statistical environment (Therneau and
Atkinson 2019). We set the maximum depth of each tree to
one split to focus on the strongest driver of each DCM
characteristic.

Validation of regression tree analysis
To validate and test the robustness of our regression tree

analysis, we conducted a cross-validation procedure with
1000 repetitions and rejected trees if the cross-validation
error � 1 SE of the tree was not within the range of the mini-
mum cross-validation error � 1 SE (Fig. S11; Breiman
et al. 1984; Harper et al. 2011). To further test the robustness
of our regression tree results we ran the regression tree analysis
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sequentially withholding one lake at a time to verify that
a single lake was not driving our regression tree results
(Table S2). All 16 trees from our regression tree analysis were
replicated >75% of the time in the hold-one-out analysis, both
in terms of the primary driver identified and the breakpoint
value of that driver at the first split. Seven trees were replicated
100% of the time in the hold-one-out analysis and another
five trees were replicated ≥90% of the time (Table S2).

We also checked whether our regression tree analysis was
sensitive to landscape distribution of our study lakes or the
year in which the study lakes were sampled. To test for
regional effects, we ran the analyses using region (either Lau-
rentian or Eastern Townships) as a categorical predictor vari-
able; only one tree (standardized depth of maximum biomass
for total biomass) included region as an important driver.
When running the analyses using sampling year (either 2004
or 2005) as a categorical predictor variable, no trees returned
sampling year as the primary driver of any vertical distribution
characteristic.

Results
Prevalence of DCM across lakes and spectral groups

Biomass peaks were prevalent in the study lakes across all
fluorescence profiles, and the majority of fluorescence peaks
were classified as DCMs. Of the 255 fluorescence-based depth
profiles (encompassing both the four spectral group profiles
and total biomass profiles that summed the four spectral

groups) from the 51 lakes, 72% displayed peaks, including
55% of green algae profiles, 59% of cyanobacteria profiles,
90% of brown algae profiles, 76% of cryptophyte profiles, and
78% of total biomass profiles. Furthermore, 48 of 51 lakes dis-
played a DCM in at least one of the five FluoroProbe depth
profiles collected at that lake, with 24% of lakes displaying
DCMs in all depth profiles and another 32% displaying DCMs
in four of five depth profiles (Figs. 1, 2). Overall, 86% of all
fluorescence peaks were classified as DCMs, with the preva-
lence of DCMs among spectral groups ranging from 68% of
peaks in the green algae to 92% among cryptophytes. In total
biomass profiles, 73% of all peaks were classified as DCMs.

Spectral groups differ in depth and peak width
The spectral groups exhibited significantly different bio-

mass maximum depths (Kruskal-Wallis χ2 = 15.5, p = 0.001;
Fig. 4b,c). Green algae generally exhibited the shallowest bio-
mass maximum depths, usually occurring in the top 25% of
the water column (mean standardized maximum biomass
depth = 0.22 � 0.24, 1 SD), while cyanobacteria and
cryptophytes were often the deepest-occurring spectral groups
(mean standardized maximum biomass depths = 0.41 � 0.29
and 0.39 � 0.29, respectively). However, both cyanobacteria
and cryptophytes exhibited bimodal standardized biomass
maximum depth distributions, often exhibiting peaks both at
relatively shallow depths in deep lakes (Zmax ≥ 10 m) and rela-
tively deep depths in shallow lakes (Fig. 4b,c). In shallow

Fig. 4. (a) Bar plot of peak width for each spectral group. Peak width was standardized to the maximum depth of each lake. (b) Kernel density plot of
standardized maximum biomass depth of all spectral groups, standardized thermocline depth, and standardized photic zone depth for all study lakes
with a maximum depth less than or equal to 10 m. Note that many shallow lakes had photic zones (calculated from Secchi depth) that extended to the
bottom of the lake. (c) Kernel density plot of standardized maximum biomass depth of all spectral groups, standardized thermocline depth, and stan-
dardized photic zone depth for all study lakes with a maximum depth greater than 10 m. The horizontal dotted line in panels (b) and (c) represents the
depth below which peaks were defined as DCM for our study (below the top 10% of the water column).
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lakes, these two spectral groups usually occurred at the depth
of the thermocline, while in deep lakes, they often occurred
above it. Peaks of brown algae usually occurred mid-profile
between green algae and cyanobacteria/cryptophytes, with a
mean standardized maximum biomass depth of 0.32 � 0.27,
corresponding closely with the mean standardized maximum
biomass depth for total biomass (0.34 � 0.26). In all, 191 of
255 depth profiles (75%) had biomass maximum depths above
the thermocline in the mixed layer of the epilimnion (Fig. 4b,
c). In addition, 91% of all biomass maximum depths were
above the photic zone (defined as 2.79 × ZSecchi), and this was
especially prevalent in shallow lakes. Occasionally, we
observed a cryptophyte or cyanobacterial peak at or below the
depth of the photic zone in deep lakes (Fig. 4b,c).

Spectral groups also displayed marginally significant dif-
ferences in the width of their peaks (Kruskal-Wallis χ2 = 7.1,
p = 0.07, Fig. 4a). Brown algae consistently exhibited narrow
standardized peak widths (0.23 � 0.11), while cryptophytes
had the broadest but also the most variable peak widths
(0.32 � 0.18). The mean standardized peak width for green
algae was similarly narrow but more variable than for the
brown algae (0.24 � 0.15), while cyanobacteria exhibited
peaks of both intermediate breadth and variability
(0.28 � 0.16). As they represent the sum of different spectral
group peaks, total fluorescence peaks were generally wider
and more variable than peaks for individual spectral groups
(mean 0.35 � 0.22).

Top-down and bottom-up control of total biomass
Both top-down and bottom-up variables were important

drivers for different characteristics of total biomass vertical dis-
tributions. Mean total photic zone biomass was positively
associated with higher nutrients (i.e., higher TN; Fig. S6),
while peak width was inversely associated with A440, so as
light attenuation increased, peak width tended to narrow
(Fig. 5; Fig. S6). Standardized maximum biomass depth was
positively associated with higher total zooplankton biomass in
the photic zone, indicating that when zooplankton were
abundant, standardized maximum biomass depths tended to
be deeper. In sum, bottom-up drivers were most important for
two of three total biomass depth profile characteristics, but no
single driver emerged as a dominant control over the vertical
distribution of total biomass depth profiles.

Bottom-up drivers control green algae and cyanobacteria
Vertical distributions of both green algae and cyanobacteria

were exclusively driven by bottom-up controls, although the
most important bottom-up driver varied for different charac-
teristics of the depth profile, especially for green algae (Fig. 5;
Figs. S7, S8). Mean photic zone biomass for both green algae
and cyanobacteria was positively associated with higher nutri-
ents, similar to the total phytoplankton profiles. For cyano-
bacteria biomass, both standardized maximum biomass depth
and peak width were controlled by maximum buoyancy fre-
quency: as stratification increased, cyanobacterial peaks

R2 = 0.11

R2 = 0.31 R2 = 0.16 R2 = 0.17 R2 = 0.10R2 = 0.27

R2 = 0.18 R2 = 0.11R2 = 0.27 R2 = 0.08 R2 = 0.08

R2 = 0.34R2 = 0.14R2 = 0.27R2 = 0.44

Fig. 5. Conceptual figure illustrating results of the regression tree analysis. Symbols in the bottom right corner of each plot represent the primary driver
for each vertical profile characteristic as identified in the regression tree analysis. The R2 value at the top of each plot is the proportion of variance
explained by the primary driver, or first split. Black lines represent a conceptual “original” or baseline depth profile, while gray lines provide a conceptual
representation of how that depth profile would change as the primary driver increases. Note that all depth profiles in this figure are stylized representa-
tions of regression tree results and do not represent actual FluoroProbe data.
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tended to become both shallower and narrower. Higher maxi-
mum buoyancy frequency was also associated with shallower
standardized maximum biomass depths for green algae bio-
mass, but green algae peak width was driven by light attenua-
tion: as light attenuation increased, green algae peak widths
tended to become broader. This result was the opposite of the
regression tree result for peak width of total phytoplankton
biomass, in which high light attenuation was associated with
narrow peak widths. Overall, cyanobacteria were the most sen-
sitive spectral group to thermal stratification, which emerged
as the primary driver of two of three cyanobacterial depth pro-
file characteristics. While green algae were similarly sensitive
to bottom-up controls as cyanobacteria, no single driver
emerged as the dominant control of green algae vertical
distributions.

Zooplankton important to brown algae distribution
Unlike other spectral groups, total zooplankton biomass in

the photic zone emerged as the single strongest driver for all
brown algae vertical distribution characteristics (Fig. 5; Fig. S9).
Higher zooplankton biomass was associated with both deeper
maximum biomass depths and broader peak widths of brown
algae. While mean photic zone biomass of other spectral

groups was positively associated with higher nutrients, mean
photic zone biomass of brown algae was positively associated
with higher zooplankton biomass. Of all the groups, brown
algae were both the most sensitive to zooplankton and their
depth profile characteristics were most consistently sensitive
to a single environmental variable.

Top-down and bottom-up drivers of cryptophytes
Cryptophytes were the only spectral group to exhibit both

top-down and bottom-up controls on their vertical distribution,
and in that respect most closely mirrored the total phytoplank-
ton biomass results (Fig. 5; Fig. S10). Similar to total biomass,
mean photic zone biomass of cryptophytes was positively asso-
ciated with higher nutrients, while higher zooplankton biomass
was associated with deeper cryptophyte maximum biomass
depths. However, unlike the total biomass profiles, narrower
peak widths for cryptophytes were associated with strongly
stratified water columns, not high light attenuation. While
green algae and cyanobacteria biomass distributions were con-
sistently sensitive to bottom-up drivers and brown algae bio-
mass distribution characteristics were always strongly associated
with zooplankton biomass, cryptophyte biomass vertical

Fig. 6. Frequency distribution of the dominant genera in each phytoplankton spectral group across lakes: (a) green algae, (b) cyanobacteria, (c) brown
algae, and (d) cryptophytes. Dominance was determined by biomass concentration from microscope counts (micrograms per liter). Genera that were
not dominant in any lake are not shown.
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distributions were sensitive to both bottom-up and top-down
controls.

Spatial overlap
Co-occurrence in the water column among spectral groups

as designated by high spatial overlap scores was inversely asso-
ciated with maximum buoyancy frequency in the top 20 m
(R2 = 0.26), indicating that strongly stratified water columns
had less spatial overlap among spectral groups (Fig. S6).

Taxa comprising each spectral group across lakes
When we microscopically identified the phytoplankton

genera that were the dominant representatives of each spectral
group in each of our study lakes, we found that spectral
groups within a lake were likely comprised of multiple taxa
exhibiting a variety of life history strategies and functional
traits across the 51 lakes.

While green algae were the least dominant spectral group
in the study lakes in biomass according to both the
FluoroProbe and microscope counts, they were also the most
diverse spectral group: across the 51 lakes, there were 16 differ-
ent green algae genera that were identified as the dominant
representative within that spectral group in at least one lake.
There were five green algae genera that were the dominant
representative of the green algae spectral group in five or more
lakes: Chlamydomonas, Crucigenia, Staurastrum, Pediastrum, and
Euglena (Fig. 6). In addition, mean photic zone green algae
biomass reported by the FluoroProbe was best correlated with
chlorophyte abundance in microscope counts (Spearman’s
r = 0.36; Fig. S3), further indicating that the green algae spec-
tral group was mostly comprised of taxa in the chlorophyte
group.

Brown algae, which were identified as the most dominant
spectral group across the study lakes by both the FluoroProbe
and the microscope counts, was the next most diverse spectral
group (13 different genera identified as the dominant brown
algae representative in at least one study lake). Among these gen-
era, Fragilaria, Cyclotella, Mallomonas, Tabellaria, and Ceratium
were identified as the dominant brown alga in five or more lakes
(Fig. 6). Interestingly, although the five most dominant genera
include diatoms, chrysophytes, and dinoflagellates, mean photic
zone brown algae biomass reported by the FluoroProbe was best
correlated with chrysophyte abundance (Spearman’s r = 0.51;
Fig. S3), suggesting that brown algae reported by the FluoroProbe
was mostly comprised of chrysophytes.

The cyanobacteria spectral group had 11 genera identified
as the dominant cyanobacteria representative in at least one
lake (Fig. 6), with Chroococcus being the dominant
cyanobacterial genus in 20 lakes and Oscillatoria, Doli-
chospermum, Coelosphaerium, and Microcystis being the domi-
nant cyanobacterial genus in 5–10 lakes each (Fig. 6). There
were only four genera in the cryptophyte spectral group that
were the dominant representative of that group in at least one
study lake but Cryptophyta is also a smaller, less diverse

taxonomic category than the other spectral groups. The two
most common cryptophyte genera were Cryptomonas (domi-
nant cryptophyte in 37 lakes) and Rhodomonas (dominant
cryptophyte in 15 lakes).

Discussion
Our study across 51 north temperate lakes demonstrates

that both top-down and bottom-up drivers affect the vertical
distribution of phytoplankton and characteristics of DCMs,
and that their relative importance varies across different phy-
toplankton spectral groups. This work integrates ecological
questions about the relative importance of top-down
vs. bottom-up controls with limnological research on the
drivers of DCM characteristics in aquatic ecosystems.

We found that bottom-up control via nutrients was the
most important driver of mean photic zone biomass across
several phytoplankton spectral groups, supporting the idea
that top-down control weakens at the zooplankton-
phytoplankton trophic link and phytoplankton abundance is
primarily driven by bottom-up controls (McQueen et al. 1989;
Jeppesen et al. 2003; Du et al. 2015; Yuan and Pollard 2018).
However, our findings also suggest that zooplankton can exert
an important top-down effect on phytoplankton vertical dis-
tribution and that bottom-up control of phytoplankton verti-
cal distribution can occur via multiple mechanisms (including
light and thermal stratification), not just nutrients. Below, we
consider how the functional traits of dominant genera within
each spectral group may inform potential mechanisms behind
top-down and bottom-up controls of phytoplankton vertical
distribution and DCM characteristics.

Light attenuation important for total biomass
Our hypothesis H1 that vertical distributions of taxa

with either high light needs (e.g., green algae, cyanobact-
eria that form surface blooms) or low-light tolerance
(e.g., cryptophytes, metalimnetic cyanobacteria) would be sen-
sitive to water color as a proxy for light attenuation was only
partially supported by the regression tree analysis. However,
light attenuation was important when considering vertical dis-
tribution of total phytoplankton biomass: lakes with high
light attenuation potential exhibited narrower total biomass
peaks, suggesting that high light attenuation narrows the zone
in the water column where the phytoplankton assemblage
can thrive. Our results support previous work that found light
to be an important driver of total Chl a and total phytoplank-
ton biomass DCMs in a range of lakes (Varela et al. 1994;
Hamilton et al. 2010; Leach et al. 2018). It is possible that this
result is driven by the dominance of light-sensitive taxa in the
cryptophyte and green algae spectral groups in our study
lakes, such as Cryptomonas, Chroococcus, and Chlamydomonas
(Fig. 6; Clegg et al. 2004; Yang et al. 2015; deNoyelles
et al. 2016). However, as we do not have depth profiles of
microscopically identified taxa, we cannot definitively state
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which taxa are driving the sensitivity of peak width to light
attenuation.

Among individual spectral groups, only green algae were
affected by light as a primary driver, supporting H1, but the
result was non-intuitive: rather than being limited to shallow
depths or narrow zones of the water column in lakes with
high light attenuation, higher light attenuation potential was
associated with broader peaks in the green algae (Fig. 5). This
might represent a diverging functional response among domi-
nant genera within the green algae spectral group (Fig. 6).
Chlamydomonas and Euglena, two dominant genera observed
in the study lakes that are capable of mixotrophy, might
remain in the metalimnion in high light attenuation environ-
ments and increase their energy production via DOC uptake
or phagotrophy while non-mixotrophic taxa congregate close
to the surface, resulting in an overall broader peak of the green
algae spectral group when light attenuation is high (Cramer
and Myers 1952; Clegg et al. 2004; Tittel et al. 2005). Another
possibility is that this result was affected by our chosen
method for depth standardization for biomass maxima (see
Caveats of depth standardization below). In sum, we found light
to be a more important predictor of vertical distribution of
total phytoplankton than of any individual spectral group.

Nutritious taxa are sensitive to top-down control
We found that brown algae and cryptophytes were most

sensitive to zooplankton as a driver of their vertical distribu-
tion, in support of our hypothesis H2 that highly edible taxa
would be most sensitive to potential top-down control by zoo-
plankton grazing (Holm et al. 1983; Brett et al. 2000, 2006;
Hansson et al. 2019). The brown algae spectral group, likely
comprised of predominantly chrysophytes in our study lakes
(Fig. S3), exhibited broader peaks in the presence of high zoo-
plankton biomass, and both brown algae and cryptophytes had
deeper maximum biomass depths when zooplankton biomass
was high (Fig. 5). This may be due to zooplankton preferen-
tially grazing at depths of high brown algae biomass, leading to
broader, more diffuse peaks (Christensen et al. 1995), as well as
zooplankton preferentially grazing down brown algae and
cryptophyte biomass in the epilimnion, leading to deeper max-
imum biomass depths (Pilati and Wurtsbaugh 2003; Brett
et al. 2006).

Although the relative abundance of inedible cyanobacteria
has previously been shown to be indirectly increased by pref-
erential grazing of zooplankton on other taxa (Lynch and
Shapiro 1981; Holm et al. 1983), in our case, we found that
cyanobacterial biomass was most responsive to bottom-up
control by nutrients, and that the effect of zooplankton was
most pronounced on the vertical distributions of more palat-
able brown algae.

We interpret the positive association between zooplankton
biomass and mean photic zone biomass of brown algae as
bottom-up control of zooplankton by brown algae rather than
top-down control of brown algae by zooplankton. Positive

correlations in predator–prey abundance generally signify
bottom-up control (Bunnell et al. 2014). As both cryptophyte
and brown algae maximum biomass depths were driven by
zooplankton and together these two groups represent the
dominant spectral groups in 38 of 51 study lakes, these two
prey groups are likely driving the result that maximum bio-
mass depths of total biomass profiles were also deeper when
zooplankton were abundant.

Strong stratification leads to shallow, narrow peaks
Our hypothesis H3 that vertical distributions of motile or

buoyant taxa would be the most sensitive to thermal stratifi-
cation was supported by our data. We predicted that stable
thermal conditions would allow motile and buoyant taxa to
select an optimal depth for growth and reproduction based
on resource gradients (H3). Three of the five dominant gen-
era of cyanobacteria in our study lakes (Coelosphaerium,
Dolichospermum, and Microcystis) are known to produce gas
vesicles or use carbohydrate ballast to regulate buoyancy
(Oliver 1994; Visser et al. 1997; Medrano et al. 2016), and
cyanobacteria were the most sensitive spectral group to
thermal stratification. In addition, the peak width of the
highly motile cryptophytes was also driven by stratification.
Both of these findings support our hypothesis. However, as
it is difficult to tease apart the effects of thermal stratifica-
tion from lake depth in our dataset, continued investigation
into the effects of thermal stratification on the vertical dis-
tribution of phytoplankton with different functional traits
is warranted.

Spatial overlap driven by stratification
Spatial overlap, or the degree of overlap in the distribu-

tions of phytoplankton spectral groups, decreased as thermal
stratification increased, supporting earlier analyses by
Beisner and Longhi (2013). Thus, as conditions became
favorable for phytoplankton spectral groups to optimize
their depth for growth and reproduction via the develop-
ment of a stable water column, spectral groups exhibited
distinct vertical segregation. This finding supports our
hypothesis H4B that increased thermal stratification would
decrease spatial overlap. As such, our results support previ-
ous work suggesting that in vertically heterogeneous (strati-
fied) systems, competitive outcomes between the same two
taxa may be different in different regions of the water col-
umn and are predicated on both resource gradients and
taxon life history strategy (Yoshiyama et al. 2009; Ryabov
and Blasius 2014). Our alternative hypothesis H4A that
increased thermal stratification would promote aggregation
of phytoplankton groups into the narrow zone in the water
column where conditions are suitable for growth (thereby
increasing spatial overlap) was not supported by our synop-
tic study, but could perhaps occur in other conditions, such
as within a single lake over time.
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Caveats of depth standardization
We chose to standardize two of our vertical distribution

metrics (maximum biomass depth and peak width) to maxi-
mum lake depth to permit comparison across lakes with a
wide range of depths. However, this standardization can pre-
sent some challenges in interpreting the regression tree results
for these two metrics, which we examine below.

We found that strong thermal stratification caused green
algae, cryptophyte, and cyanobacteria spectral group peaks to
become either shallower, narrower, or both (Fig. 5). Green algae
peaks became shallower in water columns with high maximum
buoyancy frequency, while cryptophyte peaks became
narrower, and cyanobacterial peaks became both shallower and
narrower. The formation of narrow, steep-sloped peaks, known
as thin layers, under strong thermally stratified conditions due
to enhanced steepness of nutriclines and other chemical gradi-
ents has been documented in other studies (Durham and
Stocker 2011). However, there is less precedent for the finding
that thermal stratification leads to shallower biomass peaks, as
we observed for green algae and cyanobacteria. In our case, this
is likely because our study lakes are composed of both shallow,
warm lakes with low thermal stratification where phytoplank-
ton can persist relatively deep into the water column via
mixing, and deep lakes with highly stable thermal stratification
where phytoplankton with high light requirements or tolerance
are restricted to a relatively (to lake depth) thin layer at the top
of the water column. Thus, when we standardized maximum
biomass depth to the maximum depth of the lake, we see that
the shallow, mixed lakes had relatively deep maximum biomass
depths and deep, stratified lakes had relatively shallow maxi-
mum biomass depths (Fig. 4b,c).

Additionally, we found that high light attenuation leads to
broader peaks of green algae, a non-intuitive result. We believe
this response might be representative of divergent life history
strategies among different taxa comprising the green algae spec-
tral group, with some taxa moving to the metalimnion to pur-
sue a mixotrophic strategy while others move closer to the lake
surface in response to decreased light availability. However, it is
also possible that peaks simply tend to be wider in shallow
lakes relative to the depth of the water column. Furthermore,
many of the shallow lakes in our dataset do exhibit high light
attenuation (Fig. S12). So if shallow lakes are associated with
broad peak width, it could lead to our result of high light atten-
uation also being associated with broad peak width. However,
if this were the case, we would expect to see this result across
all spectral groups and not just the green algae. Because high
light attenuation is associated with broad peak width only in
the green algae, the more likely explanation is that taxa within
this spectral group are exhibiting divergent responses to high
light attenuation, resulting in an overall broader peak width.

Considerations for future work
Future research considering the balance of top-down

vs. bottom-up control on phytoplankton vertical distributions

as mediated by functional traits would benefit from measure-
ment of resource gradients and zooplankton grazing rates,
depth-specific microscope identification of phytoplankton
and zooplankton taxa, measurement of phytoplankton func-
tional traits, improved physical data to examine phytoplank-
ton entrainment and mixing effects, and consideration of
how top-down and bottom-up control vary in a single lake
over time. Because we did not have depth profiles of nutrients
in our study lakes, we could only infer how nutriclines might
be changing under stratified conditions. However, we note
that 75% of all depth profiles in our study lakes exhibited bio-
mass maximum depths above the thermocline; as such, we
believe that nutrient conditions at 0.5 m depth are representa-
tive of conditions experienced by the majority of phytoplank-
ton peaks occurring in the mixed layer. In addition, as we did
not have measurements of zooplankton grazing rates, we
assumed that zooplankton grazing increased as zooplankton
biomass increased (Lampert et al. 1986).

Previous researchers have emphasized the importance of
using microscopic count data as a complement to fluorescence
depth profiles as changes in fluorescence may be due to
increases in cellular pigment concentration rather than
changes in biomass (Fennel and Boss 2003; Derks et al. 2015;
Selmeczy et al. 2016). While we had depth-integrated cell
count data that allowed us to determine which phytoplankton
taxa were most likely represented by the spectral groups in our
study lakes, we would have benefitted from depth-specific data
to identify the taxon or taxa responsible for each of the fluo-
rescence peaks. This would have been particularly useful for
the cryptophyte spectral group, for which biovolumes calcu-
lated from microscope counts were less well-correlated with
FluoroProbe biomass in our study lakes than other spectral
groups (Fig. S2). Further, site-specific in situ measurement of
functional traits of phytoplankton (such as presence or
absence of gas vesicles, mixotrophy, and so on) would help to
confirm some of the potential mechanisms hypothesized for
top-down and bottom-up control of vertical distributions.
However, we note that the microscopy data in our study gen-
erally agreed with the FluoroProbe depth profiles, with the rel-
ative abundance of taxa identified in each lake by microscopy
corresponding to that of spectral groups identified by the
probe (Table S3).

Finally, our study addresses how top-down and bottom-up
control of vertical distributions vary across a wide variety of
north temperate lakes, but does not address how these con-
trols may vary across time in a single lake. As such, we were
able to relate top-down and bottom-up control to the charac-
teristics of DCM across a gradient of lakes, but were not able
to examine controls on the formation of DCM over time.
Consideration of how seasonal dynamics affect top-down
and bottom-up control of phytoplankton vertical distributions
in a single lake or several similar lakes over time could eluci-
date the relative contribution of thermal stratification vs. lake
depth as a bottom-up control of phytoplankton peak
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formation. Such a study might also permit more intensive
sampling of fewer study lakes, including collection of depth
profiles of variables such as nutrients or grab samples of phy-
toplankton at specific depths, neither of which were available
in our dataset. Finally, while our findings support findings
using total Chl a data from other lakes globally (Leach
et al. 2018), it would be beneficial to test our hypotheses
regarding different phytoplankton spectral groups in lakes
outside the north temperate zone.

Conclusions
Our research provides new insight on top-down and

bottom-up control of phytoplankton biomass by extending this
framework to the vertical distribution of both total phytoplank-
ton and individual phytoplankton spectral groups. We hypoth-
esized that the relative importance of top-down and bottom-up
drivers could be related to the characteristics of phytoplankton
taxa comprising each spectral group. We found that while phy-
toplankton biomass was driven by nutrient concentrations, the
vertical distribution of phytoplankton was determined by both
top-down and bottom-up controls, and that bottom-up control
occurred via multiple mechanisms (light, thermal stratification,
and nutrients). Moreover, the drivers of total biomass vertical
distributions were not always the same as drivers of spectral
group distributions, indicating that consideration of total bio-
mass alone can mask responses of phytoplankton sub-groups to
top-down and bottom-up controls.

Our data suggest that spectral group vertical distributions
could be linked to functional traits of the phytoplankton taxa
within each spectral group. Specifically, the vertical distribu-
tions of highly edible taxa such as chrysophytes and
cryptophytes exhibited deeper, broader peaks when zooplank-
ton were abundant, possibly due to greater grazing pressure.
We also found that thermal stratification led to shallower,
narrower peaks of cyanobacterial taxa that can regulate their
buoyancy. Furthermore, light attenuation led to broader peak
width in the green algae spectral group, possibly due to diver-
gent responses to high light attenuation between mixotrophic
and non-mixotrophic green algae. Finally, spectral groups
were most divergent in their distributions when thermal strati-
fication was high and light attenuation was low, permitting
separation of spectral groups into distinct locations within the
water column. Our study demonstrates that consideration of
multiple phytoplankton groups and phytoplankton functional
traits can help elucidate drivers of DCM characteristics and
inform our understanding of the relative importance of top-
down and bottom-up control in aquatic ecosystems.
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