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1  | INTRODUC TION

The availability of carbon (C) from high levels of atmospheric 
carbon dioxide (CO2) and anthropogenic inputs of nitrogen (N) 
on ecosystems are increasing. These increases are, however, not 
paralleled by those of phosphorus (P), and current inexorable 
changes in the stoichiometry of C and N relative to P have no his-
torical precedent (Penuelas et al., 2013). The shifts in organisms' 

N:P ratio resulting from different environmental conditions are 
strongly related with shifts in ecosystems structure and func-
tion (Loladze & Elser, 2011; Penuelas et al., 2013; Sterner & Elser, 
2002). Imbalances between these two nutrients, N and P in natu-
ral, seminatural, and managed ecosystems (Carnicer et al., 2015; 
Delgado-Baquerizo et al., 2017; Hu et al., 2018; Liu, Fu, Zheng, & 
Liu, 2010; Penuelas et al., 2013; Sardans & Penuelas, 2012; Ulm, 
Hellmann, Cruz, & Máguas, 2016), reduce C capture and global 
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Abstract
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2) 
and anthropogenic release of nitrogen (N) is increasing, but these increases are not 
paralleled by increases in levels of phosphorus (P). The current unstoppable changes 
in the stoichiometries of C and N relative to P have no historical precedent. We de-
scribe changes in P and N fluxes over the last five decades that have led to asymmet-
rical increases in P and N inputs to the biosphere. We identified widespread and rapid 
changes in N:P ratios in air, soil, water, and organisms and important consequences 
to the structure, function, and biodiversity of ecosystems. A mass-balance approach 
found that the combined limited availability of P and N was likely to reduce C stor-
age by natural ecosystems during the remainder of the 21st Century, and projected 
crop yields of the Millennium Ecosystem Assessment indicated an increase in nutri-
ent deficiency in developing regions if access to P fertilizer is limited. Imbalances of 
the N:P ratio would likely negatively affect human health, food security, and global 
economic and geopolitical stability, with feedbacks and synergistic effects on drivers 
of global environmental change, such as increasing levels of CO2, climatic warming, 
and increasing pollution. We summarize potential solutions for avoiding the negative 
impacts of global imbalances of N:P ratios on the environment, biodiversity, climate 
change, food security, and human health.
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food provision and security (Kahsay, 2019; Lu & Tian, 2017; 
Penuelas, Ciais, et al., 2017; Van der Velde et al., 2014; Wang, 
Sardans, et al., 2018). These effects may be further exacerbated 
in cropland in the future by limited access to reserves of mineable 
P (Cordell, Rosemarin, Schröder, & Smit, 2011; Li et al., 2016; Lun 
et al., 2018; MacDonald, Bennett, Potter, & Ramankutty, 2011; 
Mew, 2016; Weikard, 2016).

Changes in the global P cycle, status, and resources, together 
with associated economic impacts, were first debated at least a 
century ago (Liu, Wang, Bai, Ma, & Oenema, 2017). More recent 
studies have recognized that increases in N:P ratios with rising 
anthropogenic release have consequences for P and N cycling 
in soil and water, biodiversity, and ecosystem function (Elser, 
Peace, et al., 2010; Penuelas et al., 2013; Penuelas, Sardans, 
Rivas-Ubach, & Janssens, 2012). The link between increasing 
imbalances in biospheric N:P ratios and their impacts on global 
ecology and socioeconomics is supported by evidence from many 
studies that have identified clear relationships between drivers 
of global change and anthropogenic N and P releases and with 
shifts in ecosystem N:P ratios. These studies have also demon-
strated feedbacks and synergies of shifts in the N:P ratios in 
soil, water, and organisms with increases in atmospheric CO2 
concentrations, climate change, species invasions, ecosystem 
eutrophication, and changes in soil use (Chen, Li, & Yang, 2016; 
Delgado-Baquerizo, Reich, García-Palacios, & Milla, 2016; Deng 
et al., 2015; Ferretti et al., 2014; Gargallo-Garriga et al., 2014; He 
& Djistra, 2014; Jiao, Shi, Han, & Yuan, 2016; Kruk & Podbielska, 
2018; Peng, Peng, Zeng, & Houx, 2019; Sardans, Alonso, Carnicer, 
et al., 2016; Sardans, Bartrons, et al., 2017; Sardans & Penuelas, 
2012; Sardans, Rivas-Ubach, Estiarte, Ogaya, & Penuelas, 2013; 
Sardans, Rivas-Ubach, & Penuelas, 2012a; Schmitz et al., 2019; 
Yuan & Chen, 2015; Yuan et al., 2018; Zhang, Guo, Song, Guo, & 
Gao, 2013; Zhu et al., 2016).

We reviewed our current understanding and identified gaps in 
our knowledge of the effects of global change on ecosystem N and P 
ratios and associated impacts on ecosystem function, food security, 
and socioeconomics. Specifically, we addressed (a) the shifts in N:P 
ratios mediated by anthropogenic drivers of global change, (b) the 
impacts of shifts in N:P ratios of human inputs on organisms, commu-
nities, and ecosystems, (c) the impacts of N and P ratios on food secu-
rity and human health, and (d) political, economic, and technological 
strategies to mitigate the negative impacts of unbalanced N:P ratios.

2  | SHIF TS IN N:P R ATIOS MEDIATED BY 
ANTHROPOGENIC DRIVERS OF GLOBAL 
CHANGE

Further evidences accumulated in the last 6 years after Penuelas 
et al. (2013) robustly confirm the inexorable changes in the stoichi-
ometry of C and N relative to P, which have no historical precedent 
(Figure 1). Furthermore, the increasing emissions of NOx and NH3 
to the atmosphere lead to large imbalances in the ratios of total 

atmospheric N:P deposition, with higher ratios for total atmospheric 
N:P than standard averages for soil, water, and organisms (Figure 2).

Activities involved in food production, such as the application 
of fertilizer, cultivation of N2-fixing species of crop plants, livestock 
husbandry, and the release of N and P to the atmosphere from the 
combustion of fossil fuels, which are redeposited on the surface, 
are key historical and contemporary contributors of bioactive N and 
P and drivers of these nutrient imbalances (Penuelas et al., 2012; 
2013; Yuan et al., 2018). For example, the N:P ratios of atmospheric 
total depositions are higher than the average N:P ratios of waters, 
soils, and organisms (Figure 3).

2.1 | Effects of drivers of global change on N:P 
ratios of water, soil, and plants

Many recent studies have reported increases in the N:P ratio in the soil, 
water, and plants of terrestrial and aquatic ecosystems (Blanes, Viñegla, 
Merino, & Carreira, 2013; Crowley et al., 2012; Hessen, 2013; Huang, 
Liu, et al., 2016; Jirousek, Hajek, & Bragazza, 2011; Lepori & Keck, 2012; 
Xu, Pu, Li, & Zhu, 2019; Yu et al., 2018; Zivkovic, Disney, & Moore, 2017) 
in response to “high levels of atmospheric N deposition” (Table 1).

Some studies, however, have not clearly detected changing pat-
terns in soil–plant C:N:P stoichiometry along natural gradients of 
N deposition (Stevens et al., 2011). The decrease in N deposition in 
some areas of North America and Europe in recent decades has sub-
stantially decreased N:P ratios in lakes (Gerson, Driscoll, & Roy, 2016; 
Isles, Creed, & Bergstrom, 2018). Atmospheric P deposition is also 
increasing due to the rising levels of anthropogenic emissions of P to 
the atmosphere (3.5 Tg P/year), which have led to current net con-
tinental and oceanic rates of P deposition of 2.7 and 0.8 Tg P/year, 
respectively (Wang, Balkanski, et al., 2015). This deposition has been 
particularly intense in areas of the world with emerging economies, 
such as eastern Asia, which may account for the low N:P ratios re-
ported in some freshwater systems in Japan (Miyazako et al., 2015).

The P cycle and N:P ratios are affected by many drivers of global 
change other than anthropogenic emissions of N and P (Table 1). 
Higher concentrations of “atmospheric CO2” are correlated with 
decreases in plant N and P concentrations and increases in the 
ratios of C:N and C:P (Deng et al., 2015; Penuelas & Estiarte, 1997; 
Penuelas & Matamala, 1990; Sardans, Rivas-Ubach, & Penuelas, 
2012b), but the effects on plant N:P ratios are less clear. For exam-
ple, recent meta-analyses have found that rising CO2 concentra-
tions have led to decreases in N:P ratios in different plant tissues 
(Deng et al., 2015) and woody plants but not herbaceous plants 
or mosses (Yue et al., 2017). Yuan and Chen (2015) in a meta- 
analysis of 315 studies with non-differentiation of plant organs 
observed an overall decrease in N:P ratios in controlled field con-
ditions under elevated levels of CO2. However, another review of 
215 studies (Sardans, Grau, et al., 2017), mostly under controlled 
field conditions, revealed that increased atmospheric concentra-
tions of CO2 led to decreased N:P ratios in roots, but not in leaves. 
Moreover, King et al. (2015) reported increased N:P ratio in one 
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F I G U R E  1   (a) Mean (±SE) anthropogenic inputs of reactive nitrogen (N) and phosphorus (P) to the biosphere (Tg year−1) since the 
industrial revolution. (b) Mean (±SE) N:P ratios of inputs of reactive N and P to the biosphere since the industrial revolution. Data are for 
N industrial fertilizers (Bouwman, Beusen, et al., 2013; Canfield, Glazer, & Falkowski, 2010; FAO, 2008, 2015, 2017; Fields, 2004; Fowler 
et al., 2013; Galloway, 1998; Galloway et al., 2004, 2008; Galloway, Schelinger, Levy, Michaels, & Schnoor, 1995; Grübler, 2002; Gruber & 
Galloway, 2008; Gu et al., 2013; Lu & Tian, 2017; Mackenzie, Ver, & Lerman, 2002; Mogollón, Lassaletta, et al., 2018; Smil, 2000; Tilman 
et al., 2001; Yara Fertilizer, 2018), N2 fixation in cropland (Bouwman, Beusen, et al., 2013; Burns & Hardy, 1975; Canfield et al., 2010; 
Delwiche, 1970; Fields, 2004; Fowler et al., 2013; Galloway et al., 2004, 2008; Gu et al., 2013; Herridge, Peoples, & Boddey, 2008; McElroy, 
Elkins, & Yung, 1976; Söderlund & Svensson, 1976), N emissions from fuel combustion (Canfield et al., 2010; Eriksson, 1959; Fields, 2004; 
Galloway et al., 2004; Grübler, 2002; Gruber & Galloway, 2008; Gu et al., 2013; Mackenzie et al., 2002; Reay, Dentener, Smith, Grace, & 
Feely, 2008; Robinson & Robbins, 1970; Söderlund & Svensson, 1976; Van Vuuren, Bouwman, Smith, & Dentener, 2011), and P industrial 
fertilizers (Bondre, 2011; Bouwman, Beusen, et al., 2013; FAO, 2008, 2015, 2017; Lu & Tian, 2017; Lun et al., 2018; MacDonald et al., 2011; 
Mackenzie et al., 2002; Smil, 1999; Yara Fertilizer, 2018)
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phytoplankton species, decreased N:P ratio in three other species, 
and no change in N:P ratio in other three species under high lev-
els of CO2, thus suggesting that the effects of CO2 enhancement 
on stoichiometry appear to be species dependent. It is thus likely 
that the ongoing increases in atmospheric CO2 concentrations are 
reducing N:P ratios in plants, which would be apparently consis-
tent with the GRH for plants under favorable growth conditions 
(Sterner & Elser, 2002). The hypothesis that atmospheric increases 
in CO2 stimulate higher plant uptakes of P than N (Deng et al., 
2015) thus remains to be unequivocally demonstrated but begins 
to have some observational and experimental support (Table 1).

Less information is available regarding the “relationships of the 
rise in atmospheric CO2 concentration with N and P concentrations 
and N:P ratio in soil.” Huang et al. (2014) observed that a rise in atmo-
spheric CO2 concentration did not change total soil P concentrations 
but increased P-available to plants and decreased more recalcitrant 
soil-P. Increased CO2 concentrations can indirectly decrease soil N and 
P concentrations by several mechanisms including higher plant N and 
P demands, higher N and P resorption rates, and higher exudates pro-
duction and N and P uptake (Jin, Tang, & Sale, 2015; Liu, Appiah-Sefah, 
& Apreku, 2018; Van Vuuren et al., 2008). However, the potential im-
pact of CO2 enhancement of soil N:P ratios also remains inconclusive.

“The changes in N and P concentrations and N:P ratios in soil-
plant systems in response to warming” vary with biome and soil type 
(Sardans, Grau, et al., 2017; Sardans, Penuelas, Estiarte, & Prieto, 
2008; Yue et al., 2017). They also suggest that low soil N and P concen-
trations tend to be associated with higher temperatures along natural 
long-term climatic gradients, but the reverse occurs for phenotypic 
responses of species to N in short-term field studies with climatic ma-
nipulation (Yuan et al., 2017). Several studies have indeed reported 
decreases in aboveground plant N:P ratios under warming that were 
attributed to the greater allocation of P to stems and/or to greater 

plant growth capacity (Dudareva, Kvitkina, Yusupov, & Yevdokimov, 
2018; Wang, Ciais, et al., 2018; Wang, Liu, et al., 2019). The effects 
of warmer temperatures on plant and soil C:N:P ratios along natural 
gradients are not easy to distinguish from those of precipitation, ra-
diation, or atmospheric N deposition, which frequently correlate with 
the geographical temperature gradient (Jiao et al., 2016).

The projected total land surface occupied by warm semiarid 
surfaces may become 38% larger in 2100 compared to the pres-
ent (Huang, Ji, et al., 2016; Huang et al., 2017; Rajaud & de Noblet-
Ducoudré, 2017). “The effects of aridity (combination of high 
temperatures with low precipitation) on plant N:P ratios” along nat-
ural long-term climatic gradients also differ from the effects in field 
studies with climatic manipulation (Luo, Xu, et al., 2018; Luo, Zuo, 
et al., 2018; Yuan et al., 2017). Increases in canopy N and P concen-
trations and decreases in plant C:P and N:P ratios have been recorded 
along transects of increasing aridity. Future increases in aridity are 
also likely to lead to lower N:P ratios in atmospheric depositions 
(Lin, Gettelman, Fu, & Xu, 2018; Zarch, Sivakumar, Malekinezhad, 
& Sharma, 2017). In contrast, plant N and P concentrations have 
tended to decrease and N:P ratios have tended to increase (He & 
Djistra, 2014; Yuan & Chen, 2015) in short-term manipulation studies 
where water availability decreased (Jiao et al., 2016; Luo, Zuo, et al., 
2018; Figure 4), despite between-site variations in foliar N and P con-
centrations (Luo, Zuo, et al., 2018; Sardans & Penuelas, 2007, 2013a, 
2013b; Sardans, Grau, et al., 2017; Sardans, Penuelas, Estiarte, et al., 
2008; Sardans, Penuelas, Prieto, & Estiarte, 2008). These increases 
in foliar N:P ratios in response to experimental drought are generally 
because low soil-water contents limit P uptake more than N uptake 
(Luo, Xu, et al., 2018; Luo, Zuo, et al., 2018; Sardans, Grau, et al., 
2017; Sardans & Penuelas, 2013a; Urbina et al., 2015). Plants notably 
respond to sudden conditions of drought and warming in manipu-
lated field experiments with increased allocations of N, P, and po-
tassium (K) to roots, leading to lower root N:P ratios associated with 
higher primary metabolism linked to growth, protein synthesis, and 
pathways of energy transfer (Gargallo-Garriga et al., 2014, 2015). In 
contrast, shoots have lower concentrations of N and P and higher 
N:P ratios linked to the activation of anti-stress metabolic pathways 
(Gargallo-Garriga et al., 2014, 2015).

“Contrasting responses of soil nutrients to short- and long-term 
drought conditions” have also been reported, where soil N and P 
concentrations tended to decrease with aridity in natural (long-term) 
gradients but tended to increase in some biomes and soil types 
under conditions of short-term drought (Yuan et al., 2017; Figure 4). 
Delgado-Baquerizo et al. (2013) observed a negative effect of aridity 
on the concentration of soil organic C and total N, but a positive effect 
on the concentration of inorganic P in semiarid and arid areas. In these 
conditions, P and N shift from soil to plants, so plant communities 
adapted to long-term drought conditions retain higher levels of N and 
P (Luo, Xu, et al., 2018; Luo, Zuo, et al., 2018). These effects are con-
sistent with observations of lower ratios of N:P in water from deeper 
soil layers and indicate P limitation in soil under arid climatic condi-
tions (Sardans & Penuelas, 2014). Long evolutionary processes likely 
drive the conservative use of nutrients in droughted environments.

F I G U R E  3   N:P ratios (molar basis) of total atmospheric 
deposition in continents and oceans compared with ratios in plants, 
plankton, soil, and water. Data derived from Graham and Duce 
(1979), Smil (2000), Galloway et al. (2004, 2008), Duce et al. (2008), 
Mahowald et al. (2008), and Schlesinger (2009)
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Our understanding of the impacts of “extreme climatic events” 
on plant–soil stoichiometry is limited. For example, Wang, Sardans, 
Tong, et al. (2016) observed that rapid production of litter in coastal 
wetland during typhoons led to larger and faster releases of N and P, 
characterized by low N:P ratios, but the associated potential impacts 
on soil microbial communities and trophic chains were unclear. The 
projected increases in extreme climatic events indicate that quanti-
fying the impacts on N and P cycles and their ratios is essential.

“Invasion by non-native plants” is an emerging driver of global 
environmental change (Seabloom et al., 2015), where establishment 
depends on differences in the uptake and use efficiency of nutri-
ents between native and invasive species (Daehler, 2003; Gonzalez 
et al., 2010; Penuelas et al., 2010; Sardans, Bartrons, et al., 2017). 
The impacts of invasive species on N and P cycles and stoichiometry 
on the plant–soil system may vary between nutrient-rich and nutri-
ent-poor ecosystems (Gonzalez et al., 2010; Matzek, 2011; Sardans, 
Bartrons, et al., 2017). For example, successful invasive species have 
higher capacities to take up and efficiently use nutrients that are 
limited (Aragon, Sardans, & Penuelas, 2014; Sardans, Bartrons, et al., 
2017; Ulm et al., 2016; Wang, Sardans, et al., 2018; Wang, Wang, 
et al., 2015), so the concentrations of N and P in photosynthetic tis-
sues tend to be higher in invasive than native species. Total soil N 
concentrations and availabilities of N and P correlated with higher 
mineralization capacity are higher for invasive species, particularly 
in nutrient-poor environments (Sardans, Bartrons, et al., 2017). A 
higher capacity for N and P resorption in invasive species may ac-
count for these differences in concentrations and ratios of N and P 
(Sardans, Bartrons, et al., 2017 and references therein). The possi-
ble effects of anthropogenic changes in soil and water N:P ratios on 
competitive relationships between native and invasive species have 
received little attention, but changes in soil elemental composition 
and stoichiometry have been linked with the success of alien species 
(Sardans, Bartrons, et al., 2017). Further research is clearly required 
to improve our understanding of the relationships between success-
ful species invasion and ecosystem N and P cycles and stoichiome-
try, including the role of the interaction with other drivers of global 
environmental change. For example, increased flooding intensity in 

coastal wetlands due to sea-level rise drives the effects of invasive 
plant species on N and P cycling (Wang, Sardans, Zeng, et al., 2016; 
Wang, Wang et al., 2015, 2018).

“Anthropogenic land-use changes” are heterogeneous, but they 
tend to be associated with changes in soil N and P concentrations and 
N:P ratios (Liu et al., 2018; Urbina, Grau, Sardans, Ninot, & Penuelas, 
2019; Wang et al., 2014; Zhao et al., 2015; Zhou, Boutton, & Wu, 
2018a, 2018b). For example, invasion by shrubs on grassland pre-
viously grazed by livestock is frequently associated with changes in 
soil–plant N and P concentrations and N:P ratios (Bui & Henderson, 
2013; Urbina et al., 2019). These changes go in parallel to a transition 
from rapid nutrient cycling, with high concentrations of N and P in 
the plant–soil system, to slower N and P cycling, with lower concen-
trations of N and P in the system, and higher accumulations of N 
and P stocks in the higher aboveground shrub biomass (Urbina et al., 
2019; Zhou, Boutton, & Wu, 2018a, 2018b) that has a larger capacity 
to obtain nutrients from deep soil layers (Blaser, Shanungu, Edwards, 
& Venterink, 2014). These trends, however, vary with the traits of 
the shrub species (Eldridge et al., 2011; Knapp et al., 2008; Zhou 
et al., 2018b). Shifts in soil N:P ratios during processes of habitat 
transition may vary with soil layer, but soil N:P ratios tend to increase 
in the upper layers (Feng & Bao, 2018; Zhou et al., 2018a, 2018b).

If croplands replace tropical forests, which have high rates of bi-
ological N fixation, the rates may decrease as a result of this anthro-
pogenic land-cover change. These likely effects of land use change 
have not been investigated, even though they may have strong 
impacts on both N and P, on N because of increased leaching and 
biological N fixation, and on P because of erosion and replacing a 
community adapted to retain P by others that are not.

So, in summary, the current global trend is generally toward “in-
creasing N:P ratios in water, soil and plants, but with many excep-
tions.” For example, widespread P enrichment of crop soil has led to 
declines in N:P ratios in several parts of the world (Delgadillo-Vargas, 
Garcia-Ruiz, & Forero-Álvarez, 2016; Penuelas, Sardans, Alcañiz, & 
Poch, 2009; Wang, Wang, et al., 2015; Wironen, Bennett, & Erickson, 
2018). The differences in immobilization, leaching, and volatilization 
between the two elements lead to higher soil retention of P than N 

F I G U R E  4   Impacts of short-term 
(field experiments) and long-term (natural 
gradients) of drought and aridity on plant 
and soil N and P concentrations and 
N:P ratios. Letter size is proportional to 
concentration
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(Penuelas et al., 2012, 2013). This trend in P retention tends to be more 
pronounced where the density of livestock, particularly pigs, and/or 
poultry is high (Arbuckle & Downing, 2001; Gomez-Garrido, Martinez-
Martinez, Cano, Buyukkilic-Yanardag, & Arocena, 2014; Hentz et al., 
2016; Penuelas, Fernández-Martínez, et al., 2019; Wironen et al., 
2018), because the manure waste generated is characterized by very 
low N:P ratios (Humer, Schwarz, & Schedle, 2015; Oster et al., 2018). 
In conclusion, whereas in cropland soils and surrounding habitats such 
as lakes and ponds directly receiving non-treated or diffuse wastes and 
leachates, N:P ratio has decreased in last decades, in the majority of 
other continental and coastal areas N:P tends to rise as a result of a 
greater spread capacity of N than P.

2.2 | Spatial heterogeneity in anthropogenic N and 
P imbalances: River basins as case studies

The study of N and P concentrations and N:P ratios in rivers and 
basins allows the analysis of the effects of multiple human activi-
ties on nutrient budgets (Zhang, Li, & Li, 2019; Zhang, Liu, et al., 
2019) across a range of land uses (Romero et al., 2019; Sardans 
et al., 2012a; Zhang, Li, et al., 2019; Figure 5). Environments where 
N is transported by aquatic systems, such as in the lower stretches 
of rivers and estuaries (Capriulo et al., 2002; Chai, Yu, Song, & Cao, 
2006; Harrison, Yin, Lee, Gan, & Liu, 2008; Li et al., 2010; Turner, 
Rabalais, Justic, & Dortch, 2003; Yin & Harrison, 2007; Zhang 
et al., 1999) and along coasts (Chen, Ji, Zhou, He, & Fu, 2014; 
Lipizer, Cossarini, Falconi, Solidoro, & Fonda Umani, 2011; Turner, 
Rabalais, & Justic, 2006; Wei & Huang, 2010; Yin, Song, Sun, & 
Wu, 2004), or by deposition, such as in remote lakes (Arbuckle 
& Downing, 2001; Hessen, Andersen, Larsen, Skjelkvale, & Wit, 

2009; Liess, Drakare, & Kahlert, 2009) and forest and grassland 
ecosystems (Du et al., 2016; Fenn et al., 1998; Franzaring, Holz, 
Zipperle, & Fangmeier, 2010; Prietzel & Stetter, 2010; Schmitz 
et al., 2019; Veresoglou et al., 2014; Wang, Sardans, et al., 2017), 
tend to be enriched more rapidly by N than P, thereby increasing 
the N:P ratios (Figure 5). This trend has been exacerbated by the 
progressive replacement of P-rich with N-rich detergents (Sardans 
et al., 2012b and references therein). The exceptions occur in 
areas with growing diffuse livestock densities (Frost, Kinsman, 
Johnston, & Larson, 2009; Zhang, Brady, Boynton, & Ball, 2015) 
and in countries with emerging economies and demography, such 
as Turkey, Mexico, and India where the loads of non-treated wastes 
with great charges of human and animal dejections to rivers are 
increasing (Bizsel & Uslu, 2000; Ramesh, Robin, & Purvaja, 2015; 
Ruiz-Fernández et al., 2007; Sardans et al., 2012b; Figure 5). These 
trends are recent, but the ongoing construction and use of waste-
water treatment plants (Tong et al., 2019) have led to emergent 
re-oligotrophication of water and improved management of ferti-
lization (Kara et al., 2012). Wastewater treatment plants generally 
retain approximately 60% of N and 80% of P, so treated water 
released to the aquatic system has low N and P concentrations and 
high N:P ratios (Ibañez & Penuelas, 2019; Figure 5). The number of 
wastewater treatment plants will likely increase, so assessing the 
potential impacts of re-oligotrophication will be important. For ex-
ample, anoxic conditions may change to more aerobic conditions, 
and increases in water N:P ratios associated with low N and P con-
centrations may increase the abundance of aerobic species with 
low growth rates (Sterner & Elser, 2002; Sardans et al., 2012b).

N and P concentrations and ratios at regional scales generally 
tend to differ between agricultural areas with no or low levels 
of livestock and areas with higher densities of livestock. The ra-
tios of N:P inputs tend to be higher in areas with low livestock 
densities that are treated with inorganic fertilizer (Dupas et al., 
2015; Romero et al., 2019; Sardans et al., 2012b; Sun et al., 2017). 
Instead, leachates tend to be rich in P, with low N:P ratios (Szögi, 
Vanotti, & Hunt, 2015) in areas with high densities of livestock, 
particularly monogastric (nonruminant) livestock, such as poultry 
and pigs, so large amounts of P are released through estuaries to 
oceans, as observed in some Indian rivers (Ramesh et al., 2015), as-
sociated with deposition with low N:P ratios (Wang, Liu, Xu, Dore, 
& Xu, 2018; Figure 5).

3  | IMPAC TS OF SHIF TS IN THE 
N:P R ATIOS OF HUMAN INPUTS ON 
ORGANISMS, COMMUNITIES ,  AND 
ECOSYSTEMS

3.1 | Cascading effects

The cascades of effects due to anthropogenic shifts in N:P ratios 
are similar in aquatic systems (lakes, estuaries, streams) and ter-
restrial ecosystems, where water and planktonic N:P ratios tend to 

F I G U R E  5   Current N and P imbalances linked to human activity 
in river basins
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increase in response to atmospheric deposition, leading to lower 
“growth rates,” complexity of community structure, and trophic 
diversity (Figure 6; Table S1). Exceptions to these trends, however, 
have been recorded for aquatic systems, such as a decrease in N:P 
ratios in Japan due to the increasing deposition of P from dust 
dispersed from countries in southeastern Asia (Miyazako et al., 
2015), and for European and North American lakes in areas with 
recent reductions in N deposition (Gerson et al., 2016; Isles et al., 
2018). Although most studies of urban and crop wastes and lea-
chate loads to rivers and estuaries (83.3%) have found increas-
ing N:P ratios associated with increasing N:P ratios from human 
inputs, other studies (13.7%) tended to find decreasing ratios in 
areas with high livestock densities (Arbuckle & Downing, 2001; 
Johnson, Heck, & Fourqurean, 2006; Figure 6; Table S1).

Increasing evidence has established links between phylogeny 
and the elemental compositions of microbes, plants, and animals, 
including N and P concentrations and N:P ratios (Bartrons, Sardans, 
Hoekman, & Penuelas, 2018; Godwin & Cotner, 2018; González 
et al., 2018; González, Dézerald, Marquet, Romero, & Srivastava, 
2017; Penuelas, Fernández-Martínez, et al., 2019; Sardans et al., 
2015). Anthropogenic increases in environmental and organismic 
N:P ratios in aquatic and terrestrial systems are generally associ-
ated with cascades of effects that benefit organisms with lower 
growth rates and lead to shifts in species community composition 
and function (Apple, Wink, Wills, & Bishop, 2009; Arnold, Shreeve, 
Atkinson, & Clarke, 2004; Ballantyne, Menge, Ostling, & Hosseini, 
2008; Bishop et al., 2010; Carrillo, Villar-Argaiz, & Medina-Sánchez, 
2001; Cernusak, Winter, & Turner, 2010; Chen, Yin, O'Connor, 
Wang, & Zhu, 2010; Elser, Peace, et al., 2010; Hall, 2009; Laliberté 
et al., 2013; Sasaki, Yoshhihara, Jamsran, & Ohkuro, 2010; Schindler 
et al., 2008; Shurin, Gruner, & Hillebrand, 2006; Wardle et al., 
2008; Wassen, Olde Venterink, Lapshina, & Tanneberger, 2005). 
Increases in plant N:P ratios can upregulate secondary metabolism 

and downregulate primary metabolism linked to growth and energy 
transfer, whereas decreases in N:P ratios have the opposite effect, 
especially when both N and P are not limiting (Gargallo-Garriga 
et al., 2014; Penuelas & Sardans, 2009; Rivas-Ubach, Sardans, 
Pérez-Trujillo, Estiarte, & Penuelas, 2012).

Changes in N and/or P availability and associated shifts in N:P ra-
tios drive changes in species competition and dominance in commu-
nities of terrestrial plants (Sardans, Rodà, & Penuelas, 2004; Zhang, 
Liu, et al., 2019), animals (Jochum et al., 2017), microbes (Delgado-
Baquerizo et al., 2017; Fanin, Fromin, Biatois, & Hättenschwiler, 
2013; Ren et al., 2017; Shao et al., 2017; Zechmeister-Bolstenstren 
et al., 2015), and plankton (Elser, Andersen, et al., 2009; Elser, Kyle, 
et al., 2009; Grosse, Burson, Stomp, Huisman, & Boschker, 2017; 
He, Li, Wei, & Tan, 2013; Moorthi et al., 2017; Plum, Husener, & 
Hillebrand, 2015). Changes in media (water or soil) N:P ratios affect 
the structure of terrestrial (Fanin et al., 2013; Scharler et al., 2015; 
Zechmeister-Bolstenstren et al., 2015) and aquatic (Sitters, Atkinson, 
Guelzow, Kelly, & Sullivan, 2015) food webs, but associated impacts 
on community diversity are unclear. For example, some studies have 
reported increases in N:P ratios due to N deposition or land-use 
change associated with reduced diversity of microbes (Zhang, Chen, 
& Ruan, 2018), plants (DeMalach, 2018; Güsewell, Bailey, Roem, & 
Bedford, 2005), and animals (Vogels, Verbek, Lamers, & Siepel, 2017; 
Wei et al., 2012), but other studies have found increases in microbial 
(Aanderud et al., 2018; Ren et al., 2016; 2017) and plant (Laliberté 
et al., 2013; Pekin, Boer, Wittkuhn, Macfarlane, & Grieson, 2012; 
Wassen et al., 2005; Yang et al., 2018) diversity. The diversity of 
plant species has been associated with an optimum plant N:P mass 
ratio near 20 (Sasaki et al., 2010), but the tendency for biodiversity 
to depend on concentrations of N and P in soil hinders the establish-
ment of a generalized hypothesis for the relationship between N:P 
ratios and diversity for all components of terrestrial communities 
(DeMalach, 2018).

F I G U R E  6   Numbers of studies from the “Web of Science” search that report effects of increased availability of environmental nitrogen 
on increased environmental N:P ratios, increased organismic N:P ratios, decreased growth rates, and changes in community structure and 
ecosystem functioning. The effects of nitrogen deposition and eutrophication and of increased environmental N:P ratios are indicated 
by solid lines, the effects of increased organismic N:P ratios are indicated by dashed lines, and the effects of increased growth rates are 
indicated by dotted lines. See Table S1 for detailed information on these studies
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Uncertainty of the effects of N:P ratios on community diver-
sity derives from studies in which higher plant community diversity 
has been correlated with higher N:P ratios and lower variation of 
plant N:P ratios. Higher plant community diversity may be driven 
by optimizing nutrient uptake (Abbas et al., 2013), but other studies 
have found higher variation in N:P ratios among sympatric species 
(Alexander, Jenkins, Rynearson, & Dyhrman, 2015; Urbina et al., 
2015, 2017), indicating that these species tend to maintain different 
elemental stoichiometries to avoid direct competition. For example, 
greater partitioning of resources among niches (in this case, N and P) 
has been demonstrated in sympatric species of diatoms under field 
conditions, where the expression of genes in the N and P metabolic 
pathways varied (Alexander et al., 2015).

Links between N:P ratios and species diversity are clearer in 
marine and freshwater ecosystems, particularly lakes. For example, 
the typically negative relationships between N:P ratios and the di-
versities of zoo- and phytoplankton (He et al., 2013) are associated 
with the shortened pathways and lower transfer rates of matter and 
energy along trophic webs under P limitation (Elser et al., 2000). 
Nutrient limitation and high N:P ratios are consistently associated 
with shifts from fast- to slow-growing species in all types of media 
(Busch et al., 2018; Penuelas et al., 2013), and soil microbial and de-
composer faunal compositions are consistently associated with soil 
and litter N:P ratios (Barantal, Schimann, Fromin, & Hättenschwiler, 
2014; Delgado-Baquerizo et al., 2017; Eo & Park, 2016; Lee et al., 
2015, 2017; Leflaive et al., 2008; Ren et al., 2017; Su et al., 2015).

Impacts of changes from N to P limitation on the relationships 
between bacteria and hosts (and vice versa) are strong due to the 
short life cycles of bacteria. Host selection in the cyanobacterium 
Synechococcus is more discriminant under N than P limitation, lead-
ing to changes in the co-evolution of microbial communities asso-
ciated with hosts that depend on intermediate N:P ratios (Larsen, 
Wilhelm, & Lennon, 2019). Similarly, changes in key ecosystem pro-
cesses indirectly involved in community species composition, such 
as the transfer of energy and elements through trophic levels and 
nutrient cycling, have been correlated with changes in organismic 
N:P ratios (Ågren, 2004; Arnold et al., 2004; Güsewell & Gessner, 
2009; Güsewell & Verhoeven, 2006; Penuelas et al., 2013; Vanni, 
Flecker, Hood, & Headworth, 2002; Zhang, Bai, & Han, 2004 and 
references therein). The directions of effects on community diver-
sity and ecosystem structure in terrestrial and marine ecosystems 
due to shifts in N:P ratios, however, are inconsistent (DeMalach, 
2018), so an understanding of the response mechanisms and gener-
alities in ecosystems, particularly terrestrial ecosystems, is lacking.

Recent studies of the C:N:P ratios in mammalian dung have 
found strong impacts on plant diversity (Valdés-Correcher, Sitters, 
Wassen, Brion, & Venterink, 2019), indicating that top-down effects 
of changes to ecosystem community structure may be driven by 
N:P ratios and nutrient cycling. More research, however, is needed 
to support this hypothesis. Several drivers of global change, such 
as N deposition and increasing aridity, together with imbalances in 
anthropogenic N:P ratios, are generally shifting ecosystem N:P ra-
tios that in turn affect species community composition and diversity. 

Soil, water, and organismic N:P ratios have thus been associated with 
basic traits of ecosystem structure and function, such as growth, 
photosynthetic activity, investment in reproduction, structure of tro-
phic webs, life-history strategy, and species diversity (Carnicer et al., 
2015; Penuelas et al., 2013, Penuelas, Ciais, et al., 2017; Sardans 
et al., 2012b and references therein).

3.2 | N:P ratios and the capacity of terrestrial 
ecosystems to capture C

N:P ratios in ecosystems with the largest capacity to accumulate large 
amounts of C, such as forests and major estuaries, have tended to in-
crease, including tropical forests that are usually P limited (Du et al., 
2016; Penuelas et al., 2013; Sardans et al., 2012a). These increases 
in N:P ratios may limit the capacity of terrestrial ecosystems, mainly 
tropical forests, to store C (Goll et al., 2017; Penuelas, Ciais, et al., 2017; 
Wang, Zhang, et al., 2019). The availability of key nutrients, such as K 
and P, are predicted to decrease the sensitivity of ecosystems to in-
creasing CO2 emissions and warming (Fernández-Martínez et al., 2014; 
Penuelas, Ciais, et al., 2017; Wang, Zhang, et al., 2019). For example, 
climate-system models have predicted that limited P availability and 
corresponding imbalances in N:P ratios will decrease the capacity of 
terrestrial ecosystems to remove CO2 (Goll et al., 2017; Penuelas et al., 
2013, 2017; Sun et al., 2017; Wang, Zhang, et al., 2019). Similarly, other 
studies report that recent climatic warming has increasingly decreased 
the capacity of the biosphere to store C (Fernández-Martínez et al., 
2019), and only forests with nutrient-rich soil had higher net primary 
production (NPP) in response to increases in gross primary productiv-
ity (Fernández-Martínez et al., 2014). Recent improvements to models, 
such as including N and P cycles in C-cycling models, have predicted 
that the capacity of the biosphere to store C will decrease when N:P 
ratios become unbalanced (Wang, Ciais, et al., 2018). Recent studies of 
the feedbacks and interactive effects of shifts in N:P ratios on climate 
change mediated by effects on the capacity of ecosystems to store 
and release CO2, where N and P cycles have been incorporated into 
general C and climatic models (Goll et al., 2017; Penuelas et al., 2013; 
Wang, Goll, et al., 2017), challenge current understanding of the im-
pacts of the interactive effects of global change. Closing this knowl-
edge gap is a priority for future studies. These models have questioned 
whether changes in P and N availability and N:P ratios may alter the 
capacity of the biosphere to fix C from anthropogenic CO2 emissions. 
Simulated changes in NPP and increases in vegetation and soil-C stor-
age in response to rising CO2 levels and longer growing seasons in 
the Northern Hemisphere have likely been overestimated (Hungate, 
Dukes, Shaw, Luo, & Field, 2003; Penuelas, Ciais, et al., 2017). Recent 
progress in implementing mechanistic N and P schemes in models of 
the terrestrial C cycle, however, underscores the importance of nutri-
ent feedbacks, with reductions in productivity of up to 50% in the 21st 
century (Goll et al., 2012). No consensus, though, has yet been reached 
on future spatial patterns, the degree of nutrient limitation (Zaehle & 
Dalmonech, 2011), and associated interactions with the coupled sys-
tem of climate and the C cycle, despite these advances.
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Increases in NPP with more N and P must be balanced with 
increased decomposition with greater N and P supply. Increasing 
N:P ratios may actually lead to lower decomposition rates and 
hence greater C storage. If, however, there is less NPP feeding C 
pools, the net effect could be less storage. The stoichiometric con-
straints on microbial decomposition would play a key role in these 
changes in C storage and turnover. The relationship between litter 
N:P ratio and litter decomposition is not simple. Some studies have 
observed that litter decomposition is mostly related to lignin and/
or secondary compounds concentrations, and only weakly depen-
dent on litter N:P ratio both in tropical forests (Hättenschwiler & 
Jørgensen, 2010) and high latitude ecosystems (Aerts, Bodegom, 
& Cornelisse, 2012). Other studies have observed that litter de-
composition rates were positively (Zhang et al., 2018) or neg-
atively (Wang, Sardans, Tong, et al., 2016) related to N:P ratios. 
These relationships between litter decomposition rates and N:P 
ratio strongly depend of the level of concentrations of N and P 
(Güsewell & Gessner, 2009). Litter with N:P > 22 has P-limited de-
composition (Güsewell & Freeman, 2005). In the frame of growth 
rate hypothesis, lower N:P ratios should increase microbial growth 
rate and thus favor fast litter decomposition but only when both N 
and P are in high concentration; instead, a positive relationship or 
no relationship between N:P ratio and growth rate of microorgan-
isms occurs under low N and P concentrations.

Declining health (high mortality and defoliation) has been recorded 
in forests with long-term and persistently high atmospheric loads of 
N (Carnicer et al., 2015), imbalances in soil nutrients, and increasing P 
limitation (Schmitz et al., 2019; Veresoglou et al., 2014). The capacity 
of temperate forests to store P increases with age (Sardans & Penuelas, 
2015), and proportional allocation among organs is linked to growth-
trait strategies. For example, more N is allocated to leaves than roots 
in slower growing species (Sardans & Penuelas, 2013b). The N:P ratios 
of plant organs may be involved in the phenomenon of masting, which 
intensifies at extreme low and high values of N:P (Fernández-Martínez 
et al., 2019). Anthropogenic nutrient imbalances and the declining 
health of temperate forests in the Northern Hemisphere (Schmitz 
et al., 2019; Veresoglou et al., 2014) may thus affect the capacity of 
forest ecosystem services, such as C storage. Such impacts on ecosys-
tem function and service delivery remain to be quantified.

4  | IMPAC TS OF SHIF TS IN N,  P,  AND N:P 
R ATIOS ON FOOD SECURIT Y AND HUMAN 
HE ALTH

4.1 | Food security

Agriculture may face a potential long-term “scarcity of P” (MacDonald 
et al., 2011; Obersteiner, Penuelas, Ciais, Velde, & Janssens, 2013), likely 
due to the exhaustion of mineable P reserves (Cordell & White, 2011) 
and lack of financial access to P fertilizers in poorer countries due to 
high and fluctuating market prices (Obersteiner et al., 2013). The scar-
city of P has long been debated, but ongoing increases in global reserves 

of mineable P have obscured the potential risk of physical long-term P 
scarcity (Cordell & White, 2011), although the limited access of many 
countries still poses a risk to global food security (Figure 7). The emer-
gence of the global biospheric imbalanced N:P ratio has increased the 
complexity of the implications of P scarcity (Lu & Tian, 2017; Penuelas 
et al., 2013), including risks to food production in agroecosystems (Lu & 
Tian, 2017; van der Velde et al., 2014). Most P reserves are in only three 
countries, with Morocco estimated to contain 85% of the global share, 
followed by China with 6% and the United States with 3% (MacDonald 
et al., 2011), exacerbating the global problem of supplying P fertilizers.

Recent reports about environmental problems related to P avail-
ability and imbalances in N:P ratios and the P trilemma among rich, 
poor, and P supplier countries (Obersteiner et al., 2013) have attempted 
to address issues and solutions for P availability (Figure 7). Some issues 
for avoiding the impacts of potential P scarcity on global food security 
for an increasing human population are important (Obersteiner et al., 
2013; Rosemarin & Ekane, 2016), including increased demand and 
prices for P fertilizers that will likely render them inaccessible to poor 
and food-insecure countries (Kahsay, 2019; Obersteiner et al., 2013). 
Projections of demands for P fertilizers estimate a doubling of current 
levels by 2050 (Mogollón, Beusen, Grinsven, Westhoek, & Bouwman, 
2018), consistent with short-term predictions (Jedelhauser, Mehr, & 
Binder, 2018; Matsubae, Kajiyama, Hiraki, & Nagasaka, 2011; Withers, 
Doody, & Sylvester-Bradley, 2018; Withers, Rodrigues, et al., 2018).

The predicted growth in P demand may be exacerbated by addi-
tional demands, such as for fertilizing grassland for livestock produc-
tion, estimated at about 4–12 Tg P/year globally (Mogollón, Beusen, 
et al., 2018), and for fish farms, especially in eastern Asia (Vass, 
Wangeneo, Samanta, Adhikari, & Muralidhar, 2015). P reserves 
under these scenarios are expected to become depleted within the 
next 40–400 years, depending on the method of projection (Cordell, 
Schmid Neset, & Prior, 2012; Cordell & White, 2011, 2015; Elser & 
Bennett, 2011; Penuelas et al., 2013). The prospect of exhausting P 

F I G U R E  7   Schematic of the increased imbalance in N and P 
fertilizers and the negative impacts of N:P ratio imbalances and P 
scarcity on food security, human health, and sociopolitical stability
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reserves is a particular concern for P-poor cropland in sub-Saharan 
Africa, South America, India, Australia, and Russia, especially where 
farmer income and the capacity of crop production are low (Cordell, 
Jackson, & White, 2013; MacDonald et al., 2011; Rao, Srivastava, 
& Ganeshamurty, 2015; Sanyal et al., 2015), such as in sub-Saharan 
Africa, where low P content and high N:P ratios in some areas are 
alarming (Sileshi, Nhamo, Mafongoya, & Tanimu, 2017).

Geopolitical tensions associated with P scarcity (Obersteiner 
et al., 2013) are likely to increase between economically rich and poor 
P consumers, food-insecure P consumers, and P-producing countries 
(Matsubae et al., 2011; Obersteiner et al., 2013). These tensions in-
dicate the increasing imbalances in N:P ratios due to socioeconomic 
and asymmetric (access to N vs. P) differences in anthropogenic in-
puts of biologically active N and P to the biosphere (Penuelas et al., 
2013). Imbalances in total emitted anthropogenic N:P ratios to the 
biosphere increased exponentially during 1961–2013, with multiple 
detrimental effects. For example, P limitation has increased in several 
crops, predominantly in Africa and Asia, which may affect future re-
sponses to N fertilization (Lu & Tian, 2017). The accumulated addition 
of P for 2000–2050 has been estimated at 1,232 Tg P across the four 
Millennium Ecosystem Scenarios (Penuelas et al., 2013), so the P defi-
cit for cereal crops may increase exponentially, especially in large areas 
of Africa and Russia (Penuelas et al., 2013; van der Velde et al., 2014).

In addition to the problems of P scarcity, “P cycling” has become 
a global concern, due to the very low solubility of P and its propen-
sity to be adsorbed on some soil components and to precipitate to 
form diverse salt species, depending on the pH and mineral compo-
nents of the soil (Arai & Livi, 2013; Dumas, Frossard, & Scholz, 2011; 
Srinivasarao, Singh, Ganeshamurthy, Singh, & Ali, 2007). Long-term 
continuous inputs of P fertilizer in cropland have led to estimates 
that 50% of total globally applied P fertilizer during 2002–2009 has 
accumulated in the soil (Lun et al., 2018; Xi et al., 2016). No chemical 
forms of P are directly available for uptake by crop plants, so efforts 
to improve P-use efficiency constitute a key global challenge (Bai 
et al., 2016; Li et al., 2015; 2016; Liu et al., 2016; Sattari, Bouwman, 
Giller, & Ittersum, 2012; Withers, Rodrigues, et al., 2018).

The threefold global increase in “livestock production for human 
consumption” over the last five decades has been a key driver of scar-
city, environmental distribution, and decrease in the efficiency of P use 
(Liu et al., 2017). Globally, 70% of livestock comprises monogastric ani-
mals, such as poultry and pigs, which cannot absorb P from phytates and 
produce manure with very high P concentrations and low N:P ratios that 
lead to very low P-use efficiency (Oster et al., 2018; Prasad et al., 2015; 
Wang, Ma, Strokal, Chu, & Kroeze, 2018). Land used for the intensive pro-
duction of monogastric animals and that is fertilized with their manure 
exacerbates environmental imbalances in N:P ratios (MacDonald et al., 
2011; Penuelas, Fernández-Martínez, et al., 2019; Sileshi et al., 2017). A 
change in human diet to one with a larger proportion of plant-based food 
may be an effective tool to improve P-use efficiency (Reijnders, 2014; 
Withers et al., 2015). Studies have indicated that food security may be 
assured by improving P recycling by the application of a range of tech-
nologies and improved and efficient management of N and P fertilization 
to avoid imbalances in N:P ratios and subsequent associated cascades 

of environmental and economic problems (Cordell et al., 2012; Rahman 
et al., 2019; Rosemarin & Ekane, 2016; Weikard, 2016).

4.2 | Human health

Changes in N, P, and N:P ratios cascade up the trophic chain, poten-
tially to humans from food production, when the effects of overfer-
tilization and imbalances in N:P ratios in crops may become apparent 
(Penuelas, Gargallo-Garriga, et al., 2019; Penuelas, Janssens, et al., 
2017). N fertilization has historically been excessive in rich coun-
tries and has led to the overproduction of food, and the low use of 
fertilizers has staved off malnutrition in poor countries (Smil, 2002). 
Men born in rich countries in the 1980s were an average of 1.5 cm 
taller than men born in the 1960s, whereas the height of males 
born in the same decades in poor countries did not differ (Penuelas, 
Janssens, et al., 2017). Differences in per capita N, P, and N:P intake 
explained these differences in the “height of men” born in rich coun-
tries better than did socioeconomic and sanitary variables, such as 
gross domestic product, the human development index, and birth 
weight according to FAO, OCDE, and WHO integrated data analy-
ses (Penuelas, Janssens, et al., 2017). Some “malign neoplasms,” par-
ticularly of the colon and lung, contain higher concentrations of P 
and lower N:P ratios than do healthy organs and surrounding tissue 
(Elser, Kyle, Smith, & Nagy, 2007a, 2007b). High N and P intakes from 
an increased consumption of animal-based foods in some developed 
countries would therefore likely lead to higher heights, albeit with a 
higher risk of mortality from cancer.

The intensification of crop management and use of fertilizers (es-
pecially N) have changed the composition of food intake per capita. 
Penuelas, Gargallo-Garriga, et al. (2019) reported that the global inten-
sification of N fertilization may increase the “allergenic proteins” con-
centrations in wheat increasing the mean annual per capita intake of 
these proteins at global scale thus rising the risk of higher prevalence 
of “some illness such as coeliac pathology”. Using wheat as an exam-
ple, global N fertilization increased from 9.84 to 93.8 kg N ha−1 year−1 
during 1961–2010 (Curtis, 2019), similar to the overall rate of increase 
(10.5% year−1) across all types of farmland (from 11.3 to 107.6 Tg N/year;  
Lu & Tian, 2017). The increases in N availability have led to increased 
concentrations of gluten (Klikocka et al., 2016; Litke, Gaile, & Ruza, 
2018; Zheng et al., 2018) and the gliadins in gluten (Daniel & Triboi, 
2000; Guardia et al., 2018; Kindred et al., 2008). These gliadins are 
responsible for triggering (Dubois et al., 2018; Morrell & Melby, 2017; 
Petersen et al., 2015) and maintaining (Akobeng & Thomas, 2008; 
Gil-Humanes et al., 2014; Hischenhuber et al., 2006) celiac disease. 
Indeed, the higher availability of N has been associated with higher 
expression of gliadin genes (Shewry, Tatham, & Halford, 2001).

Evidence suggests that P is accumulating in some cropland 
soils (Yuan et al., 2018; Figure 7), which increases uptake by crop 
plants that may increase P concentrations in food and therefore di-
etary intake. Some studies have reported high levels of P uptake by 
crops (Fernandes, Soratto, Souza, & Job, 2017; Gomez, Magnitskiy, 
& Rodriguez, 2019; Selles, McConkey, & Campbell, 1999; Zhang, 
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Greenwood, White, & Burns, 2007) and non-crop plants (Da Ros, 
Soolanayakanahally, Guy, & Mansfield, 2018; Ostertag, 2010; Xu & 
Timmer, 1998) under high soil P concentrations. However, the po-
tential relationship between the global accumulations of P in crop 
soil and P concentrations in the food produced and subsequent con-
sequences on human health are currently unknown. Future research 
on effects of dietary increases in P intake is warranted since health 
problems, such as “bone health, risk of cancer, and heart failure, have 
been linked to the increased use of P” additives in foods (Dhingra 
et al., 2010; Takeda, Yamamoto, Yamanaka-Okumura, & Taketani, 
2014; Wulaningsih et al., 2013), albeit with inconsistent effects when 
P intake is excessive (Cooke, 2017). Sufficient evidences of a shift 
in food composition at elemental and molecular level produced by 
changes in N and P crop management are available. Human health 
can be affected, which opens a new potential perspective in medical 
studies.

5  | STR ATEGIES TO LIMIT AND MITIGATE 
THE NEGATIVE IMPAC TS OF P SC ARCIT Y 
AND IMBAL ANCES IN N:P R ATIOS

Several policy and management mitigative strategies have been pro-
posed to meet the challenges that the negative effects of P availabil-
ity pose to food security, environmental health, and geopolitical and 
economic stability among countries (Cordell & White, 2015; Dumas 
et al., 2011; Hukari, Hermann, & Nättorp, 2016; Metson et al., 2015; 
Obersteiner et al., 2013; Withers et al., 2015). Key global approaches 
to ensuring sustainable P management and the avoidance of future 
P scarcity and limitation include stabilizing P prices, balancing the 
requirements of P supply and demand, limiting eutrophication, op-
timizing P cycling, remobilizing and recovering P stores in cropland 
soil, designing and implementing novel biotechnologies for crop and 
livestock production, and moving toward plant-based diets (Bai et al., 
2016; Cordell et al., 2013; Cordell & White, 2015; Jedelhauser & Binder, 
2018; Jedelhauser et al., 2018; Kasprzyk & Gajewska, 2019; Lukowiak, 
Grzebisz, & Sassenrath, 2016; MacDonald et al., 2011; Metson, 
MacDonald, Haberman, Nesme, & Bennett, 2016; Neset & Cordell, 
2011; Roy, 2017; Schröder, Smit, Cordell, & Rosemarin, 2011; Suh & 
Yee, 2011; Withers et al., 2015; Withers, Rodrigues, et al., 2018; Wu, 
Franzén, & Malmström, 2016).

The consensus indicates that “increasing the use and cycling ef-
ficiencies of P” will be the most effective approaches to prevent P 
scarcity for food production and reduce environmental problems in-
volving P (Hanserud, Brod, Ogaard, Müller, & Brattebo, 2016; Melia, 
Cundy, Sohi, Hooda, & Busquets, 2017; Rahman et al., 2019; Suh & 
Yee, 2011; Weikard, 2016; Withers, Rodrigues, et al., 2018). The di-
rect recovery of P from all types of waste may yield large propor-
tions of previously used P, reducing the need to exploit and release 
novel sources of bioactive P into the P cycle (Withers, Doody, et al., 
2018), where secondary fertilizers are produced using recovered P 
(Hanserud et al., 2016; Jedelhauser & Binder, 2018; Talboys et al., 
2016; Weikard, 2016). The efficiency of P recovery in some countries 

such as Finland and Denmark has reached 67.5% and 53.7%, respec-
tively, but only 0.5% in the United States, a high P consumer (Rahman 
et al., 2019). A recovery of 37% of recyclable P in the United States 
would meet the P demand for corn crops (Metson et al., 2016).

Methods to increase plant accessibility to P sources have been 
proposed (Adhya et al., 2015; Cordell et al., 2011; Li et al., 2015; Rowe 
et al., 2016; Roy, 2017; Withers et al., 2015; Withers, Rodrigues, et al., 
2018) as approaches to increase P-use efficiency. At least 50% of the 
P fertilizer applied to cropland accumulates in the soil (Lun et al., 2018; 
Van Dijk, Lesschen, & Oenema, 2016). For example, cropland soil in 
Brazil was estimated to store 30 Tg P in 2016 (Withers, Rodrigues, 
et al., 2018; Figure 7). Exploitation of these stocks may mitigate future 
scarcity of P fertilizer or inflated prices, where possible approaches 
include breeding novel microbial genotypes and crop varieties that 
could remobilize and reuse stored P (Adhya et al., 2015; Rowe et al., 
2016; Vandamme, Rose, Saito, Jeong, & Wissuwa, 2016).

The use of novel management techniques and biotechnologies 
provide opportunities to improve P-use efficiency (Adhya et al., 2015; 
Rowe et al., 2016; Vandamme et al., 2016; Zheng et al., 2019). In ad-
dition to the development and use of novel strains of microbes with 
a high capacity for remobilizing stored P from crop soil (Adhya et al., 
2015; Zheng et al., 2019), other technological improvements, such as 
novel crop genotypes (Rowe et al., 2016; Vandamme et al., 2016), may 
be used to improve P-use efficiency (Figure 7). Improved P-use efficien-
cies in soil and plants have also been achieved using combinations of 
novel and technologically improved traditional management techniques 
(Wang, Min, et al., 2016; Zheng et al., 2019), such as the application of 
biochar integrated with approaches of organic agricultural management 
(Chintala et al., 2014) and crop rotation (Lukowiak et al., 2016).

The recovery of P from human urine and feces may meet 22% 
of the total P demand (Mihelcic, Fry, & Shaw, 2011), but its success 
may be hindered by technological and politicoeconomic constraints. 
Precipitation with iron and aluminum salts is the simplest method 
to recover P from waste and water, but the resulting product has 
limited bioavailability and is a pollutant (Melia et al., 2017). The pre-
cipitation of P from wastewater as struvite is more promising (Melia 
et al., 2017), because the bioavailability of P in struvite as a fertilizer 
is high (Talboys et al., 2016), and transport costs between treatment 
plants and farmers is low (Jedelhauser & Binder, 2018). Recovery 
capacity, however, is limited (approximately 25%) unless expensive 
chemical methods of extraction are applied (Melia et al., 2017). P 
recovery may be highest from the combustion of solid waste that 
produces energy and P-rich ash for use as fertilizer (Thitanuwat, 
Polpresert, & Englande, 2016). Research into the efficient recov-
ery of P from wastes is ongoing and yielding substantial advances 
(Kasprzyk & Gajewska, 2019; Roy, 2017).

Stimuli for recycling P tend to be controlled by “legislative regula-
tions and instruments” at the national or regional administrative level, 
sometimes supported by subsidies (Hukari et al., 2016; Withers et al., 
2015). Legislation is usually not harmonized or coordinated among 
national agencies, so the likelihood of the large-scale production of 
secondary P fertilizer from processes of P recovery is low and re-
quires multinational adoption of cutting-edge technologies (Hukari 
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et al., 2016; Oster et al., 2018; Withers et al., 2015). Increases in the 
costs of P extraction and transport, however, may increase the eco-
nomic feasibility of secondary P fertilizers (Mew, 2016).

“Reduction of livestock” production has been suggested as the 
most effective approach to reduce global P demand and ensure 
global food security (MacDonald et al., 2011; Schröder et al., 2011; 
Withers, Doody, et al., 2018). The threefold increase in livestock 
production in the last five decades (Liu et al., 2017) has led to de-
creased P-use efficiency of inorganically fertilized forage crops and 
P surpluses from inputs of animal urine and manure (MacDonald 
et al., 2011; Nesme, Senthilkumar, Mollier, & Pellerin, 2015). A 
global reduction in livestock production for dietary consumption 
would decrease the demand for P and its associated environmen-
tal problems (Bai et al., 2016; Neset & Cordell, 2011; Wang, Ma, 
et al., 2018; Wu et al., 2016). Decreases in animal production would 
increase the availability of cropland for producing crops for direct 
use in human diets, shortening the food chain, and increasing re-
source-use efficiencies, including P, but also N and water (Neset 
& Cordell, 2011; Rowe et al., 2016). Reducing the consumption of 
monogastric livestock would increase the sustainable use of P for 
food production, because such livestock do not efficiently absorb P 
from forage (Prasad et al., 2015; Wang, Ma, et al., 2018).

National and international environmental agencies and policy 
makers have failed to confront the recognized global risks of unbal-
anced N:P ratios to the biosphere and humankind. N and P cycles 
and associated ratio imbalances are starting to be incorporated into 
climatic and C-cycling models, but they must be addressed by a “co-
ordinated international policy” and forum of global change.
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