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Abstract River phytoplankton has been studied to

understand its occurrence and composition since the

end of the nineteenth century. Later, pioneers

addressed mechanisms that affected river phytoplank-

ton by ‘‘origin of plankton’’, ‘‘turbulent mixing’’,

‘‘flow heterogeneity’’, ‘‘paradox of potamoplankton

maintenance’’ and ‘‘dead zones’’ as keywords along

the twentieth century. A major shift came with the

recognition that characteristic units in phytoplankton

compositions could be linked to specific set of envi-

ronmental conditions, known as the ‘‘Phytoplankton

Functional Group concept’’ sensu Reynolds. The FG

concept could successfully be applied to river phyto-

plankton due to its close resemblance to shallow lakes

phytoplankton. The FG approach enables one to

separate the effects of ‘‘natural constraints’’ and

‘‘human impacts’’ on river phytoplankton and to

evaluate the ecological status of rivers. The FG

classification has mainly been advocated in the context

of how the environment shaped the functional com-

position of phytoplankton. It may be further developed

in the future by a trait-based mechanistic classification

of taxa into FGs, and by the exact quantification of

FGs on ecosystem functioning. These improvements

will help quantify how global warming and human

impacts affect river phytoplankton and corresponding

alterations in ecosystem functioning.
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e-mail: abonyiand@gmail.com

A. Abonyi

WasserCluster Lunz, Dr. Kupelwieser-Prom. 5,

3293 Lunz am See, Austria

J.-P. Descy

Unit of Chemical Oceanography, University of Liège,
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‘‘The ability of open-ended systems, subject to persistent

unidirectional flow, to support plankton is paradoxical … On the

other hand, the wax and wane of specific populations in given

rivers seem fully reproducible; they are scarcely stochastic

events’’. Colin S. Reynolds, Ecology of phytoplankton (2006)

Historical backgrounds of river phytoplankton

studies

In contrast with common assumptions that can be

found in the scientific literature, river phytoplankton

has extensively been studied for a long time. The first

reports on ‘‘potamoplankton’’ can be found as early as

the end of the nineteenth century, even though these

papers were essentially descriptive. The authors

mentioned the presence of algae suspended in the

water of lowland rivers, sometimes in considerable

quantity (see, e.g. Zacharias, 1898; Welch, 1952;

Whitton, 1975). The ecological understanding of

potamoplankton dynamics that time was scarce.

Nevertheless, from the first half of the twentieth

century, potamoplankton was mentioned to be found

in large and in lowland rivers with slow flow, where

phytoplankton may vary considerably both in terms of

quantity and quality. According to these early studies,

species composition did not differ from that of other

freshwater bodies (e.g. Kofoid, 1908).

As early as the 1920s, scientists could relate the

variation of potamoplankton abundance with river

water discharge and current velocity. des Cilleuls

(1928), for instance, presented a remarkable synthesis

on potamoplankton studies in Europe, Asia and

America, referring to former ideas developed by

Kofoid (1908). As a particular example, the role of

current velocity understood as a major factor deter-

mining the time allowed to planktic algae for devel-

oping populations, was recognised already:

L’influence notable qu’exerce le courant sur le

plancton réside … dans le fait qu’il est un facteur

important dans la détermination du temps pen-

dant lequel le plancton peut naı̂tre et s’accroı̂tre

des Cilleuls, Le phytoplancton de la Loire et de

ses affluents dans la région Saumuroise (1928)

In other words, the importance of water residence

time was understood clearly, even with the simple

mathematical assumption that residence time should

be long enough to allow a sufficient number of

generations to build up a cell population of

detectable size.

The origin of the plankton, in particular the role of

backwaters, has been recognised as another key topic.

That is, there must be a permanent source of plankton

to the mainstem as potamoplankton is transported

downstream. The origin of river phytoplankton has

been addressed early by Kofoid (1908), Butcher

(1932) and Talling and Rzóska (1967). Interestingly,

Butcher insisted on the origin from the benthos,

whereas Talling and Rzóska argued for recruitment

from lentic habitats connected to the mainstem of the

River Nile. Besides this emphasis on hydrology,

Reinhard (1931) noted the influence of temperature

and light on potamoplankton growth. By contrast,

nutrient supply did not seem to be a key factor

controlling planktic algal growth since most of the

systems studied were eutrophic, with DIN, SRP and

SRSi levels well above cells’ requirements for growth

(see, e.g. Kowalczewski & Lack, 1971 on the River

Thames). In a remarkable paper ‘‘Ideas for a synthetic

approach to the ecology of running waters’’, Margalef

(1960) added mathematical reasoning on planktic

river algae based on the analogy between a fully mixed

river compartment and a chemostat. He concluded that

‘‘in a watercourse with laminar flow, no population

could maintain itself. It is necessary to a certain

amount on turbulent mixing’’ (Margalef, 1960). This

may have inspired subsequent studies on the role of

flow heterogeneity in rivers, notably by Colin

Reynolds et al.

Major inputs of Colin S. Reynolds into river

phytoplankton ecology

Colin S. Reynolds synthesised and drew conclusions

early from knowledge acquired previously in potamo-

plankton ecology in a book chapter edited by F.E.

Round, another specialist of algal ecology (Reynolds,

in Round, 1988). Among others, he insisted on the

control by fluvial discharge, which is the major

constraint on phytoplankton development and main-

tenance in a unidirectional flow. This was not new, of

course, but C.S. Reynolds added further mathematical

reasoning about growth rates and variation in water

discharge affecting the travel times of algal popula-

tions in rivers. Building also on Margalef’s thoughts

about the role of turbulence and incomplete mixing in

successive river compartments, he addressed then the

paradox of maintenance of potamoplankton
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populations. Considering the effects of water turbidity

on growth and channel depth on settling losses, he

assumed a role of ‘‘retention zones’’ in the mainte-

nance of river plankton, still from reasoning on

hydrodynamics in river channels developed by mod-

ellers. This paved the way for further research that

provided evidence of such ‘‘dead zones’’ in rivers, as

in the study of the River Severn (see Reynolds et al.,

1991; Reynolds & Glaister, 1993). These works

contributed largely to recognise the co-existence of

potamoplankton populations with contrasting adapta-

tions, and the mechanism of the survival of ‘‘seeding’’

from previously settled cells or colonies (Reynolds &

Descy, 1996).

Such studies, as well as thoughts of C.S. Reynolds

(1984) on phytoplankton assemblages, led naturally to

understand species selection by environmental factors

in a more mechanistic way, that is, according to

species functional traits like eco-physiological prop-

erties. Following mathematical considerations on

turbulent flow affecting the transport of algae

(Reynolds, 1994a), Reynolds demonstrated how ver-

tical mixing in a (more or less) turbid and turbulent

water column selects for phytoplankters with appro-

priate traits (Reynolds, 1994b). These functional

characteristics were photosynthetic efficiency, acces-

sory pigments, specific settling rate, specific growth

rate and morphology, by which he could explain the

usual dominance of centric diatoms and coccal green

algae in lowland rivers. Obviously, the functional

group concept of phytoplankton (Reynolds et al.,

2002) was inherent to these reflections.

From taxonomic towards the functional

classification of river phytoplankton sensu

Reynolds

Characteristic patterns in the composition of river

phytoplankton have mainly been recognised at a larger

spatial scale. Critical environmental factors that shape

river phytoplankton composition are downstream

travel time (i.e. the opportunity for growth), river

depth and turbulence, all affecting both the entrain-

ment of algae in the water column and the corre-

sponding underwater light climate (Reynolds, 1994b).

These ‘‘master variables’’ alter along large rivers in a

predictable way, partly gradually as synthesised in the

River Continuum Concept (Vannote et al., 1980),

partly stepwise due to major shifts in hydrogeomor-

phology and climate (i.e. functional river zonation,

Thorp et al., 2006). River phytoplankton composition

can follow changes of these variables and indicate

both gradual and river zone-related alterations of the

environment (Abonyi et al., 2014).

Upstream river sections are fast-flowing, where true

planktic phytoplankton is rare due to the short water

residence time. However, benthic taxa, especially

diatoms, can detach from the substrates and occur

frequently in the plankton (Reynolds & Glaister, 1993;

Piirsoo, 2001; Soylu and Gönülol, 2003; Farahani

et al., 2006). Further downstream, the increase of

water residence time allows the growth of true planktic

elements. In these river sections, higher nutrient

availability, turbulent and turbid flow conditions often

favour fast-growing algae with low-light tolerance,

e.g. centric diatoms (Reynolds, 1994b; Reynolds &

Descy, 1996). The dominance of centric diatoms,

where it occurs, is a characteristic and recurring

phenomenon in the middle sections of large rivers (see

Gosselain et al., 1994; Garnier et al., 1995; Kiss,

1996). However, shallowness, lower water discharge,

higher water temperature and corresponding enhanced

underwater light availability favour the dominance, or

co-dominance of chlorococcalean greens in the middle

and downstream river sections (see Reynolds &

Descy, 1996 and references therein). Similar to centric

diatoms, fast growth and high surface-to-volume ratio

characterise these taxa, and as they are exposed to

lower settling velocity, their dominance is favoured

over large and heavy diatoms (Reynolds et al., 1994).

Accordingly, when turbulent and turbid environmen-

tal conditions in the middle river section shift to

shallowness and increased light availability further

downstream, phytoplankton community may shift in

dominance from centric diatoms to coccal green algae.

Excellent examples are the River Loire (Descy et al.,

2011; Abonyi et al., 2012) and the lower section of the

River Danube (Stoyneva, 1994). On the other hand,

deep, well-mixed, and therefore turbid downstream

river sections might constrain planktic algal produc-

tion, or select for the dominance of centric diatoms due

to their low-light adaptation in a turbulent and turbid

environment (Reynolds & Descy, 1996).

Mechanisms that generate selective forcing on river

phytoplankton composition are similar among sea-

sons. Downstream travel time, turbulence, water

temperature and underwater light climate are season
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specific due to seasonal variation in water discharge

and insolation. Accordingly, characteristic community

compositions, e.g. centric or coccal green algal

dominance may ‘‘move’’ upstream or downstream

seasonally. From the middle to downstream river

sections, the seasonal shift—either from coccal greens

to centric, or centrics to greens—occur in a rather

gradual way (Reynolds & Descy, 1996). Shift in

selection-forcing acts on river phytoplankton compo-

sition both in time (Descy & Mouvet, 1984) and space

(Abonyi et al., 2014), depending on water depth,

turbulence and the corresponding light regime (op.

cit.). Rivers are, therefore, highly selective environ-

ments, where only a relatively small number of

phytoplankton genera can achieve dominance (Rojo

et al., 1994; Reynolds, 1994b). Whenever the high

selective pressure alleviates, i.e. higher water retention

time, moderate turbulence and enhanced light avail-

ability, slow-growing taxa may occur and enrich the

diversity of river phytoplankton (Reynolds & Descy,

1996).

Non-taxonomic ‘‘functional’’ classifications of

phytoplankton have long been existing. Margalef

(1958) described first that phytoplankton was directed

towards two possible ends in selectivity: r-selection

(small cell size, fast growth, e.g. centric diatoms) and

K selection (large cell size, slow growth, special

abilities like motility, e.g. dinoflagellates, Fig. 1).

Seasonal succession is primarily affected by the shift

from enhanced mixing to stable conditions and high

towards low nutrient availability in the water column,

where phytoplankton may develop from the domi-

nance of r-selected towards K-selected taxa. In

unimpounded temperate rivers, one may expect that

under non-limiting nutrient conditions and continuous

mixing, succession is set back constantly that selects

for fast-growing (r-type) taxa, while bloom-forming

cyanobacteria and large dinoflagellates are virtually

excluded (Reynolds & Descy, 1996). On the other

hand, temporally extended slow flow conditions, when

they occur, may allow the occurrence of K-strategists

in lotic systems (e.g. dinoflagellates, Gosselain et al.

1994), especially in calm summer periods at river

sections following impoundments (see, e.g. Köhler,

1994).

A significant next step was the adaptation of the

‘CSR’ classification of plant strategies sensu Grime

(1977) to phytoplankton ecology by Colin S. Reynolds

(Reynolds, 1987). In the context of mixing and

nutrient availability, phytoplankton taxa can also be

classified as C-strategists (good Competitors by rapid

exploitation of available resources), S-strategists

(Stress tolerance in resource limitations), and R-strate-

gists (Ruderals with resistance to disturbances)

(Reynolds, 2006; Fig. 1b). The CSR concept is the

simplest approach that may handle river phytoplank-

ton successfully, being exposed to continuous mixing

(R-selection force) and limited time frame for growth

(C-selection). Fast-growing opportunists (C-strate-

gists, e.g. centrics) and process-constrained ruderals

(CR-strategists, e.g. coccal greens) have a clear

advantage in river phytoplankton (Gosselain & Descy,

2002; Reynolds, 2006). The continuous recognition of

characteristic co-occurrence of phytoplankton taxa

under specific set of environmental conditions led

Reynolds to his well-recognised phytoplankton func-

tional group concept (Reynolds, 1984, 1997; Reynolds

et al., 2002), also applied later on rivers.

Functional groups comprise taxa that process any

ecological component (e.g. resource use) in a similar

way, and therefore, provide similar ecosystem services

or functions (Blondel, 2003). In phytoplankton ecol-

ogy, multiple ‘functional group’ concepts have been

developed (Salmaso et al., 2015), among which the

Functional Group Concept sensu Reynolds (FG

approach) had its own old roots (see also Reynolds,

1988). The first 14 lake phytoplankton assemblage

types (also known as functional groups or coda) were

based on co-occurring taxa with similar seasonality

(Reynolds, 1984). Recently, the term ‘FG’ refers to

species with similar morphological and physiological

traits, as well as ecological features (Reynolds et al.,

2002; Salmaso et al., 2015). Compared with other

classifications, the FG concept describes habitat

properties in a relatively well-defined way (Padisák

et al., 2009). FGs reflect on the physical environment

(i.e. preference in mixing, Reynolds, 1994b; Naselli-

Flores & Barone, 2011), disturbance frequency (e.g.

tolerance to alterations in mixing, Lindenschmidt &

Chorus, 1998; Hambright & Zohary, 2000), trophic

state and seasonality (Padisák et al., 2009; Salmaso

et al., 2015; Fig. 1c, d).

The number of described FGs has increased up to

40 (Padisák et al., 2009), including also specific ones

for river algae. These were epiphytic cyanobacteria

(codon TC), epi- and metaphytic desmids, filamentous

greens and sediment-dwelling diatoms (codon TD)

that occur in slow-flowing rivers with emergent
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macrophytes, as well as epilithic pennate diatoms,

being characteristic in highly lotic environments

(Borics et al., 2007). Although the FG approach

classified limnetic phytoplankton first, it also appeared

to be relevant in rivers (Reynolds, 2003), partly due to

the close resemblance between shallow lake and large

river phytoplankton (Reynolds et al., 1994). High

inorganic turbidity and corresponding steep underwa-

ter light gradient characterise both systems, selecting

for phytoplankton taxa adapted to low irradiance and

its high-frequency fluctuation during continuous mix-

ing (Reynolds et al., 1994, Table 1).

Best-adapted river phytoplankton taxa are efficient

light harvesters, and can tolerate and persist in low

irradiance environments (coda C and D, Table 1).

Coccal green algae better adapted to moderate turbu-

lence (even to meroplankty), higher water temperature

and higher light availability are classified into coda J,

X1 and F; still being characteristic in shallow, mixed,

highly enriched systems. Phytoplankton taxa that

occur typically in eutrophic stratifying and shallow

lakes with low nitrogen content (codon H1), eutrophic

to hypertrophic stratifying lakes (codon LM), contin-

uous or semi-continuous mixed layers of 2–3 m in

thickness under eutrophic state (codon P) are excellent

indicators of eutrophic impoundments in rivers

(Table 1). Taxa that grow under reduced turbulence

(e.g. codon X2), and are rather characteristic in

oligotrophic conditions (e.g. codon X3), may success-

fully indicate long-term changes in hydrology and the

trophic state (Abonyi et al., 2018a).

The application of the FG approach in river

phytoplankton ecology and ecological status

indication

Since the first applications of the FG approach in river

systems (Devercelli, 2006; Soares et al., 2007), more

than fifty river phytoplankton studies described and

used the approach to explain changes in potamoplank-

ton composition. These studies reported that the FG

approach could reflect alterations in hydrology at

diverse spatial and temporal scales (Várbı́ró et al.,

2007; Abonyi et al., 2012, 2014; Stankovic et al.,

2012; Bolgovics et al., 2017). Also, it enhanced the

understanding of compositional changes of phyto-

plankton along the gradient of lateral connectivity in

river floodplains (Nabout et al., 2006; Mihaljević

et al., 2009; Stević et al., 2013; Bortolini et al., 2014).

Fig. 1 a Two possible ends of selectivity in phytoplankton: r-

and K-selected taxa along the environmental gradients of

turbulence and nutrient content (Margalef, 1958), b the r-K

selection completed by R-selected species sensu Reynolds

(Reynolds, 1997) following Grime (1977), c habitat templates of

characteristic phytoplankton associations (coda) along the

gradients of energy and nutrient content (Reynolds

1987, 1997), d coda classification sensu Reynolds along with

temporal succession and trophic status (Reynolds, 2005).

Redrawn and modified from Margalef (1958) and Reynolds

(1997, 2005), appeared first in Abonyi (2015)
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Table 1 Habitat templates and the Functional Group (FG) classification of characteristic river phytoplankton taxa sensu Reynolds

(see, Reynolds et al., 2002; Borics et al., 2007; Padisák et al., 2009)

Codon Habitat template Characteristic taxa in rivers Comment

C Eutrophic small- and medium-sized

lakes with species sensitive to the

onset of stratification

Asterionella formosa, Cyclotella

meneghiniana

Typical in the middle river section of large

eutrophic rivers; mixing conditions have

to meet the habitat template

D Shallow turbid waters including rivers Stephanodiscus hantzschii,

Skeletonema potamos, Nitzschia

acicularis, Nitzschia fruticosa,

Actinocyclus normanii

Typical in the middle river sections of large

eutrophic rivers

F Clear, deeply mixed meso-eutrophic

lakes

Dictyosphaerium spp., Oocystis

spp.

Middle and lower sections of large rivers

indicating enhanced water residence time,

moderate turbulence and enhanced

underwater light availability. Often in co-

dominance with taxa from codon J

H1 Eutrophic, both stratified and shallow

lakes with low nitrogen content

Dolichospermum spp.,

Aphanizomenon spp.

Characteristic taxa of eutrophic reservoirs if

mixing conditions and the trophic status

meet the habitat template

J Shallow, mixed, highly enriched

systems, including low-gradient

rivers

Pediastrum spp. Scenedesmus spp. Middle and lower sections of large rivers,

often in co-dominance with taxa from

codon D

LM Eutrophic to hypertrophic, small- to

medium-sized lake

Ceratium co-occurring with

Microcystis spp.

Typical association in eutrophic stratifying

reservoirs

P Continuous or semi-continuous mixed

layer of 2–3 m in thickness under

eutrophic status

Fragilaria crotonensis, Aulacoseira

spp. planktic Closterium such as

C. acutum, C. aciculare

Typical taxa of eutrophic reservoirs when

mixing conditions meet the habitat

templat

S1 Turbid mixed environments Planktothrix agardhii, Limnothrix

redekei, Pseudanabaena

limnetica, Planktolyngbya spp.

Potential taxa of eutrophic rivers when

turbulence and turbidity suffice the habitat

template

TB Highly lotic environments, streams

and rivulets

Large benthic Pennales such as

Navicula spp. Gomphonema spp.

Melosira spp. Fragilaria type

construens

Benthic diatoms detached from the

substrates—characteristic in rhithral and

highly turbulent rivers

TC Eutrophic standing waters, or slow-

flowing rivers with emergent

macrophytes

Anabaena spp. Lyngbya spp.

Phormidium spp. Oscillatoria spp.

All benthic and epiphytic cyanobacteria that

occur in rivers should be classified into

TC

TD Mesotrophic standing waters, or slow-

flowing rivers with emergent

macrophytes

Cosmarium spp., benthic

Closterium spp. filamentous green

algae like Hydrodictyon spp.

All benthic, epi- and metaphytic desmids

and filamentous greens that occur in rivers

should be classified into TD

X1 Shallow, eu-hypertrophic

environments

Chlorella spp. Monoraphidium spp. Middle and lower sections of large rivers,

often in co-dominance with taxa from

codon J

X2 Shallow, meso-eutrophic environment Plagioselmis spp. Chlamydomonas

spp. small-sized Cryptomonas

spp.

Middle and lower sections of large rivers

with enhanced water residence time and

moderate turbulence

X3 Shallow, well-mixed oligotrophic

environments

Chrysococcus spp. Koliella spp.,

Schroederia spp.

Middle and lower sections of large rivers

indicating oligotrophication potentially.

Often in co-occurrence with taxa from

codon X2

The characteristic occurrence of FGs is summarised based on Devercelli et al. (2006, 2010), Borics et al. (2007), Soares et al. (2007);

Padisák et al. (2009), Abonyi et al. (2012, 2018a); Kruk et al. (2017), Wang et al. (2018); and Frau et al. (2019)
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The FG system also helped recognise how phyto-

plankton of floodplain lakes could shape the compo-

sition of river phytoplankton in the main channel

(Townsend, 2006; Devercelli & O’Farrell, 2013). In

the case of channel-reservoirs, structural alterations of

phytoplankton assemblages could also be described

and explained well by FGs (Nogueira et al., 2010;

Bovo-Scomparin et al., 2013; Zhu et al., 2013; Tian,

et al., 2014). Temporal shifts in the dominance of FGs

could help highlight constraints that affect phyto-

plankton assemblages of reservoirs (Li et al., 2011;

Wang et al., 2011; Yang et al., 2011; Moura et al.,

2013).

A practical application of Reynolds’ FG system

was the evaluation of tolerances of each FG in rivers to

specific natural versus anthropogenic impacts, which

enabled to assess the ecological state of rivers (Borics

et al. 2007). Specific F quality factors were given to

each FG according to

(i) nutrient status (0—hypertrophic to 5—

oligotrophic),

(ii) turbulence (0—standing waters to 5—lotic

environment),

(iii) water residence time for development (0—

climax to 5—pioneer community members),

and

(iv) level of risk (0—high risk indicating pollu-

tion or potential toxicity to 5—low risk).

The calculation of the Q(r) quality index based on

the composition of river phytoplankton assemblages

isQðrÞ ¼
Ps

i¼1 pi � Fð Þ;where pi = ni/N, ni is the

biomass of the ith FG, while N is the total biomass.

The F factor number allows the Q(r) quality index to

range between 0 (the worst) and 5 (the best).

The Q(r) approach has successfully been applied

multiple times in European rivers (Piirsoo et al., 2010;

Abonyi et al., 2012; Çelik & Sevindik, 2015). Based

on a large-scale survey along the River Loire, seasonal

minima of the Q(r) index values were synchronised to

late summer, but the longer was the distance from the

source, the earlier was the seasonal decrease of Q(r)

(Abonyi et al., 2012). The index has been imple-

mented as one of the reference measures for ecological

status assessments of rivers across Europe (Mischke

et al., 2016).

The importance of benthic diatoms in river

plankton

Planktic and benthic assemblages of microalgae are

not completely separated in rivers, with benthic

species found suspended in the river plankton (tycho-

plankton), and planktic species found in the benthos

(see, e.g. the planktic ecological group in Rimet &

Bouchez, 2012). The latter case has also been

observed in a high-frequency phytoplankton data set

from middle- to large-sized rivers, and it was

described as the benthic retention hypothesis (Istvá-

novics & Honti, 2011). According to this hypothesis,

algae that sediment fast, especially diatoms, may take

advantage of prolonged benthic residence time, in

circumstances when it is sufficient to compensate for

light-supported growth (op. cit.). The contribution of

benthic algae to river algal assemblages has long been

recognised (Margalef, 1960), with benthic diatoms,

reported constituting as much as half of the plankton

community (Rojo et al., 1994). The contribution of

benthic taxa to the river plankton is more pronounced

in small streams and headwater river sections of large

rivers (Leitão & Leprêtre, 1998; Leland, 2003), as well

as in shallow parts of large rivers (Stoyneva, 1994). In

small rhithral rivers, benthic diatoms can even dom-

inate the plankton (Bolgovics et al., 2017) and thus

contribute to the functioning of the river system

substantially. In extreme cases, such as found at the

lowermost section of the River Danube, benthic

species can be dispersed in a continuous way,

enriching the potamoplankton constantly (Stoyneva

1994). While the original FG classification sensu

Reynolds made no attempt to deal with tychoplanktic

taxa within phytoplankton assemblages (Reynolds

et al., 2002), they emphasised already the importance

of developing such a scheme in the future. Accord-

ingly, functional groups have later been described,

including meroplanktic taxa for lake (codon MP,

Padisák et al., 2006) and tychoplanktic taxa for river

phytoplankton (codon TB, Borics et al., 2007, see also

above).

Similar to Reynolds’ phytoplankton functional

classification that has been built on Grime’s CSR

system and connected growth strategies to cell size,

functional classifications for phytobenthos have also

been developed. McCormick (1996) classified benthic

algae along with the same concept: competitors

(C) with maximum resource capture and growth rates,
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ruderals (R) adapted to colonise disturbed sites with

high nutrient supply, and stress-tolerant species

(S) adapted to low resource availability including

species able to withstand disturbance (D) caused by

scouring or herbivory. Biggs et al. (1998) proposed a

habitat classification, where functional units of species

were linked to the trophic level of the system. Therein,

competitors (C) are found in eutrophic, steady sys-

tems, ruderals (R) in mesotrophic systems with

frequent disturbances, stress-tolerant species (S) in

oligotrophic, steady systems and a newly described

group of CS species found in mesotrophic, steady

systems. Law et al. (2014) linked further the CSR

classification to cell size suggesting that C-species

have a large surface-to-volume ratio (s/v) but small

maximum linear dimension (mld); R species have

large s/v and large mld, while S-type species have low

s/v and small mld, a characteristic that is opposite to

the known lentic definition of S-type species. Law’s

benthic diatom classification may be the one most

directly related to the phytoplankton functional clas-

sification scheme sensu Reynolds.

As diatoms constitute a large proportion of phyto-

benthos, they have received further attention in the

context of functional classifications. A frequently used

functional classification of benthic diatoms, the

‘diatom ecological guild concept’, has been developed

to predict nutrient status and disturbance regime of

running waters (Passy, 2007). The classification has

later been modified to include both life forms (i.e.

solitary cells, colonies) and ecological characteristics

(i.e. low and high profiles, motile and planktic taxa) as

relevant traits (Rimet & Bouchez 2012). Relevant

morphological traits can represent the abilities in how

benthic diatoms attach to the substrate, and thus,

functional differences in how they withstand changes

in water flow conditions (Tapolczai et al., 2016).

Nevertheless, incorporating the ecological guild con-

cept to the cell size approach was the most reliable for

benthic diatoms (Law et al. 2014; B-Béres et al.,

2017). The diatom ecological guild concept was also

found to be directly related to biomass production of

benthic diatoms, outperforming taxonomic classifica-

tion in explaining biomass variations (Passy & Larson,

2019).

The combination of Reynolds’ FG approach and

trait-based functional classifications of benthic dia-

toms enabled better predictions for the community

composition from the local environment than the

taxonomic or the FG system alone in a temporally

extensive potamoplankton data set (Pearl River,

China; Wang et al., 2018). Therefore, the occurrence

of benthic diatoms in large river plankton is mostly not

random, and can be assessed ecologically in a

meaningful way based on combined planktic and

benthic algal functional classifications (op. cit.).

Potential future merits of the FG approach in river

phytoplankton ecology

The short overview presented above summarises the

evolution of river phytoplankton studies from a

taxonomic towards a functional perspective, with a

special focus on Reynolds’ FG system. While the FG

scheme represents already a more mechanistic and

therefore more predictive approach than taxonomy, it

certainly needs improvements. As ecology moves

towards mechanistic approaches, the FG system

should also follow. A critical improvement was the

trait-based FG classification of phytoplankton taxa

instead of expert judgement (Kruk et al., 2017), which

effort should still be continued and further extended to

large taxonomic lists, including also river phytoplank-

ton taxa.

Existing phytoplankton functional group

approaches (see also Salmaso & Padisák, 2007; Kruk

et al., 2011; Kruk & Segura, 2012) including the FG

system, have mainly been advocated in the functional

community composition-environment relationship

(i.e. how the environment shapes the functional

composition of phytoplankton). According to Violle

et al. (2007), such classifications summarise taxa by

‘‘response traits’’ to a specific set of environmental

conditions, and are rather functional response groups

than functional groups (Abonyi et al., 2018b). Future

improvements of phytoplankton functional group

classifications should enhance our ability to quantify

and predict how these ecological groups affect

ecosystem functioning (i.e. functional groups accord-

ing to Blondel 2003, or, functional effect groups

according to Hooper et al., 2005).

Recently, the Reynolds FG system has successfully

been applied to understand long-term compositional

changes in the potamoplankton of the middle Danube

River (Abonyi et al., 2018a). The FG approach was

especially helpful to recognise a potential long-term

gradual regime shift from planktic to benthic
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production (op. cit.). While such recognition is

necessary for tracking and proving effects of global

warming and human impacts on river ecosystems,

future merits of the FG system will depend upon

whether we can identify and quantify the effects of

FGs on ecosystem functioning. In other words,

whether we can develop Reynolds’s functional

response groups further into functional effect groups.

Such exact functional information will be necessary to

apply the FG concept in resolving timely challenges in

river ecology. Primarily, we need to develop the FG

concept into quantitative parameters to enable mod-

elling the effects of global warming and human

impacts on the functional composition of river phy-

toplankton and to quantify the corresponding alter-

ations in ecosystem functioning.
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of the Upper Paraná River floodplain. Acta Limnologica

Brasiliensia 26: 98–108.

Bovo-Scomparin, V. M., S. Train & L. C. Rodrigues, 2013.

Influence of reservoirs on phytoplankton dispersion and

functional traits: a case study in the Upper Paraná River,
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estimation in the Çaygören Reservoir (Turkey). Turkish

Journal of Botany 39(4): 588–598.

des Cilleuls, J. L. 1928. Le phytoplancton de la Loire et de ses

affluents dans la région Saumuroise. Thèse de doctorat.
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