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tical analyses focused on discretization. By offering useful shortcuts, this approach to limnology has
profoundly benefited the way we understand, manage, and communicate about waterbodies. But the
research questions and the research tools in limnology are changing rapidly in the era of big data, with
consequences for the relevance of our current discretization schemes. Here, I examine how and why we
discretize and argue that selectively rethinking the extent to which we must discretize gives us an

gfzfsic;irfast.ion exceptional chance to advance limnology in new ways. To help us decide when to discretize, I offer a
Management framework (discretization evaluation framework) that can be used to compare the usefulness of various
Big data discretization approaches to an alternative which relies less on discretization. This framework, together
Computing with a keen awareness of discretization’s advantages and disadvantages, may help limnologists benefit
Statistics from the ongoing information explosion.
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1. Introduction
1.1. Why rethink discretization?

One of the most broadly-shared assumptions about nature is
that it can be neatly categorized into objectively-defined, discrete
groups. This assumption has played a central role in human history
from the philosophies of Plato and Aristotle all the way to modern
science, governance, computing, and communication. But, the
erosion of this broadly-shared assumption about nature has been
the subtext to many of the major scientific advances of the last
several hundred years. In biology, Charles Darwin and Alfred Russel
Wallace rejected the assumption that all organisms belong to
discrete, unrelated species. In his famous “theory of relativity,”
Albert Einstein powerfully demonstrated that time and space are
not discrete, further arguing that “physical reality must be
described in terms of continuous functions” (Einstein, 1979). In
social psychology, Judith Butler radically disrupted the binary view
of sex, gender, and sexuality (Butler, 1990). Over the course of the
20th century, and especially since the rapid growth of human
genome sequencing, we’ve learned that standard racial categories
do not reflect actual genetic structure in humans (Yudell et al.,
2016). These key advances demonstrate that rethinking this
fundamental assumption, that nature is discrete, can promote
inspiring scientific progress.

Rethinking the assumption that nature can be neatly catego-
rized into discrete groups has also led to major scientific advances,
specifically in limnology—the study of inland waters. Limnology
was founded on the premise that waterbodies, lakes in particular,
are distinct from the terrestrial ecosystems around them. Lake
ecosystems were considered superb habitats for ecological exper-
iments because their biological, chemical, and physical processes
were considered isolated. In 1887, Stephen Forbes, a founder of
limnology, went so far as to doubt whether annihilating all
terrestrial animals would have any important effect on lake eco-
systems at all (Forbes, 1925). But, we know today that lake eco-
systems are intricately connected to surrounding ecosystems and
vice versa. The boundary where lake ecosystems end and the next
ecosystem begins has become increasingly blurred in recent de-
cades. During the research boom on “ecosystem subsidies” begin-
ning in the 2000’s, limnologists showed that a large proportion of
lake ecosystem carbon can be derived from terrestrial production
(Pace et al., 2004). We recognize today that lakes emit greenhouse
gases that have widespread effects beyond their boundaries
(Raymond et al., 2013). The emergent recognition that lake eco-
systems are not discrete or isolated has been a substantial limno-
logical advance (Tranvik et al., 2018).

Limnologists have begun to critically reflect on many other as-
pects of discretization, leading to a variety of limnological advances.
For example, in recognition of the subjectivity of defining discrete
mixed layers, some argue that an idealised concept of a well-
defined mixed layer does not necessarily reflect the reality of
aquatic physics (Gray et al., 2019). In recognition of the substantial
amount of subsurface flow across catchments, “discrete” hydro-
geological units are increasingly recognized as having no real
boundaries to water movement (Fan, 2019). By moving beyond
research focused on single, discrete waterbody types, we have also
begun to find the remarkable commonalities among seemingly
disparate aquatic ecosystems leading to more general theories for
how waterbodies function. For instance, waterbodies across size
and flow gradients have been shown to have similar controls on
their nutrient limitation (Elser et al., 2007), metabolism (Yvon-
Durocher et al., 2012), trophic cascades (Shurin et al., 2002), and
responses to human activity (King et al., 2019).

1.2. Why do we discretize?

Yet the ubiquity of limnological discretization today is testa-
ment to its enduring, broadscale appeal and usefulness. We classify
waterbodies based on their size (pond, lake, Great Lake, or Ocean),
flow rates (creek, stream, river, or large river), trophic status
(oligotrophic, mesotrophic, or eutrophic), mixing (stratified or
unstratified), salinity (freshwater or saline), latitude (tropical,
temperate, or arctic), and human hydrological influence (lake or
reservoir). We also divide waterbodies into different zones ac-
cording to their mixing (epilimnion, metalimnion, or hypolimnion),
light climate (photic or aphotic), distance from shore (littoral or
limnetic), and distance from the bottom (benthic or pelagic). The
publications which codify these waterbody discretizations are
often very well-cited (e.g. Lewis Jr. 1983).

In addition to waterbody discretization, limnologists rely on
discretization in many contexts because it offers extraordinarily
useful shortcuts that can facilitate limnological progress, manage-
ment, and communication. In a hypothetical research context, a
limnologist could collect total phosphorus samples across depth
every millimetre (or even finer) to detect small-scale variation that
best reflects the continuous variation in nature. However, such
costly, high-resolution sampling might be impractical and unnec-
essary, especially if a more discrete approximation with one sample
each from the “epilimnion,” “metalimnion,” and “hypolimnion”
would suffice to answer the research question at hand. In a man-
agement context, the ecological integrity of a waterbody could be
painstakingly described using the complete nucleotide sequences
for all organisms that occupy it. But, simply classifying the water-
body’s ecological integrity as “good” or “bad” based on the presence
of a few indicator species may be adequate, depending on the
management goal. Discretization can also simplify communication
with the public. In the case of public swimming advisories, a
dichotomous “safe” or “not safe” advisory may facilitate swimmer
decisions about whether or not to get in the water. Alternatively, an
advisory stating the exact quantitative probabilities of exposure to
all toxins may overburden swimmer decision-making. Thus, lim-
nologists intuitively know that the appropriateness of any specific
discretization scheme depends on the objectives and the resources
at hand to meet those objectives.

1.3. Discretization amid an information explosion

Our objectives and our resources in limnology are changing
rapidly. Compared to previous satellite missions, recently deployed
remote sensing platforms have higher resolutions that capture
more waterbodies at higher frequencies (Palmer et al., 2015).
Continuously profiling cameras can collect underwater images of
microscopic organisms, process those images using artificial intel-
ligence, and generate real-time biodiversity profiles (Luo et al.,
2018). While further improvements are still needed, automated
dissolved nutrient sensors are becoming more accurate and less
expensive every day (Beaton et al., 2012; Nightingale et al., 2019).
These and other developments in automated sensor technology are
inspiring new questions about the drivers of fine-scale variability
(Crawford et al., 2015). Numerous computing resources are putting
advanced statistical tools at our finger tips for free (Read et al,,
2011; Winslow et al., 2016; Woolway et al., 2015). National, inter-
national, and global databases containing data from many thou-
sands of waterbodies are inspiring new questions and becoming an
increasingly important tool to understand aquatic ecosystems
(King et al., 2019; U.S. Environmental Protection Agency, 2009).
Global networks (e.g. Global Lake Ecological Observatory Network)
are making substantial progress in sharing and interpreting high-
resolution sensor data from a broad spectrum of waterbodies to
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understand their role in and response to environmental change
(Hanson et al., 2016). Mobile technologies, social media, citizen
science, and open access philosophies are reshaping the ways
limnologists communicate with each other and with the public
(Hampton et al.,, 2013; Weyhenmeyer et al., 2017).

These rapid changes will have consequences for how and when
limnologists find certain discretizations appropriate. Just as mod-
ern genomics has strengthened calls to reconsider the biological
concept of race as a scientific categorization (Yudell et al., 2016),
limnological modernity may also require rethinking limnological
discretizations. The burgeoning availability of data and research
tools is likely to lead to new discussions and reinvigorate ongoing
arguments about the appropriateness of various discretization
schemes. In aggregate, resolving these arguments could substan-
tially influence whether the ongoing information deluge improves
our science. Here, I summarise some of the advantages and disad-
vantages of discretization so that it may inform our arguments
about discretization amid the current information explosion. To
help us resolve these arguments, I offer a framework that can be
used to assess the relative usefulness of various discretization ap-
proaches and compare them to the alternatives.

2. Advantages and disadvantages of discretization

2.1. Waterbody discretization (the division of waterbodies into
types and zones)

Like pixelating an image, waterbody discretization partially
masks variability within groups, causing a loss of signal in the
gradient (Gray et al., 2019). For instance, limnologists often divide
the continuous gradient of human influence on waterbody hy-
drology into the categories, “lake” and “reservoir.” But these terms
mask the variety of waterbodies that fall along the continuous
gradient that underlies them. The term, “reservoir” can be used to
describe a wide range of waterbodies from those that have been
created by humans de novo to those that have slight modifications
in their water levels due to a dam. Discretization errors associated
with the term “reservoir” are partly reduced by adding more classes
(e.g. “run-of-river” reservoir). Adding enough classes to sufficiently
reduce discretization errors can take the limnological lexicon down
a path toward overbearing complexity (e.g. semi-lacustrine-
oligotrophic-tropical-run-of-river ~ reservoir) that impedes
communication rather than enhancing it (Biber and Gray, 2010).

Waterbody discretization is widespread, in part, because it can
facilitate communication among experts by offering useful lin-
guistic shortcuts—jargon. Single words of limnological jargon can
stand for whole paragraphs of text in plain English, so jargon can
save time and lead to the development of a unifying scholarly
identity. But just as the jargon associated with discretization can
facilitate communication among experts, it can also hamper
communication with non-experts. Jargon is widely denounced in
the public sphere by scientific communication specialists who view
it as a key boundary to public understanding of science (Venhuizen
et al., 2019). Jargon associated with waterbody discretization can
even hamper communication among experts from closely related
fields as different experts can have different definitions for the
same jargon (Chaloner and Wotton, 2011). For example, the ‘littoral
zone’ refers to the ‘shallow illuminated zone’ in freshwater ecology
but to the “intertidal zone” in marine ecology. Due to the subjec-
tivity of defining jargon, the number of definitions often proliferate.
For example, there are over 20 different definitions of the “mixed
depth” in use today in aquatic science (Gray et al., 2019; Kara et al.,
2000). Thus, waterbody discretization and its associated jargon can
be profoundly useful by expediting communication among experts,
but it can hamper communication with non-experts and experts

from closely related fields.

Discretizing waterbodies can benefit limnology by guiding ex-
pectations for how waterbodies function leading to greater focus in
our research and collaborations. For instance, many limnologists
inherently expect “discrete” classes and zones to behave in distinct
ways. Reservoirs are thought to function in fundamentally different
ways compared to lakes (Hayes et al., 2017). Some limnologists
encourage developing a unique limnology for very small ponds
(Hoverman and Johnson, 2012). And large rivers, it is argued,
should be modelled separately from other rivers (Puckridge et al.,
1998). These expectations can lead limnologists to form discrete,
collaborative teams focused on illuminating exceptionally impor-
tant research topics even if they are predominantly relevant only
for specific waterbody types and zones. As a result, ponds, lakes,
wetlands, streams, rivers, and oceans are typically studied in
isolation at both fine and broad scales due to their perceived dif-
ferences (Chaloner and Wotton, 2011; King et al., 2019).

But expectations that waterbody classes and zones represent
real structure in nature can also be a disadvantage. The compart-
mentalization of waterbodies is problematic because it counteracts
the formulation of general ecological theory and hypotheses
founded on waterbody relatedness. It has been argued that this
isolation has slowed the development of a common mechanistic
understanding of the drivers of carbon (Hotchkiss et al., 2018),
nutrient (Elser et al., 2007) and energy (Chaloner and Wotton,
2011) dynamics in aquatic ecosystems. When limnologists study
different waterbody types and zones concurrently along contin-
uous gradients, the basic commonalities among all waterbodies can
be more apparent, which promotes synthesis and general theory
formulation (Chaloner and Wotton, 2011; Hotchkiss et al., 2018).
Trans-disciplinarity is widely touted in the scientific literature
(Chaloner and Wotton, 2011), and may be key to merging the un-
derstanding generated from studying specific waterbody types and
zones.

2.2. Discretization in water management

Discretization in limnology goes far beyond waterbody classifi-
cation and zonation—discretization is also widely relied on by
limnologists when promoting certain resource management tar-
gets. For example, discrete pollution limits are promoted as a
waterbody management tool which allows polluters to pollute up
to a specific threshold without having to pay (Liu et al., 2015).
Threshold-based management is widely encouraged in the scien-
tific literature (Liu et al., 2015) and adopted by local, national, and
international management authorities. For instance, the Environ-
mental Protection Agency in the United States uses “Total
Maximum Daily Loads” (the maximum amount of a pollutant that a
waterbody is allowed to receive) to enforce discrete pollution
standards. In Europe, the Water Framework Directive requires that
waterbody status be classified as “high,” “good,” “moderate,”
“poor,” and “bad” with the goal of achieving at least “good” status
for all European waterbodies by discrete deadlines. So, discrete
management targets have been relied on for decades to control
waterbody stressors with some success (Carvalho et al.,, 2019;
Reckhow, 2001).

But in some contexts, management approaches based on
discrete management targets can be suboptimal. The effectiveness
of discrete management targets partially depends on whether
waterbodies have a predictable, well-defined, discrete capacity to
withstand stress. There is an abundant limnological literature on
thresholds in stressor-response relationships, but this literature
shows that strong thresholds in these relationships are rare, un-
certain, and difficult to predict (Groffman et al., 2006; Gsell et al.,
2016). Furthermore, potential thresholds may be dynamic
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through time, making them an unrealistic management target even
with multitudinous data from a specific system. Discrete stressor
targets can also cause defeatism—the thinking that stressor re-
ductions are valuable only if they take stressors below a threshold.
Defeatism may prevent incremental stressor reductions which are
beneficial but don’t meet the threshold. Conversely, discrete
stressor targets can cause complacency—the thinking that stressor
reductions that occur below a threshold are worthless, when
further reductions would still elicit resource benefits.

2.3. Discretization in sampling and data analysis

All data collection is inherently discrete because scientists
cannot continuously measure all of nature. As a result, all limno-
logical measurements, even high-frequency measurements, inevi-
tably reflect limnological processes at discrete points in space and
in time. Higher frequency sampling is typically more expensive, but
can be more representative of the continuous variation in nature
(Meinson et al., 2015). This trade-off between cost and realism is
widely documented and approaches have been developed for
optimizing sampling frequency (Anttila et al., 2012). Recent tech-
nological developments such as automated in situ sensors have
substantially altered the acceptability of lower frequency moni-
toring. As a result of these changes, occasional spot samples are
often not an acceptable standalone monitoring approach for many
aquatic variables (Noges et al., 2010) except when collected across
many spatially distributed waterbodies. Similarly, due to advances
in remote sensing of inland waters, measurements taken from the
center of waterbodies are no longer considered to be reflective of
individual waterbodies as a whole (Mason et al., 2016; Woolway
and Merchant, 2018).

Furthermore, limnologists’ discretized approach to designing
experiments and analysing data has also been the core of limno-
logical progress for decades. Limnologists design experiments us-
ing discrete, replicated treatments (Johnson et al., 2009); test for
statistical significance using discrete p-values; cluster data using k-
means and other clustering approaches (Maberly et al., 2020; Savoy
et al., 2019); and use classification trees to explain variability in data
by dividing it into classes based on discrete cut-offs in predictor
variables (O'Reilly et al., 2015). These discretizations can save time,
resources, and can simplify the interpretation of complex statistical
findings.

Despite the widespread dependence of limnological progress on
analysis using discretization, some approaches rely more on dis-
cretization than others. Overdependence on discretization can lead
limnologists to design limnological studies with less statistical
power that are more difficult to incorporate into ecological theory.
For instance, analysis of variance (ANOVA)—a widely used statis-
tical technique in limnology—has less statistical power than linear
regressions when both tests’ assumptions are met, yet we often
design experiments with a discrete, replicated ANOVA design
(Cottingham et al., 2005; Kreyling et al., 2018). Furthermore, linear
regression can provide quantitative output with fewer parameters
that can be more effectively incorporated into ecological models
than ANOVA output (Cottingham et al., 2005; Kreyling et al., 2018).
Simple classification tree analysis is also commonly used in
limnology, but its discretized simplicity belies its many disadvan-
tages. Simple classification trees make highly approximated rep-
resentations of continuous functions, their output can be extremely
unstable when fit with new data, and other methods vastly
outperform them according to widely ranging performance metrics
(Prasad et al., 2006). Furthermore, statisticians have made wide-
spread calls to end dichotomous significance testing because the
practice often leads to misunderstandings and misinterpretation of
results (Amrhein et al., 2019; Johnson, 2007). Just as dichotomous

significance testing has been widely criticized, so too have the
various statistical clustering approaches commonly used in
limnology for easily finding discrete structure in un-structured data
(Cormack, 1971).

3. Discretization evaluation framework

When limnologists have a choice about the extent to which they
rely on discretization, I suggest that they carefully examine the
relative value of specific discretization approaches and compare
them to the alternatives using the discretization evaluation
framework (Fig. 1). The value of any discretization system should be
judged based on the extent to which it satisfies three criteria: ob-
jectivity (independent researchers make the same conclusion
about the number and definitions of discrete boundaries), pre-
dictivity (performs well when predicting other variables), and
stability (doesn’t change when new observations contribute to the
system). The objectivity, predictivity, and stability of discretizations
should always be compared to alternatives such as analogous
continuous gradients when they are available.

To demonstrate the discretization evaluation framework, here I
use a data-driven example from the 2007 National Lakes Assess-
ment (NLA) to assess the objectivity, predictivity, and stability of
various lake depth classifications (Fig. 2). There is no broadly-
accepted and objective lake depth classification in use today, so I
created an ad hoc set of discretized gradients by iteratively dividing

* Do independent limnologists agree about the
appropriate number and location of boundaries

Objectivity between discrete groups?

* Does the discretized variable predict variation in
other variables?

Predictivity

* Does the appropriate number and location of
boundaries between discrete groups or the
predictivity change when applied to new data?

Obj$ctivity

0.75

Predictivity Stability

Fig. 1. The discretization evaluation framework. Three criteria by which discrete gra-
dients in limnology can be evaluated for their usefulness as compared to other gra-
dients. The performance of the gradients can be quantified and should be compared in
a holistic way to the alternatives. For instance, comparing the relative area of the
triangles in the radar plot (where each component is quantified and scaled from 0 to 1)
could be one way to facilitate decision-making about whether to use a discretized
gradient.
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Fig. 2. Data-driven example of the discretization evaluation framework. This example analysis could be used to support decision-making about whether to rely on lake depth
classification systems in a specific context. In the discretization evaluation framework presented here, analogous discrete and continuous gradients are evaluated for their ob-
jectivity (a—h), predictivity (i), and stability (j). The discretized lake depth gradients used here are fully subjective because no established theory can scientifically demonstrate a
priori which discretization scheme (a—g) best reflects reality. For large numbers of groups, discrete gradients are more predictive because they have lower root mean squared errors
(RMSE) when used to predict chl-a concentrations (i), although this higher level of predictivity could be considered model over-fitting. Discrete gradients are less stable (higher
cross validation RMSE) because all discrete gradients are outperformed by standard linear regression with a continuous depth gradient when evaluated through cross-validation (j).

the lakes from the NLA into evenly sized groups from a total of 2
groups (binary classification) up to a maximum of 562 groups
(given 1124 lakes in the dataset, 562 was the largest number of
groups such that each group had at least 2 lakes). I evaluated these
discretized lake depth classifications for their capacity to predict
variation in chl-a concentrations using ordinary least squares
regression (Fig. 2). I compared the performance of the model based
on discretized gradients (computationally equivalent to ANOVA) to
that using the full continuous gradient of depth in the original
dataset according to the models’ root mean squared error (RMSE).
evaluated the stability of the results through model cross validation
with a random selection of 50% of the data used for model training
and the remaining 50% of the data used for testing the model with
10,000 repetitions. The stability was characterized by the mean
RMSE from the test dataset in cross validation across all 10,000
repetitions. I found that the discretized gradients with the most
groups achieved the highest model predictivity (lowest RMSE),
although this could be interpreted as a result of model overfitting
(Fig. 2). However, the continuous gradient outperformed the dis-
cretized gradients with 9 or fewer groups, and the continuous

gradient was consistently the most stable in cross validation
(lowest RMSE in cross validation). Holistically, the higher objec-
tivity and stability (but partially lower predictivity) of the contin-
uous depth gradient could justify using the continuous depth
gradient when predicting chl-a concentrations instead of a dis-
cretized depth gradient.

Many other analyses similar to those presented here could be
used to assess continuous versus discrete gradients in other con-
texts. For example, the HydroLakes database, containing informa-
tion on 1.4 million lakes worldwide, now includes data on the
proportion of the waterbody’s volume which has been impounded
(continuous gradient) in addition to the discretized categories,
“lake” and “reservoir” (Messager et al., 2016). Tests of the relative
objectivity, predictivity, and stability of these two variables could
be illuminating. In a management context, the discretization eval-
uation framework could also be used to rigorously compare the
management outcomes when using discrete pollution targets
versus per unit pollution taxes or pollution trading that affect all
levels of pollution regardless of whether it is above or below a
discrete threshold. Pollution taxes and trading may lead to more
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optimal outcomes in resource management in some contexts
(Muller and Mendelsohn, 2009), but the relative objectivity, pre-
dictivity, and stability of these two management approaches needs
to be tested for waterbodies at broad scales. Rigorous testing of
discretization schemes according to the discretization evaluation
framework may even lead us toward objective, scientifically test-
able discretizations that avoid potentially unproductive arguments
about the appropriate number and definitions of boundaries be-
tween groups.

4. The bottom line

Regardless of a discretized gradient’s performance in the dis-
cretization evaluation framework, any calls for rejecting waterbody
discretization schemes are likely to be met with fierce resistance
because limnological progress to date has relied heavily on them.
For instance, early in limnology’s history, lakes were divided into
low, medium, and high trophic classes based on their productivity
(Carlson, 1977). So-called “trophic state classifications” expanded
rapidly following this early work, with new limnologists frequently
reinventing the scale. But in the 1970’s, limnologists began to find
the contradictions among trophic state classification systems
problematic because the class boundaries were scientifically un-
testable, preventing the development of a single general classifi-
cation system (Carlson, 1977). Robert E. Carlson argued for replac-
ing a classification-based system with a less arbitrary continuous
gradient from O to 100 called the “trophic state index” (Carlson,
1977). While Carlson’s paper receives many citations, the dis-
cretized, classification-based systems are still widely-used in
limnology today. Similar calls for replacing other waterbody clas-
sifications or zonations are likely to be met with similar resistance.
Just as Darwin and Wallace did not eliminate the species concept
with their theory of evolution, limnologists will continue to rely on
waterbody discretizations for the foreseeable future because of the
useful shortcuts that they offer.

More fundamentally, discretization is partially unassailable
because it is essential to science, language, and modern computing.
After all, science itself advances through discrete datasets, analyses,
and publications. Publications are written using language which is
constructed with discrete letters and words. Moreover, computers
are essentially discretization machines—turning precise informa-
tion into 1’s and 0’s so that it can be represented by on-off tran-
sistors in the computer’s hardware. Thus, discretization is
perpetually engrained in limnology as it is in virtually all human
pursuits. Aside from our general human reliance on discretization
for science, language, and computing, discretization may simply be
unavoidable in specific contexts. Our data may have been pre-
discretized, we may lack sufficient funds, sampling power, or
computational power to fully capture continuous gradients and
implement regression-based experimental designs. Or, we may be
temporarily required by law to discretize (e.g. section 314 of the
United States Clean Water Act requires that lakes be classified ac-
cording to their “eutrophic” character). Nevertheless, in cases
where limnologists do have a choice, rigorously questioning the
extent to which we must rely on discretization is appropriate and
timely, especially given the ongoing changes to the research
questions we ask and the resources we have at hand to address
them.

5. The future of limnological discretization

More than 100 years since Stephen Forbes’ publication of “The
Lake as a Microcosm,” we have moved beyond the idea that lake
ecosystems are discrete. Limnologists may be poised to further
transform their reliance on discretization in the next 100 years.

Radical innovations in sensing technology could largely supplant
the need for discrete water samples. Unforeseen technical, statis-
tical, and data visualization approaches could allow us to better
capture and communicate the full signal in continuous gradients.
And quantum computing could even move us one big step past
binary computing’s limitations (Arute et al., 2019). The extent to
which we benefit from these future changes will depend on our
mindfulness of discretization and the role it plays in our research,
management, and communication. Selectively rethinking dis-
cretization and applying the discretization evaluation framework
could open up new interactions, new questions, and could even
lead to the next major advance. So for now, let’s carefully weigh the
advantages against the disadvantages and compare to the alter-
natives when they are available. Doing so will improve our science.

6. Conclusions

- Discretization has profoundly benefitted the way we study,
understand, manage, and communicate about aquatic ecosys-
tems. But, limnologists sometimes have a choice over the extent
to which they rely on discretization. In these cases, discretiza-
tion’s advantages should be carefully weighed against their
disadvantages.

- The core advantage of discretization is that it can provide
extraordinarily useful shortcuts, especially when faced with
limited resources. These shortcuts can facilitate data collection,
data analysis, data interpretation, communication, decision-
making, and management while guiding expectations for how
ecosystems function.
But, discretization also has several key disadvantages in specific
contexts which are sometimes overlooked. Discretization can
inhibit communication, distract from general theory formation,
introduce unnecessary subjectivity, mask the relatedness be-
tween discrete groups, mask the variability within discrete
groups, and lead to suboptimal management approaches and
research designs.

- Discretization is partially unassailable because it is the foun-
dation of modern science, language, and computing. But recent
changes to the field of limnology including big data and high-
resolution sensors have challenged specific aspects of the way
we discretize, leading to substantial limnological advances. In
light of the rapid and ongoing changes to the field of limnology, |
encourage the careful and selective examination of limnological
discretization in terms of its objectivity, predictivity, and sta-
bility following the discretization evaluation framework. This
examination may help limnology stay relevant amid the
ongoing information explosion.
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