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Abstract
1.	 Studying the geographical distribution of species can reveal conditions and pro-

cesses that may drive species presence and abundance. Organism distribution has 
frequently been explained by climate, but the relative role of local environmental 
predictors is not fully understood. Moreover, in the freshwater realm, intrinsic 
differences existing between different categories of water bodies can lead to sig-
nificant differences in species–environment relationships. Here, we tested the 
relative importance of broad-scale climate and local environmental predictors in 
explaining plant species distributions in freshwater lakes and streams.

2.	 We built species distribution models to investigate which predictors best explain 
aquatic plant distribution in two categories of water bodies. We used species in-
ventories and records of three climate and eight local environmental predictors 
for 150 lakes and 150 streams in Finland.

3.	 We found that sets of predictors that explain the distribution of macrophyte 
species are unique depending on if species are in a lake or a stream. Overall, air 
temperature and ecosystem size were essential to predict aquatic plant species 
presence in both water body categories. Broad-scale climate predictors were al-
ways very important in explaining species distribution, while local environmental 
conditions such as water chemistry were of variable influence, depending on spe-
cies and water body category.

4.	 These results are probably due to high spatial and temporal variability and range 
of water physico-chemical parameters, especially in streams. Nonetheless, despite 
a lower relative importance than climatic factors, local environmental predictors 
also strongly affected species distributions.

5.	 Our findings highlight that incorporating local environmental conditions to spe-
cies distribution models in addition to climate predictors is necessary to improve 
predictions, particularly for distribution of stream flora. Considering the species-
specific responses of aquatic plants to their environment, studying species indi-
vidually with species distribution models represents a useful analysis.
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1  | INTRODUC TION

Understanding patterns and drivers of species distributions has in-
trigued ecologists and biogeographers for decades (Cox, Moore, & 
Ladle, 2016; Humboldt & Bonpland, 1805). The study of geograph-
ical distributions allows researchers to estimate the ecological re-
quirements or limitations of species, with the aim to disentangle 
the complexity of processes that determine their location (Brown, 
Stevens, & Kaufman, 1996). In this way, study of factors associated 
with distributions contributes to better understanding of the eco-
logical and evolutionary history of species and can provide informa-
tion crucial for conservation management. Organism distributions at 
large and regional scales have typically been explained by climatic 
factors, but less frequently by local environmental predictors such 
as physico-chemical characteristics of water or soil (Chappuis, Gacia, 
& Ballesteros, 2014; Dubuis et al., 2013). Although data on local en-
vironmental factors over large geographic scales are often less ac-
cessible and/or available than climate data, these data are important 
for understanding the ecological niche of a species. For example, 
predictions of terrestrial plant species distributions can be improved 
by including local environmental factors such as soil properties 
(Dubuis et al., 2013), and prediction of aquatic diatom distributions 
is improved by inclusion of water chemistry data in models (Pajunen, 
Luoto, & Soininen, 2016; Potapova & Charles, 2002).

Climate has been found to have a stronger structuring effect 
on species distributions in terrestrial systems than it is in aquatic 
ecosystems (Santamaría, 2002). This difference is thought to result 
from a few fundamental differences between the environments. 
The most obvious and primary difference is the intrinsically differ-
ent relationship of a terrestrial versus an aquatic plant species to 
water. The survival of terrestrial species is dependent on their ac-
cess to water and is largely influenced by climate. In contrast, aquatic 
macrophytes are obligate wetland species, but their relationship to 
water velocity, depth, or physico-chemical properties greatly influ-
ences their growth and distribution (Anten & Sterck, 2012; Bornette 
& Puijalon, 2011). Second, terrestrial species often experience high 
temperature fluctuations, whereas the aquatic environment narrows 
the temperature gradient for resident species (Nakano & Murakami, 
2001; Santamaría, 2002). Nonetheless, the relative importance of 
climate in defining species habitat compared with the local envi-
ronmental factors is somewhat poorly known in aquatic systems. 
Recently, King, Cheruvelil, and Pollard (2019) showed that abiotic 
properties such as total phosphorus (TP) and total nitrogen (TN) 
values in U.S. lakes, streams, and wetlands were not dependent on 
water body categories; however, they demonstrated that percent-
age cover of aquatic vegetation was higher in lakes and wetlands, 
and lower in streams. Exploring factors that drive freshwater spe-
cies distributions at various scales and in different ecosystems can 
improve our general understanding of species habitat preferences.

Although the influence of differently scaled environmental pre-
dictors (e.g. climate versus local environment) in explaining species 
distributions has received limited attention in freshwater habitats 
compared to other ecosystems, even less is known about how 

species distributions differ among freshwater water body categories. 
Lakes and streams represent a major freshwater resource (Dudgeon 
et al., 2006), and possess distinct physical properties resulting in 
substantial variation in their habitat characteristics. Streams present 
unidirectional running water, with frequent water level fluctuations 
due to intermittent discharges, which generate recurrent natural dis-
turbances and large variations in water chemistry (Wetzel, 2001). 
However, lakes as lentic systems have much longer hydrologic res-
idence times than streams, lower amplitude of water level fluctua-
tions, and less temporal variation in water chemistry, and are thus 
overall more hydrologically stable than lotic systems.

Recent studies on differences in community–environment rela-
tionships between lakes and streams notably focused on planktonic 
species (Crump, Adams, Hobbie, & Kling, 2007; De Bie, Declerck, 
Martens, Meester, & Brendonck, 2008) and macroinvertebrates 
(Heino & Alahuhta, 2015; Johnson, Goedkoop, & Sandin, 2004). 
Nonetheless, the extent to which climatic factors, ecosystem size, 
or water characteristics drive differences in species composition be-
tween lake and stream communities remains poorly understood. By 
studying diatoms in both lentic and lotic systems located in nearby 
study areas, Soininen and Weckström (2009) provided evidence that 
communities were structured by both local and large-scale environ-
mental factors. Szoszkiewicz et al. (2014) demonstrated in Polish 
lakes that macrophyte communities were mainly structured by water 
quality parameters related to eutrophication (total organic carbon, 
TN, Secchi depth), whereas in streams they were primarily controlled 
by substrate type. However, to the best of our knowledge, there are 
no existing studies investigating the influence of niche characteris-
tics on same plant species growing in both lakes and streams.

The differences in the frequency and intensity of disturbances 
between and within lakes and streams can result in the presence 
of different life forms (Bornette & Puijalon, 2011). Overall, the dif-
ferent life forms of aquatic plants often exhibit variable responses 
to environmental factors (Netten, Zuidam, Kosten, & Peeters, 2011; 
Xia, Yu, Wang, & Xie, 2014), due to their specific morphological 
characteristics and their position in the water column. For example, 
free-floating species are strongly dependent on nutrient availabil-
ity in the water column (Schneider, Cunha, Marchese, & Thomaz, 
2018), while floating-leaved, submerged and helophyte species can 
obtain nutrients from sediments (Barko & Smart, 1986). However, 
the growth and survival of submerged species are dependent on un-
der-water light availability, while the three other functional life forms 
have morphological primacy to obtain this resource. Therefore, rec-
ognition and evaluation of the different functional life form groups 
of macrophytes, and their responses to environmental resource 
variables that may limit their growth and distribution can reveal evi-
dence on what shapes macrophyte communities.

In this study, we used species distribution modelling (SDM) to 
investigate the relative importance of local environmental and cli-
mate predictors in explaining freshwater plant distributions, using 
data from 150 lakes and 150 streams covering a latitudinal gradient 
of c. 1,000 km in Finland. A second objective of the work was to de-
termine if plant species that occur in both lake and stream habitats 
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respond differently to environmental factors in these aquatic hab-
itats. Based on previous research (Alahuhta et al., 2013; Kosten et 
al., 2009; Rääpysjärvi, Hämäläinen, & Aroviita, 2016), we hypothe-
sised that: (1) regional climate will act predominantly on lakes and 
will be less important in streams due to higher variation in local en-
vironmental conditions (e.g. discharge) that dominate over regional 
climate; (2) the individual predictors that best predict aquatic plant 
distributions will be the same among lakes and streams; and (3) dif-
ferent life forms of aquatic plants will be sensitive to different local 
and climate predictors.

2  | METHODS

2.1 | Study sites

The studied water bodies belong to the Finnish national monitoring 
network and were evenly distributed in latitude and among stream 
basins (Figure 1). These 150 lakes and 150 streams are variably im-
pacted by human pressures, ranging from close to pristine headwa-
ters to agricultural dominated freshwaters of lowlands. In addition, 
geological and soil properties within stream basins of the studied 
water bodies are different, with diverse degrees of organic peat, 
mineral, and clay soils. The inclusion of different kinds of lentic and 
lotic systems enabled us to increase the range of local environmen-
tal conditions within the data set, leading to better comparability 
among sites across a relatively wide climate gradient.

2.2 | Species data from aquatic plant surveys

Presence and absence data of aquatic plant species in the 300 
studied water bodies were obtained from field observation data 
maintained by the Finnish Environment Institute. Lake plants were 
surveyed using a main belt transect method (Kanninen et al., 2013), 
where each 5-m wide transect extended, perpendicular to the shore-
line, from the upper eulittoral to the outer depth limit of vegetation. 
Alternatively, if vegetation covered the entire lake surface, then the 
transect was drawn to the deepest point of the basin. The number of 
transects varied between 7 and 25 (mean = 14, SD = 3.6), depending 
on lake size and number required to secure proper coverage of spe-
cies composition (Kanninen et al., 2013). Lake plants were observed 
by wading or by boat, with the aid of rake and hydroscope. The plant 
surveys were done between June and September over the period 
2006–2012. In addition to true aquatic plants (i.e. hydrophytes), we 
also recorded helophytes species, which are ecologically important 
in the boreal region (Toivonen & Huttunen, 1995).

Stream plants were surveyed from two different sections of 
100 m in each stream: a riffle and adjacent pool section (Rääpysjärvi 
et al., 2016). Each section was divided into five 20-m long subsec-
tions, where the presence of stream plant species was assessed. 
Stream plants were primarily observed by wading but also by boat 
using rake and hydroscope in larger streams. The species recorded 

in the riffle and pool section were pooled together to represent total 
plant occurrence in the whole stream. The plants were surveyed 
once at each stream in July–August between 2009 and 2016. Only 
vascular plants (i.e. hydrophytes and helophytes) were used in this 
study. The different species recorded were classified by life form as 
per Toivonen and Huttunen (1995): free-floating, floating-leaved, 
submerged, and helophyte species.

2.3 | Explanatory predictors

Similar explanatory predictors, describing climate and local environ-
ment, were used to study the distribution of aquatic plant species in 
the lakes and streams. These predictors were either resource, direct, 
or indirect variables, sensu Guisan and Zimmermann (2000), that in-
fluence the growth, development and distribution of aquatic plants 
(Figure 2). Identical local environmental predictors measured in both 
lakes and streams were alkalinity (mM), colour (mg PT/L), conductiv-
ity (mS/m), pH, TN (µg/L), TP (µg/L), and turbidity (PTU). These water 
chemistry predictors are known to strongly influence the occurrence 
and growth of aquatic plants (Rääpysjärvi et al., 2016; Toivonen & 
Huttunen, 1995), either because they are resource predictors, such 
as nutrients (e.g. TN and TP), or because they directly or indirectly 
have an impact on resource predictors (Figure 2). In addition, ecosys-
tem size (surface area [km2] in lakes and stream width [m] in streams) 
was used to represent habitat availability for plant species (Jones, Li, 
& Maberly, 2003). In lakes, water chemistry predictors were mean 
values of multiple individual samples collected between 2006 and 
2012. In streams, water chemistry data was based on mean values 
of multiple samples taken from 2006 through 2012 for majority of 
streams (134 out of 150), overlapping with stream plant surveys 
(2009–2012). For mean water chemistry values of samples collected 
during ice-free period in all lakes and most streams (n  = 134), the 
number of individual samples varied among predictors and water 
bodies, ranging from three to 50 depending on local monitoring 
frequency. For 16 streams out of 150 surveyed in year 2016, the 
water chemistry values were single samples taken simultaneously 
with the plant surveys (see Rääpysjärvi et al., 2016 and Toivanen et 
al., 2019 for further details). Year-to-year variation in hydrology and 
water chemistry may have had some influence on mean water qual-
ity values when number of samples was low. Nevertheless, for these 
water bodies, no additional measurements on water chemistry were 
available during ice-free period, while the geographical balance be-
tween lakes and rivers within the different catchment areas was an 
important criterion in selecting the studied water bodies.

Climate predictors included growing degree-days  >5°C (GDD5), 
temperature of the coldest month (January, °C) and mean annual 
precipitation (mm). These climate data, obtained from the Finnish 
Meteorological Institute (Pirinen et al., 2012), represent the most up-
dated high-resolution climate data from Finland, with 1-km resolution 
from the period of 1981–2010. Growing degree-days directly affects 
plant growth, whereas temperature of the coldest month was used 
as a proxy for negative effects of winter conditions on plants (e.g. 
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ice erosion and freezing of sediments; Lind, Nilsson, & Weber, 2014). 
Although atmospheric temperature was used, it is often known to 
closely correlate with water temperatures (O’Reilly et al., 2015). Mean 
annual precipitation represented indirect effects of water level fluctu-
ations and leaching of nutrients from land to water by runoff (Johnson, 
Richards, Host, & Arthur, 1997). In lakes, the climate predictors were 
averaged for lake surface area, whereas values of climate predictors 
were extracted for plant survey points in the study streams. The me-
dian and range values of the predictors are shown in Figure S1.

2.4 | Modelling method and statistical analyses

Among all the species inventoried (a total of 115 species for lakes, 
65 species for streams), species were included in the analyses if they 
occurred in >5% and <95% of the 150 studied lakes or streams. Thus, 

80 species were selected for lakes, and 41 for streams, with 38 spe-
cies shared between the two water body categories (Table S1).

We performed the predictor selection and the distribution model-
ling described below using R version 3.4.3 (R Core Team, 2017), with 
six algorithms implemented within the biomod2 package (Thuiller, 
Georges, Engler, & Breiner, 2016): two machine learning methods—(1) 
generalised boosted models (Ridgeway, 1999) and (2) random forest 
(Breiman, 2001)—and four regression methods—(3) generalised linear 
model (McCullagh & Nelder, 1989), (4) generalised additive model (GAM) 
(Hastie & Tibshirani, 1990), (5) multivariate adaptive regression splines 
(Friedman, 1991), and (6) flexible discriminant analysis (Hastie, Tibshirani, 
& Buja, 1994). Random forest is a classification method that grows mul-
tiple decision trees based on random subsets of the data and after a 
large number of trees is generated, they individually vote for a class, ulti-
mately generating a prediction by the forest. Generalised boosted model 
is based on a combination of boosting techniques and trees. For both 

F I G U R E  1   Location of studied lakes 
and streams situated in different river 
basins across Finland. Grey squares 
represent the position of stream sites, and 
black circles are for lake sites
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machine learning algorithms, new trees take into account the error of 
previously built trees. Generalised linear model is a regression model for 
data with a non-normal distribution, fitted with maximum likelihood es-
timation. Generalised additive model is a multiple regression model that 
uses non-parametric smoothing functions to model non-linear relation-
ships between the response and the predictors. Multivariate adaptive 
regression spline builds multiple linear regression models by partitioning 
the data and run a linear regression model on each different partition. 
Finally, flexible discriminant analysis is a multigroup classification method 
based on a mixture of linear regression models and using optimal scoring 
to separate the groups. For all six modelling techniques, we used the de-
fault parameters as implemented in R. These different algorithms have 
different strengths and limitations; thus, when testing the same phe-
nomenon, the use of multiple algorithms supports improved predictions. 
These algorithms require datasets with both presence and absence to 
perform, which was the case of our dataset as actual plant species pres-
ences and absences were recorded in the field. Therefore, we did not 
need to generate pseudo-absences.

2.4.1 | Predictor selection

We applied a protocol to select best relevant predictors for each spe-
cies among the 11 predictors (three climate predictors and eight local 
environmental predictors), separately for lakes and streams. Firstly, 
we identified intercorrelated predictors (Pearson’s r  < 0.70; see 
Figures S2 and S3) (Dormann et al., 2013), and then within each group 
of intercorrelated predictors, we obtained the relative importance of 
each predictors with three runs of 10 random permutations, as imple-
mented in biomod2. To allow comparison among the results from the 
six algorithms, the values of importance were then converted into a 

rank of importance, per run and per algorithm, with rank 1 being at-
tributed to the lowest value of importance. We computed the mean 
of rank values of a predictor for each run, and these values were then 
averaged to obtain a final rank value for each predictor. The predictor 
with the highest average rank was the most important of the intercor-
related predictors and therefore was selected.

Finally, among the previously selected uncorrelated predictors, 
we kept those that were identified as important predictors (as com-
puted by the variable importance procedure of biomod2; 4 runs) by 
at least three of the six modelling techniques. Important predictors 
did not always coincide among the six algorithms (Table S2 and S3). 
A detailed protocol of variable selection is documented in Leroy et 
al., 2014. Using this established method, we selected a subset of 
predictors suited to each species in lakes or streams. As intercor-
related predictors were not the same for lakes and streams, we cal-
culated the basic probability of each predictor to be incorporated 
into models after the first step of predictor selection (Table 1).

2.4.2 | Modelling process

We calibrated the models with a random selection of 80% of the 
presence–absence data, and evaluated the model performance with 
the other 20%, with the six modelling techniques introduced above. 
Two metrics were used to evaluate model performance: the area 
under the receiver operating characteristic (ROC) curve and the true 
skills statistic (TSS) (Allouche, Tsoar, & Kadmon, 2006; Fielding & 
Bell, 1997). The ROC analysis involves plotting sensitivity (i.e. the 
proportion of known presences predicted present, aka true pres-
ences) against 1 − specificity (i.e. proportion of known absences pre-
dicted present, aka false presences) (Peterson, Papeş, & Soberón, 

F I G U R E  2   Simplified conceptual 
framework of the relationships between 
resources, direct and indirect variables 
on aquatic plants. Underlined predictors 
are those that were used in the study. 
This figure was modified from Guisan and 
Zimmermann (2000) to be adapted to the 
case of aquatic plants and of our study
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2008). The area under the ROC curve is then compared against null 
expectations (ROC value of 0.5). Receiver operating characteristic 
values range from 0 to 1 and higher the value, the better the algo-
rithm performs at predicting species distribution. At 0, the algorithm 
never falsely identifies species absences, but it also fails at identify-
ing all known presences; at 1, the algorithm correctly identifies all 
true presences, and never misclassifies a true absence as a presence 
(i.e. no false presence). True skills statistic is a threshold depend-
ant measure of algorithm accuracy that measures the difference be-
tween sensitivity and 1-specificity. It ranges from −1 to +1, where +1 
indicates perfect agreement between predictions and observations 
and values of 0 or less indicate that the algorithm performs no better 
than random (Allouche et al., 2006). Algorithms with TSS values <0.4 
are commonly considered as performing poorly.

The calibration and evaluation steps were replicated five times per 
modelling technique. Runs with ROC < 0.5 were discarded in further 
analysis, as such models do not perform better than random predic-
tions. For each of the five runs, the predicted probabilities of occurrence 
were transformed into binary prediction using the probability threshold 
that maximises the TSS score (Allouche et al., 2006; Liu, Berry, Dawson, 
& Pearson, 2005). We then used committee averaging to obtain con-
sensus results for each modelling technique (i.e. we attributed species 
presence in a cell when more than half of the runs predicted presence; 
otherwise, we assigned species absence; Araújo & New, 2007).

3  | RESULTS

3.1 | Evaluation of models

About 11.3% of the models from lake data and 8.3% of the models 
from stream data had ROC values <0.5, indicating that such models 
perform no better than random, and were thus discarded. Calibrated 
models had mean ROC values >0.7 and TSS values >0.4 for both lakes 

and streams, but with a large dispersion of values depending on species 
and runs (Figure S4). This pattern was similar among the six modelling 
techniques. Floating-leaved species had overall lower ROC values than 
the three other life forms, based on confidence intervals (Figure S5).

3.2 | Importance of predictors

For lakes, the groups of intercorrelated predictors were (1) GDD5 
and January temperature, (2) TP and TN; and (3) alkalinity, conduc-
tivity and pH (Figures 3 and S2). For streams, intercorrelated pre-
dictors were: (1) GDD5 and January temperature; and (2) TP and 
turbidity (Figures 3 and S3). The group with GDD5 and January tem-
perature was the only one comparable between lakes and streams. 
For both the step of predictor selection among intercorrelated pre-
dictor groups (Figure 3) and the step of final predictors selection 
(Figure 4), the predictors that were considered most important by 
the models were sometimes life form dependent, or water body cat-
egory dependent. Overall, alkalinity and pH were more frequently 
selected for plants in lakes than for those in streams, while turbidity 
was more frequently included for plants present in streams than for 
those in lakes, independently of life forms (Figure 4),

3.2.1 | Free-floating species

Within the first group of intercorrelated predictors, GDD5 and 
January temperature were comparably selected between lakes and 
streams, with January temperature being preferred in two thirds of 
the cases (Figure 3a,b). In lakes, TN and TP were similarly selected, 
which was also the case for the predictors of the third group: alka-
linity, conductivity, and pH. In streams, TP was selected over tur-
bidity for two of the three free-floating species (Figure 3b).

The final step of predictor selection showed that the three 
climate predictors as well as conductivity and turbidity were se-
lected more times in lakes than in streams, while TN and colour 
were evenly selected between the two water bodies category 
(Figure 4a). Total phosphorous was selected in 100% and 80% of 
the models in streams and lakes, respectively. Ecosystem size, rep-
resented by lake area and stream width, was noticeably more im-
portant for lakes, where it was selected by 89% of the models when 
available, than for streams where it was never selected (Figure 4a).

3.2.2 | Floating-leaved species

Growing degree-days >5°C and January temperature were evenly 
selected in lakes, and GDD5 was preferred over January temper-
ature in streams (Figure 3c,d). In lakes, TN was more frequently 
selected (78%) than TP. Within the third group of intercorrelated 
predictors in lakes, conductivity was noticeably more frequently 
selected. In streams, turbidity was more efficient than TP to pre-
dict the distribution of all three floating-leaved species (Figure 3d).

TA B L E  1   Probability that each predictor had to be selected by 
a model, depending on if they were correlated with other predictor 
or not. GDD5, growing degree-days >5°C

  Lakes Streams

GDD5 0.5 0.5

January temperature 0.5 0.5

Precipitation 1 1

Conductivity 0.33 1

Alkalinity 0.33 1

pH 0.33 1

Total phosphorous 0.5 0.5

Total nitrogen 0.5 1

Turbidity 1 0.5

Colour 1 1

Area 1 NA

Width NA 1
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The final step of predictor selection showed that GDD5, pre-
cipitation and TN were more frequently selected in lakes than in 
streams (Figure 4a). TP was only available for lake species and had 
been selected by 50% of the models (Figure 4b). January tempera-
ture, conductivity, and colour were selected in the same propor-
tions (100, 67, and 67%, respectively) between lakes and streams. 
Ecosystem size was selected a bit more often in streams than in 
lakes (Figure 4b).

3.2.3 | Helophyte species

Growing degree-days  >5°C was preferred over January tempera-
ture in lakes, and these two intercorrelated predictors were evenly 
selected in streams (Figure 3e, f). In lakes, TN and TP were similarly 
selected. Within the third group of intercorrelated predictors in lakes, 
conductivity was preferred over alkalinity and pH. For the helophytes 
in streams, TP and turbidity were equivalently selected (Figure 3f).

F I G U R E  3   Percentage of predictors 
selected within intercorrelated variables 
groups by the protocol of predictor 
selection, per life form, in lakes and 
streams. n = number of species in each 
life form group. GDD5, growing degree-
days >5°C; TN, total nitrogen; TP, total 
phosphorous
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n = 40 n = 28
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Whether helophytes were present in lakes or streams, the three 
climate predictors, colour, and ecosystem size were selected in the 
same proportions among water body categories (Figure 4c). Total 
nitrogen, TP, and conductivity were considered by the models to 
be more important to predict the distribution of helophyte spe-
cies in lakes than in streams. Finally, turbidity was selected slightly 
more often for plants present in streams than for those in lakes 
(Figure 4c),

3.2.4 | Submerged species

The intercorrelated predictors GDD5 and January temperature 
were comparably selected between lakes and streams, with January 
temperature being preferred over GDD5 (Figure 3g, h). In lakes, 
TN and TP were similarly selected, which was also the case for the 

predictors of the third group: alkalinity, conductivity, and pH. For a 
large majority of submerged species in streams, TP was considered 
to be a better predictor than turbidity (Figure 3h).

The final step of predictor selection showed that TN, GDD5, pre-
cipitation, and turbidity were more frequently selected in streams than 
in lakes (Figure 4d). On the contrary, colour and TP were selected more 
often in lakes than in streams. Conductivity and ecosystem size were 
selected in similar proportions in lakes and streams (Figure 4d).

3.3 | Focus on species shared between 
lakes and streams

The patterns shown in Figure 4 were mostly similar when re-
stricted to the set of 38 species shared between lakes and streams 
(Figure S6). On average, selected predictors were similar in both 

F I G U R E  4   Total percentage of models that selected a given predictor (when the predictor was available in predictors set), in relation to 
the number of models in which the predictor was available for selection, with results for all the species present in each water body category, 
presented by life form: free-floating (a), floating-leaved (b), helophytes (c), submerged (d) species. For each condition, the maximum number 
of models was that of the number of species present by life form type and by water body categories (see Figure 3). GDD5, growing degree-
days >5°C; TN, total nitrogen; TP, total phosphorous
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water body categories only for 39% of the species in common 
(Figure 5). This percentage was highly variable among species, but 
none of the species displayed a 100% match of selected predic-
tors between lake and stream (Figure 5). Interestingly, the model 
selections of the best predictor among correlated predictors did not 
always lead to the same results between lakes and streams. Thus, 
for example, the selected predictors were completely independ-
ent for Sparganium erectum, depending on whether the species was 
found in lakes or streams. Other striking cases are those of Juncus 
filiformis, Potamogeton natans, and Utricularia intermedia, for which 
none of the three climate predictors were selected to predict their 
presence in streams. In lakes, Carex rostrata was the only species 
that presented such a pattern. When comparing evaluation met-
rics between lakes and streams, predictor selection resulted in bet-
ter models for species in streams than for lakes. For example, see 
results for J.  filiformis and U.  intermedia (Figure S7). In addition to 
qualitative differences, there were also quantitative differences be-
tween lakes and streams in the number of predictors selected. For 
instance, for Phragmites australis, GDD5 and TP were the only two 
predictors selected, while six predictors had been selected for the 
species in streams (Figure 5). Despite this difference, the predic-
tion accuracy of models was similar between lakes and streams for 
P. australis (Figure S7).

A few other patterns were noticeable when considering species 
life forms: for the three free-floating species shared between lakes 
and streams, both stream width and GDD5 were never considered 
important predictors (Figure 5). Turbidity was selected for five out of 
the seven submerged species when they were present in lakes, but 
only for one species in streams.

To visually illustrate differences in predictive performances of 
species distribution between lakes and streams, we focused on the 
predictions of GAM for four helophyte species shared between 
both water body categories that differed in prediction accuracy. 
We chose to focus on GAM arbitrarily, any of the five other mod-
els would allow to show similar examples, although on different 
species. The model showed accurate predictions of the presence 
of Glyceria fluitans in both lakes and streams (Figure 6a), whereas 
the occurrences of Sparganium emersum were not predicted ac-
curately in either lakes or streams (Figure 6b). Carex rostrata and 
Menyanthes trifoliata are two other interesting examples, the pres-
ence of the former species was better predicted in streams than 
in lakes (Figure 6c), while the opposite was observed for the latter 
species (Figure 6d). The similarities and differences in prediction 
performances for these four species seem unrelated to differ-
ences in environmental predictors or number of predictors used 
(Figure 5), or to the values of their evaluation metrics (Figure S7). 
Moreover, the performances of the models were independent of 
species prevalence (Figure S8). The model evaluation and predic-
tions could be improved for some species, such as for Elatine tri-
andra, Hippuris vulgaris, Myriophyllum verticillatum, Nymphea alba, 
P. australis, and U. intermedia. The predictions of these species’ dis-
tribution could benefit from the use of additional predictors, that 
would widen the predicted fundamental niche (less false absence 

predicted), or on the contrary, that would narrow the predicted 
fundamental niche (less false presences predicted).

4  | DISCUSSION

In this study, we investigated the contribution of climate and local 
environmental predictors by modelling the distribution of boreal 
aquatic plant species using data set from 150 lakes and 150 streams. 
We found that air temperatures and ecosystem size were crucial 
predictors of species presence in both lakes and streams, whilst the 
importance of water chemistry was significant to a variable degree 
for lake and stream species. Moreover, by comparing the model out-
comes for species shared between lakes and streams, we found that 
the set of best predictors of a given species distribution can highly 
vary between the water body category and is also quite different 
depending on life forms.

4.1 | Climate is an important predictor of 
macrophyte distributions in lakes and streams

We first hypothesised that regional climate would act predominantly 
on lakes, while local predictors will be more important in streams. 
This assumption was not supported by our models, as most local pre-
dictors did not dominantly structure aquatic plant distributions in 
streams, and climate predictors had similar importance in both water 
body categories. Instead, especially in streams, air temperature pre-
dictors were selected at least as often by models as water physico-
chemical predictors. Mean annual precipitation was also frequently 
selected by models, both in lakes and streams, which is not surpris-
ing considering its large influence on water level fluctuation, changes 
in flow velocity and nutrient input from catchment area (Tuo, Duan, 
Disse, & Chiogna, 2016), and probably on plant propagule disper-
sal for those species which disperse via watercourses (Andersson & 
Nilsson, 2002; Merritt & Wohl, 2002). Thus, the three tested climate 
predictors indicate different broad-scale environmental conditions, 
ranging from direct temperature effects to indirect local hydrologi-
cal and water chemical influences on species distributions, and dis-
tinguishing pure effects of any single predictor is most challenging. 
Similarly to our models outcome, both climate and local predictors 
have been found to explain community composition and species 
richness of aquatic plants in numerous previous studies (Alahuhta 
et al., 2013; Grimaldo et al., 2016; Heino, 2001; Kosten et al., 2009). 
Furthermore, the global β-diversity of aquatic plants has been 
shown to be affected by temperature variation within the study 
region (Alahuhta et al., 2017). However, these previous studies on 
aquatic plants focused on community composition, species richness, 
plant cover, or β-diversity patterns. Here, we explicitly quantified 
that climate is an important characteristic in explaining distributions 
of individual taxa of aquatic plants.

We found that local environmental predictors were also useful 
and highly relevant to predict species distribution, similarly to the 
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F I G U R E  5   Comparison of the predictor selected depending on the water body category for species shared between lakes and streams. 
GDD5, growing degree-days >5°C; TN, total nitrogen; TP, total phosphorous
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findings of Pont, Hugueny, and Oberdorff (2005). Incorporating fine-
scale predictors to models, such as physico-chemical predictors, can 
increase their fit for some species, but they do not necessarily im-
prove, and can even decrease, the models’ fit for other species (Gies, 
Sondermann, Hering, & Feld, 2015). This suggests that the relative 
importance of climate and local environmental predictors varies de-
pending on species, as found in the present study. However, even 
the predictors that were selected the least frequently by the models 
were, independent of life forms, considered important for 40% of 
the species. Our results indicate that neither local environmental 
predictors nor climatic effects dominate in explaining aquatic plant 
distribution at regional extent, but that both contribute to species 
distributions.

Our results must be carefully interpreted and nuanced by the 
fact that some predictors differed in their probability to be selected 
by the models, due to differences in the number and nature of cor-
related predictors between the two water body categories. One limit 
of the present study could be that we used only three climate pre-
dictors, and eight local environmental predictors to predict species 
distributions. Due to this unbalanced number between the two kinds 
of predictors, we did not directly compare models built with either 
climate or local predictors. However, the chosen climate predic-
tors are ecologically relevant to predict aquatic plant distributions 
(Alahuhta et al., 2013). Indeed, the two temperature predictors had 
been chosen in accordance with the climatic conditions encountered 
by plants in high-latitudes, where growth is mostly limited by low 
temperatures and where frost can damage plant propagules (Lind et 

al., 2014). Nevertheless, the impacts of predictors such as extreme 
temperatures would be worth exploring (Feldmeier et al., 2018), es-
pecially considering that climate change will increase the frequency 
of extreme events such as polar vortex, which could impact species 
survival and so their distribution. Some of the tested predictors are 
proxies for other environmental variables (light, nutrients, photo-
synthesis). Nonetheless, the addition of other predictors that have 
been shown to influence species distribution, such as soil variables 
(Dubuis et al., 2013), geodiversity (Toivanen et al., 2019), land cover 
(Gallardo & Aldridge, 2013; Luoto, Virkkala, & Heikkinen, 2007), 
water temperature (Cianfrani, Satizábal, & Randin, 2015), human 
footprint (Rodríguez-Merino, García-Murillo, Cirujano, & Fernández-
Zamudio, 2018), or biotic interactions (Wisz et al., 2013), could im-
prove predictive performance at least for some species. Using SDMs 
to explore the statistical relationship between species occurrences 
and environmental predictors is useful but has limitations, as models 
are an estimation of the fundamental niche based on the realized 
niche, as observed distributions are constrained by biotic interac-
tions and limiting resources (Guisan & Thuiller, 2005). Plus, the al-
gorithms each have their specific limitations producing uncertainty 
and can be more or less suited to a given species. However, using 
multiple SDMs techniques allow to obtain consensus results, cop-
ing with some of the individual limits of the techniques. While in 
many studies pseudo-absences must be generated to perform SDMs 
(Barbet-Massin, Jiguet, Albert, & Thuiller, 2012; Guisan & Thuiller, 
2005), our dataset included real absences, providing more strength 
to the predictions.

F I G U R E  6   Observed and predicted 
distribution of four species shared 
between lakes and streams. Predicted 
distribution was modelled with 
generalised additive model and with each 
set of local environmental and climate 
predictors selected, specific to each 
species. (a) Species well predicted for both 
habitats, (b) species not predicted well in 
neither habitat, (c) species well predicted 
in lakes but not in streams, and (d) species 
well predicted in streams, less in lakes
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4.2 | Different predictors shape aquatic plant 
distributions in lakes and streams

Our second hypothesis was that same predictors could explain 
aquatic plant distributions in lakes and streams. We found some 
support for this assumption, as climatic predictors were mostly 
equally important for both lake and stream plants. However, differ-
ent local environmental predictors explained species distributions 
in these two habitats. Considering that the selected physico-chem-
ical predictors varied strongly between lakes and streams even for 
same species, the finding may be related to the range of the values 
of the two predictor groups. Indeed, the values of local physico-
chemical predictors can strongly differ among consecutive years 
and for geographically adjacent water bodies (Borghini, Colacevich, 
Caruso, & Bargagli, 2008). The range in climate predictors also 
typically increases more with increasing scale than the gradient in 
local environmental variation (Willis & Whittaker, 2002). Moreover, 
GDD5 may also indirectly reflect catchment productivity, leading to 
increased influxes of carbon and inorganic nutrients to the surface 
water (Pajunen et al., 2016). Thus, our results demonstrate that local 
environmental predictors with large ranges in values across water 
bodies are of high importance to predict aquatic plant distributions 
at regional scales, but their influence on species distributions is 
more species-specific compared to that of climate predictors.

Our study agreed with some recent findings, but also revealed 
novel insights on the importance of temperature on aquatic plant 
distributions. On average, GDD5 and temperature of the coldest 
month were both important predictors of the species distributions, 
similar to previous studies (Alahuhta, Heino, & Luoto, 2011; Pajunen 
et al., 2016). Nonetheless, for the set of 38 species found in both 
habitats, plants in lakes responded more often to GDD5, which is 
an indicator of heat accumulation, having a direct effect on meta-
bolic processes and influences primary production (Brown, Gillooly, 
Allen, Savage, & West, 2004). Although we cannot distinguish direct 
temperature effects of GDD5 from indirect catchment productivity 
influences of this predictor on aquatic plant distributions (Pajunen 
et al., 2016), the majority of lake plants responding to the GDD5 
were helophytes and floating-leaved species that at water surface 
are directly exposed to air temperatures. The temperature of the 
coldest month contributes to species distributions through, for ex-
ample, ice erosion, freezing of bottom sediments, or by limiting light 
penetration and air-water gas exchanges due to thick ice and snow 
cover (Hellsten, 2001; Lacoul & Freedman, 2006). These harmful 
winter effects are often more severe in streams than in lakes, be-
cause greater moving of ice (e.g. through anchor ice formation) in 
streams remoulds sediments and thus removes plants (Lind et al., 
2014). This probably explains why stream plants responded strongly 
to the temperature of the coldest month in our study. Helophytes 
are especially vulnerable to harsh winter conditions (Hellsten, 2001), 
but species belonging to other growth forms also responded to the 
temperature of the coldest month in our investigation. Netten et al. 
(2011) showed that mild winters with less intense harmful effects 
give benefit to free-floating plants and to submerged plants with an 

evergreen overwintering strategy, over the submerged flora whose 
vascular system does not survive in winter. However, our findings do 
not clearly affirm or contradict these results.

Our third hypothesis was validated, as expected different life 
forms of aquatic plants were sensitive to different predictors. This 
was especially noticeable considering local environmental condi-
tions, as their effects on the distributions of different life forms were 
easier to distinguish among the selected predictors. Availability and 
form of carbon are highly important for aquatic plants (Sand-Jensen, 
Binzer, & Middelboe, 2007), and correlated predictors describing 
this phenomenon (i.e. conductivity, alkalinity, and pH) were often 
important for lake plants but less so for stream plants. Similarly, 
TP had a higher influence on lake plant than on stream plant distri-
butions, in accordance with findings by Szoszkiewicz et al. (2014). 
Thereby, our findings suggest that predictors indicating variation in 
water chemistry play a greater role in lakes with a slower rate of 
water replacement compared to streams. However, stream width 
and lake area were selected in most models, often equally between 
lakes and streams. Ecosystem size indeed explains the presence of 
aquatic plant species (Alahuhta, Rääpysjärvi, Hellsten, Kuoppala, & 
Aroviita, 2015; Chambers & Kalf, 1984; O’Hare, Baattrup-Pedersen, 
Nijboer, Szoszkiewicz, & Ferreira, 2006), as it probably acts as a sur-
rogate for habitat availability.

In comparison to lakes, streams subject aquatic plants to greater 
disturbances such as increased mechanical stress against stems, and 
resource allocation to rooting production for anchorage. Stream 
biota is also more prone to effects of multiple anthropogenic stress-
ors (e.g. nutrient enrichment, sediments, alterations in hydrolog-
ical morphological conditions (Hering et al., 1986), while lakes are 
most strongly affected by nutrient enrichment and eutrophication 
(Szoszkiewicz et al., 2014). These inherent differences between the 
water body categories can lead to differentiated impacts on the mac-
rophyte communities, such as lower diversity from water discharge 
(Franklin, Dunbar, & Whitehead, 2008) or increase in biomass pro-
duction due to non-limiting nutrient concentrations (Hilton, O’Hare, 
Bowes, & Jones, 2006). For these reasons, local predictors indicat-
ing physical environmental conditions in addition to water chemical 
properties are necessary when modelling species distributions of 
stream plants (Barendregt & Bio, 2003). Further studies could ex-
plore whether stream species present in riffles and pools respond to 
similar predictors, and if results for species in pools compare more 
closely to those that inhabit lakes.

To conclude, we found that different predictors shape the dis-
tribution of macrophyte species depending on if they are in a lake 
or a stream. In addition, our study indicates that broad-scale climate 
predictors are important environmental characteristics, often even 
overriding the effects of local conditions in explaining aquatic plant 
distributions at regional extent. However, our analysis also showed 
that despite lower relative importance, local environmental predic-
tors strongly contribute to aquatic plant species distributions, com-
plementarily to climate predictors. This emphasises the fact that 
both individual and joint effects of climate and local habitat varia-
tion are needed to accurately model aquatic plant distributions in 
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freshwaters. Furthermore, different life forms were impacted differ-
ently by the tested predictors, and the way different species and life 
forms use the resources available at a given time and place could 
determine the local assemblage. We demonstrated that drivers of 
aquatic plant distributions vary strongly among species, meaning 
that species respond individualistically to environmental gradients. 
Thus, species-specific species distribution models offer a promising 
tool to explore aquatic plant distributions in relation to local environ-
mental conditions and climate.
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