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ABSTRACT
China faces increasingly serious water scarcity due to the
uneven distribution of available water resources, rapid eco-
nomic development, and water pollution. The current war on
water pollution by the Chinese government requires nation-
wide water quality information at high spatiotemporal reso-
lution that can be obtained by only remote sensing (RS)
methods. However, it is challenging to remotely retrieve such
information from turbid Case-2 waters. This paper reviews four
aspects of the major achievements in remotely sensed coastal
and inland water quality in China. Specifically, achievements in
atmospheric correction prior to water quality retrieval, progress
in water-related sensor design, developments (improvements)
to existing Case-2 water algorithms, and advances in oil spill
and harmful algal bloom monitoring. Major challenges are
identified, including: 1) a large mismatch exists between the
water quality information required and RS datasets due to a
lack of professional inland water sensors; 2) planned monitor-
ing and field experiments for studying the optical properties of
inland waters are scarce; and 3) RS of urban black odorous
waters and international rivers is of great urgency. This review
may provide scientific guidelines for obtaining information
about coastal and inland waters and assist water resource
managers and aquatic ecologists in controlling water pollution.

KEYWORDS
Water quality; remote
sensing; Case-2 water;
spatial resolution; temporal
resolution; China

1. Introduction

Fresh water is a crucial resource for humans (Wada, Wisser, & Bierkens,
2014) and other life on Earth (Van Dijk et al., 2013). However, fresh water
accounts for only 2.5% of the global water, and the amount of available
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water is even less due to its uneven distribution (Oki & Kanae, 2006). Many
of these waterbodies, such as inland rivers and lakes, have been altered and
threatened by intensive human activities (V€or€osmarty et al., 2010). As such,
water quality and quantity, which are two attributes that determine water
availability, exhibit large spatial differences depending on the levels of water
withdrawal, consumption, wastewater discharge, and pollution.
As a rapidly developing country, China is facing increasingly serious

water scarcity due to the uneven distribution of water resource availability
and ongoing demands for water (Liu & Yang, 2012; Jiang, 2015; Cai et al.,
2019). It has been reported that China’s annual per capita availability of
renewable water resources (approximately 2100m3) is less than one-third
of the world average (CAE, 2000; Jiang, 2015; FAO, 2019). Taking Beijing
in arid North China and Shenzhen and Guangzhou in humid coastal
regions as examples, the mean multiyear amounts of available water resour-
ces per person were approximately 140, 170 and 520m3, respectively.
In addition to physical and economic water scarcity, water contamination

has exacerbated the shortage of water resources across China (Tao & Xin,
2014; Han, Currell, & Cao, 2016; Wang, Li, Li, Kharrazi, & Bai, 2018).
According to statistics released by the Ministry of Environmental
Protection (MEP), the water quality of one quarter of the seven major river
basins in China is unsuitable for direct human contact (classified as IV or
worse, see Table A1 for detailed definitions) (Figure 1). Approximately 40%
of other types of surface water, i.e. lakes and reservoirs, have exhibited
poor water quality (class IV or worse) in the last 15 years (Figure 1), and
this deterioration in water quality has been significantly accelerated by
nitrogen pollution and eutrophication (Gao et al., 2019). Similarly, 27% of
China’s near coastal waters are classified as poor (class IV or worse, see
Table A1 for details) (Figure 1). Due to the limited number of monitoring
sites (or the limited monitoring ability), the degree of water pollution at
the national scale is likely worse than indicated by the assessments based
on the above statistics because small rivers or tributaries with serious pollu-
tion levels were excluded from these evaluations (Han et al., 2016).
Under the impacts of increasing occurrence of extreme weather events

(i.e. droughts and floods) (e.g. Xu, Milliman, & Xu, 2010), the number of
waterbodies with poor water quality has increased (e.g. Paerl & Huisman,
2009; Chapra et al., 2017), particularly lakes and reservoirs in urban areas
(e.g. Deng, Zhang, Qin, Yao, & Deng, 2017, Deng et al., 2018; Zhang, Shi,
et al., 2018). Water pollution not only threatens water security and aggra-
vates the water crisis in China (Lu et al., 2015; Jiang, 2015; Han et al.,
2016) but also causes diseases and threatens public health (Zhang et al.,
2010; Gong et al., 2012; Tao & Xin, 2014). The management of water
pollution in China is urgent, and therefore, water resource managers in
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the Chinese government require detailed and periodic water quality
information.
Remote sensing (RS), which detects a target by measuring its electromag-

netic radiation (ER) without contacting the target directly, is recognized as
the most suitable and economical way of providing periodic and spatially
continuous information for evaluating and monitoring water quality (e.g.
Chang, Imen, & Vannah, 2015; Mouw et al., 2015; D€ornh€ofer & Oppelt,
2016). Reliable water quality information from RS data benefits water
resource management and the development of mitigation measures. For
example, founded in 2009 by the MEP, the Satellite Environment Center
(SEC) is responsible for monitoring environmental-related parameters,
including water quality, and offers crucial technological support to the

Figure 1. Surface water quality of the seven major river basins and nearshore coastal waters in
China based on decadal government statistics. Note: water quality decreases as the Roman
numerals change from I to V; the surface water quality was classified according to environmen-
tal quality standards for surface water (GB3838-2002), whereas the coastal waters was classified
according to the sea water quality standard (GB3097-1997) and specification for offshore envir-
onmental monitoring (HJ 442-2008).
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MEP for managing water environments (Zhao et al., 2017). However, due
to the complicated optical properties of waterbodies, especially inland
waterbodies, the use of RS to assess water quality remains challenging.
Therefore, the objectives of this paper were to 1) provide an update on the
studies on RS-based water quality assessments and monitoring in China
and 2) identify the current challenges and opportunities (or possible solu-
tions) for future studies as well as water resource management.

2. Theory for the RS of water quality

This section briefly describes the basic theory of using RS to assess water
quality. Figure 2a shows a simplified schematic of solar radiation transfer
and its interaction with the atmosphere, water, and sensors. In pure water,
most light is generally absorbed, and the light penetration depth in the open
ocean is much deeper than that in coastal waters (Figure 2b). The optical
properties of the open ocean (Case-1 waters) are mainly dominated by
phytoplankton that absorb light and ocean color, and phytoplankton are rep-
resented by the chlorophyll-a concentration (Chla) (Behrenfeld, Boss, Siegel,
& Shea, 2005), which is relatively easy to retrieve. However, coastal and
inland waters are generally turbid (Case-2 waters), and contain other optic-
ally active constituents in addition to phytoplankton, i.e. inorganic suspended
particulate matter (SPM) and colored dissolved organic matter (CDOM),
which have absorption spectra similar to Chla (Gordon & Morel, 1983).
When water quality retrieval methods based on Case-1 waters are applied in
turbid inland and coastal Case-2 waters, they may fail due to significant

Figure 2. Light and water: (a) a schematic map showing the radiance received by a sensor sys-
tem over water; (b) light penetration ability in two different water types. Note: Lp, Ls, Lw, and
Lb in panel (a) represent atmospheric path radiance, free-surface layer reflected radiance, sub-
surface water-leaving radiance, and bottom reflected radiance, respectively; panel (b) is cited
from Hollocher (2002).
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differences in optical properties. In addition, the amount of energy reflected
by waterbodies is relatively small compared to that reflected by soil and vege-
tation (Figure 3a). Even similar waterbodies with different chlorosity values
(or different amounts of phytoplankton cover) exhibit different amounts of
energy reflection (Figure 3b). In this case, limited ER is reflected back to the
sensors, which results in challenges in interpreting the spectral signals.
Nonetheless, the scientific community has remotely estimated the quality

of Case-2 waters by unremitting efforts using indices, such as Chla,
CDOM, and total suspended matter (TSM), as summarized in Odermatt,
Gitelson, Brando, and Schaepman (2012), Chang et al. (2015), Mouw et al.
(2015), and Palmer, Kutser, and Hunter (2015). These indices are related to
the recorded spectral signal that is backscattered from water through
empirical or analytical models (Figure 4), as follows (Schmugge, Kustas,
Ritchie, Jackson, & Rango, 2002):

Y ¼ Aþ BX or Y ¼ ABX (1)

where Y is the water quality index (e.g. Chla or TSM) and X is the signal
recorded by RS (e.g. radiance), which can be from a single band or a com-
bination of bands (e.g. band ratio). A and B are the coefficients.
For empirical methods, A and B are often determined via the relation-

ship between the sampled water quality index and RS data (e.g. Carpenter
& Carpenter, 1983). Although empirical methods with simple computation
requirements are easy to apply and can offer effective evaluation
(Matthews, 2011), such algorithms are limited to applications in certain
areas and times because coefficients are derived from site-specific samples
(IOCCG, 2000). Later, the understanding of the relationship between light,

Figure 3. Spectral characteristics of water: (a) comparison of spectral reflectance among water,
vegetation, and soil; (b) comparison of spectral reflectance between different inland waters.
Note: the vegetation and soil datasets were cited from the spectral library (Kokaly et al., 2017),
and the other data were measured using FieldSpec 3 (ASD Inc., USA). The blue lines in panel
(b) were measured under controlled experiments at the south campus of Sun Yat-Sen
University on July 23, 2011, and the green lines were measured at Wenyu River, Beijing on
June 16, 2007.
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the atmosphere, and water constituents (that influence water quality) was
improved. Specifically, it was found that apparent optical properties
(AOPs) of water, such as the RS reflectance just below the water surface
(Rrs), depend on both the medium and the directional structure of the
ambient light field, whereas inherent optical properties (IOPs), i.e. absorp-
tion and the scattering coefficients, depend on only the medium
(Ogashawara, 2015 and references therein). Therefore, bio-optical models
based on radiative transfer theory have been used to quantify the relation-
ship between IOPs and AOPs and then relate various water quality indices
to the corresponding water constituents (IOCCG, 2000; Ogashawara,
Mishra, & Gitelson, 2017).

3. Recent advances in remotely sensed water quality in China

Currently, remotely sensed water quality indices mainly include Chla,
CDOM, TSM, Secchi disk depth (ZSD), and euphotic zone depth (Zeu) as
well as parameters indicating optical properties, e.g. Rrs, the absorption
coefficient (a), and the scattering coefficient (b). In addition to these indi-
ces, some other indices required in water resource management are also
assessed and monitored in China, such as total phosphorus (TP), total

Figure 4. Simplified schematic relationship between the water quality index and RS. Note:
apparent and inherent optical properties (AOPs and IOPs) are correlated by the radiative trans-
fer equation; the relationship between Rrs and absorption and scattering coefficients (i.e. a and
b) is simplified based on the radiative transfer equation; g is geometrical factor; R is reflectance
of band i.
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nitrogen (TN), dissolved oxygen (DO), biochemical oxygen demand
(BOD), and chemical oxygen demand (COD). In this study, rather than
providing an exhaustive review of the water quality of inland and coastal
waters determined by RS in China, we mainly focus on the following cru-
cial achievements.

3.1. Advances in atmospheric correction prior to water quality retrieval

Atmospheric correction is crucial for quantitative RS (Liang, 2004), and
accurate atmospheric correction for obtaining Rrs is technically challenging
for turbid inland waters because RS signals may contain a large amount of
noise or may be saturated (Li, Hu, et al., 2017). In ocean color studies, the
purpose of atmospheric correction is to remove noise resulting from absorp-
tion (by gases and aerosols) and scattering (by air molecules and aerosols).
Atmospheric correction is commonly based on dark objects under the
assumption that seawater absorbs all light in the red and near-infrared (NIR)
spectral bands (i.e. Lw ¼0). However, while the theory can be accurately
applied in the open ocean, considerable bias is generated when applying
atmospheric correction to turbid coastal and inland waters because scattering
is enhanced by particles, and dark objects may disappear.
To address this challenge, Wang and Shi (2007) proposed an atmos-

pheric correction method by combining MODIS NIR and shortwave infra-
red (SWIR) bands. This method was shown to exhibit reasonable accuracy
in retrieving the Lw in turbid coastal waters along the east China. Later,
Wang, Shi, and Tang (2011) further improved the SWIR-based atmospheric
correction method for the highly turbid Lake Taihu and generated high-
quality Lw data. Recently, to utilize low-quality MODIS-Terra data for
inland waters, Li, Hu, et al. (2017) proposed a recovery method via noise
reduction and calibration-based atmospheric correction. The authors found
that the accuracy was significantly improved by applying the method over
turbid Lake Taihu and Lake Chaohu. The abovementioned methods can
fully remove the noise contributed by both Rayleigh and aerosol scattering.
If Rayleigh correction is simplified, e.g. allowing for the existence of aerosol
contributions, the impact of land adjacency effects on small waterbodies in
middle-lower Yangtze River lakes and the Yangtze River Estuary could be
addressed, thus increasing the amount of usable MODIS data (Feng, Hou,
Li, & Zheng, 2018).
An additional challenge in atmospheric correction for coastal and inland

waters is sunglint correction, especially for RS data with a relatively high
spatial resolution (e.g. decameter-scale pixels compared to kilometer-scale
pixels) (Harmel, Chami, Tormos, Reynaud, & Danis, 2018). Sunglint refers
to the intensive reflection of solar radiation from a water surface. Figure 5
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shows examples of sunglint contamination on waterbodies, which lowers
the signal of RS data. Studies on sunglint correction are limited (Kay,
Hedley, & Lavender, 2009; Kutser, Vahtm€ae, & Praks, 2009; Martin,
Eugenio, Marcello, & Medina, 2016; Harmel et al., 2018), and no related
work has been reported in China.

3.2. Advances in water quality retrieval

Substantial progress has been made in water quality RS in China, although
most of these studies have depended on data from international satellites
due to the relatively limited development of domestic satellites (see Section
3.3 for details). Tables 1 to 3 list the major RS-retrieved water quality indi-
ces, and the three indices that mostly influence water optical properties (i.e.
Chla, CDOM, and SPM) were analyzed as follows.

3.2.1. Chla
The Coastal Zone Color Scanner (CZCS) was launched in 1978 (Gordon
et al., 1983), and this satellite sensor was the first designed for mapping
global ocean surface Chla. Later, a second generation of ocean color satel-
lite missions began operating in the late 1990s (IOCCG, 1999), including

Figure 5. Sunglint and its impact on RS imagery: (a) a photo taken from a plane; (b) a Landsat
8 false-color image (RBG ¼ 432, path 123 and row 45) of the coastal areas and adjacent
regions of Yangjiang city in Guangdong Province scanned on April 8, 2018; (c) and (d) are
selected examples of sunglint from (b) for an inland river and a river outlet, respectively.
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thirteen sensors from 1996 to 2011, such as SeaWiFS (USA, 1997) and
MERIS (Europe, 2002), and eight polar-orbiting sensors from 1996 to 2017,
such as MODIS (USA, 1999) and OLCI (Europe, 2016) (IOCCG, 2012).
Chla estimates are mainly based on semi-analytical models using two

kinds of Rrs values from the abovementioned ocean color sensors, i.e. the
green/blue ratio using two to four bands (abbreviated as the OC algorithm)
and the red-NIR ratio using two or three bands (abbreviated as red-NIR
algorithm). The red-NIR algorithm exhibits limited bias at high Chla, i.e.
10–100mg m�3 (Odermatt et al., 2012). With the aid of field hyperspectral
measurements in Lake Taihu (Chla varying from 1 to 89mg m�3), Le et al.
(2009) found that the Chla estimation from a three-band red-NIR algo-
rithm generally performed better than those from a two-band red-NIR
algorithm and a proposed four-band algorithm performed much better
than a three-band algorithm. To broaden the applicability of the red-NIR
algorithm in complex turbid water, Yang, Matsushita, Chen, and
Fukushima (2011) proposed a semi-analytical model-optimizing and look-
up-table method. The results from using this method in Lake Dianchi indi-
cated that the MERIS-based Chla estimates were accurate. To address a sin-
gle model that may not be suitable for optically complex waterbodies,
classification-based methods were proposed, and waterbodies were classified
based on their optical properties. Then, Chla in the classified waterbodies
were estimated using the given method (Le et al., 2011). The application of
such classification-based methods with MERIS and MODIS datasets in tur-
bid Lake Taihu, the East China Sea, Yellow Sea, and Bohai Sea exhibited
effective performance (Shanmugam, He, Singh, & Varunan, 2018; Zhang
et al., 2019).
In addition to improving the red-NIR algorithm, Song et al. (2013)

developed an adaptive method based on genetic algorithms (GA-PLS) and
field spectral datasets. This method was validated in several lakes, including
Lake Taihu, which indicated that GA-PLS outperformed the three-band
red-NIR algorithm for Chla estimates. Recently, to address the low effi-
ciency of GA-PLS, Cao, Ye, et al. (2018) modified and applied a popula-
tion-based evolutionary algorithm (MDBPSO) in the eutrophic Lake
Weishan based on HJ-1A HSI imagery and found that MDBPSO could pre-
cisely estimate Chla and performed better than GA-PLS. Several studies
tested the combination of active polarimetric synthetic aperture radar
(SAR) data with hyperspectral data to improve Chla estimations for turbid
inland waters, such as in Lake Taihu (Zhang, Martti, et al., 2018), while
others proposed the application of machine learning methods to improve
the quantity and quality of MODIS Chla data (Chen et al., 2019).
The relatively coarse resolution of ocean color data (�1000m) cannot

capture small inland rivers and waterbodies or identify their heterogeneity.
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Thus, data from other high-spatial-resolution non-ocean-color sensors,
such as WV-2 (�2m) (Wang, Gong, & Pu, 2018) and Landsat (� 30m)
(Guo, Wu, et al., 2016), are commonly used to retrieve water quality indi-
ces, including Chla (Table 3). However, the estimates are commonly based
on empirical methods due to the low spectral resolution of these sensors
(i.e. normally 4 bands in visible light). Several studies have developed data
fusion methods to enhance the spatial resolution of ocean-color-based Chla
estimates using high-spatial-resolution images (e.g. CCD or OLI) (Guo, Li,
et al., 2016; Fu, Xu, Zhang, & Sun, 2018).

3.2.2. CDOM
CDOM is commonly estimated from empirical methods using single
bands, band ratios, or band arithmetic (Odermatt et al., 2012 and referen-
ces therein). Band ratios, such as Rrs in the blue (�400–500 nm)/Rrs in
the green or red (�500–700 nm), are generally correlated well with
CDOM (Matthews, 2011). However, suitable sensors to detect CDOM are
limited because significant absorption by CDOM is restricted to the blue
wavelengths, and absorption of CDOM and Chla coincide in the blue
region, leading to difficulty in separating the signals (Odermatt et al.,
2012 and references therein). These factors explain why CDOM retrieval
studies are less common than those estimating Chla and SPM in China
(Tables 1 to 3).

3.2.3. SPM
SPM is the total mass of suspended matter (also called TSM), including
suspended solids (SS) such as suspended sediment. Similar to CDOM, SPM
(TSM) and the related SS and suspended sediment concentration (SSC) are
often estimated using empirical methods and red to NIR band(s)
(Odermatt et al., 2012 and references therein). For example, Wang, Lu,
Liew, and Zhou (2009) successfully estimated SSC with large variation
(22–2610 g m�3) in the Yangtze River using regression analysis and
Landsat ETMþ band 4 (860 nm). Later, they developed an empirical algo-
rithm between SSC and band 2 (865 nm) minus band 5 (1240 nm) of
MODIS to obtain estimates for the Yangtze River with high temporal reso-
lution (Wang & Lu, 2010). Feng, Hu, Chen, and Song (2014) established a
piecewise TSM algorithm using MODIS Rrs data at 645 and 859 nm over
the turbid Yangtze River Estuary and found that the TSM decreased signifi-
cantly due to the impoundment of the Three Gorges Dam. To address the
limitations of the empirical methods, TSM was estimated using a semi-ana-
lytical method based on the intrinsic relationship between TSM and its
backscattering characteristics. Shi, Zhang, and Wang (2018) demonstrated
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that TSM could be accurately estimated using the backscattering coeffi-
cients derived from the VIIRS NIR band in turbid Lake Taihu.

3.2.4. Other indices
In addition to the achievements mentioned above, several water quality
indices required for management in China have been proposed. To further
distinguish harmful cyanobacteria in inland lakes due to Chla limitations
(i.e. different phytoplankton species could not be identified), Qi, Hu, Duan,
Cannizzaro, and Ma (2014) proposed a novel algorithm using MERIS Rrs at
620 nm to derive cyanobacterial phycocyanin pigment concentrations (PC)
for inland lakes (i.e. Lake Taihu and Dianchi). This algorithm exhibited
good performance for PC varying from 1–300mg m�3 under nearly all
observing conditions except thick clouds. Later, Sun, Hu, Qiu, and Shi
(2015) developed a new PC retrieval algorithm for Lake Dianchi based on
visible-NIR Landsat bands. Recently, Ling et al. (2018) proposed a new
method based on fluorescence emission signals at 550 and 700 nm obtained
from the HOBI Labs Hydroscat-6P to identify phytoplankton community
structures in the Bohai Sea, Yellow Sea, and East China Sea, and the
method was feasible for identifying dominant algae species. RS of BOD,
COD, DO, dissolved inorganic nitrogen (DIN), ammonia nitrogen, and
nitrate nitrogen using empirical methods has been only reported in a lim-
ited number of studies (Wang & Ma, 2001; Wang, Xia, Fu, & Sheng, 2004;
He, Chen, Liu, & Chen, 2008; Yu et al., 2016).

3.3. Advances in sensor design and corresponding algorithm development

Although spectral bands at 480–580 nm designed for ocean color RS have
been onboard the Chinese FY series meteorological satellites since 1988,
the first specific ocean color sensor launched in China was the Chinese
moderate imaging spectra radiometer (CMODIS). This sensor has 34 bands
covering 403 nm to 12.5lm and is onboard the SZ-3 spacecraft launched
in March 2002 (Chen, Shao, Guo, Wang, & Zhu, 2003). However, the first
ocean color satellite was HY-1A, which was launched in the same year and
carried the Chinese Ocean Color and Temperature Scanner (COCTS), with
10 bands covering 402 nm to 12.5lm (Figure 6). As a pilot sensor, certain
experiences have been accumulated and applied to subsequent ocean color
missions, i.e. COCTS is currently in orbit onboard HY-1B, which was
launched in 2007. In 2016, China launched its next-generation ocean
experimental sensor, Moderate-Resolution Wide-Wavelengths Imager
(MWI) with 14 visible-NIR bands (400–1040 nm), 2 SWIR bands
(1243–1252 nm and 1630–1654 nm), and 2 thermal infrared (TIR) bands
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(8.125–8.825 lm and 8.925–9.275 lm) (Figure 6), which is onboard the
TG-2 Space Lab.
Prior to the launch of MWI, studies written in English about these sen-

sors were mainly focused on processing methods, such as data quality
improvements (Chen et al., 2003), atmospheric correction (He, Pan, & Zhu,
2005), and cross-calibration to obtain radiances (Pan, He, & Mao, 2003;
Pan, He, & Zhu, 2004; Liu, Merchant, Guan, & Mittaz, 2018). A limited
number of studies have been performed on water quality. Of these studies,
one retrieved water-leaving radiance (Pan et al., 2004), one studied the
establishment of algorithms for CMODIS-based Chla determinations (Mao,
Zhu, & Gong, 2007), and another retrieved SSC in the Yangtze River
Estuary using CMODIS (Han, Jin, & Yun, 2006). In contrast, more atten-
tion has been paid to MWI than the other sensors. He et al. (2017) pre-
sented preliminary but relatively detailed retrieval methods and products
(i.e. Lw, Chla, and TSM) from MWI, and the validation results indicated
that the products were of good quality when compared to that of in situ
measurements as well as other datasets, such as GOCI, MODIS/Aqua and
VIIRS, in the turbid Yangtze River Estuary. Cao, Duan, Song, et al. (2018)

Figure 6. Timeline of Chinese ocean color sensors (a) and spectral information (b). Note:
Formosat-1, formerly known as ROCSAT-1, was designed in Taiwan, and the other sensors were
designed and launched in mainland China; the numbers in b represent the band order.
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assessed the MWI-retrieved inland water estimates (i.e. Rrs, algal blooms,
and TSM) and found that the overall performance was comparable to that
of current ocean color sensors. However, Zhou, Tian, Li, Song, and Li
(2018) suggested that a cross-calibration of MWI using MODIS data could
benefit the accuracy of water quality index retrievals in both the open
ocean and inland Lake Taihu.

3.4. Advances in RS-based operational systems and their applications

To monitor the environment and resources nationwide, including the water
environment, the SEC, which is an MEP department in China, established an
operational satellite application system for water quality monitoring. Initially,
the operation of the system was mainly based on the Terra/Aqua-MODIS
and Chinese HJ-1 satellites. Several years ago, with the development and
application of Chinese high-resolution satellites, the SEC constructed a new
high-resolution RS operational application system for water environmental
monitoring that mainly depends on the Chinese GF satellite series (from GF-
1 to GF-7) and other satellites with similar resolutions. These two operational
systems can generate continual products retrieved from the same data series
(e.g. Figure 7) and provide crucial information on algae blooms, water color,
black and odorous waterbodies, drinking water source risks, rural nonpoint
source pollution, red tides, oil spills, and thermal water pollution and thermal
discharge from nuclear plants. These systems have improved the monitoring
ability and played a great role in the state of water environmental monitoring
(Zhao et al., 2017). For example, the recent SANCHI oil tanker collision acci-
dent on January 6, 2018, in the East China Sea caused an intense fire that
continued for one week, resulting in serious ecosystem damage. The system
collected the available satellite images, including GF-3 and GF-4, over the
area beginning on January 8, which provided critical information for decision
makers. However, obvious shortcomings need to be resolved to increase the
ability of water quality monitoring. Specifically, the current system products
are mainly qualitative and provide limited quantitative information on water
indices. Additionally, validations of the products are scarce due to limited
observational sites. Furthermore, fine-resolution satellites (i.e. �1m) with
short revisit times (i.e. one to two days) are lacking.

3.5. Advances in monitoring sudden water pollution accidents

This section focuses on oil spills (red tides) in the Chinese coastal and sea
regions because sea oil spill accidents (red tides) are increasing. Oil spills
are driven by the exploitation and transportation of marine oil (Xiong,
Long, Tang, Wan, & Li, 2015), whereas red tide blooms (also termed
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harmful algal blooms, HABs) are driven by rising temperatures and pollu-
tion (Zhao, Zhao, Zhang, & Zhang, 2004; Lu et al., 2018).
In addition to the Chinese government, scientists have also been involved

in studies related to detecting and monitoring oil spills. Xu et al. (2013)
used remotely sensed oil spill areas as an important model input for simu-
lating oil spill trajectories and found that the method performed well in the
semi-enclosed shallow Bohai Sea. Liu, Li, Liu, Xie, and Muller (2018) inves-
tigated the reflectance features of oil-polluted sea ice and suggested that
AVIRIS, MODIS, Sentinel3-OLCI, Landsat8-OLI, and GF-2 could be
adopted to detect oil spills on sea ice. Jin et al. (2018) proposed a method
to identify oil slicks under various levels of sunglint in high-resolution
images (5m) from the airborne imaging spectrometer for applications
(AISA). Sun, Lu, Liu, Wang, and Hu (2018) further showed that a combin-
ation of numerical models and available RS datasets could improve the
monitoring ability and be of assistance when oil spills occur. In addition,
several monitoring systems have been developed. For example, Shi, Yu,

Figure 7. Examples showing the water quality products generated by the operational satellite
system operated by the Satellite Environment Center, the Ministry of Ecology and Environment
of China: (a) algal bloom in Lake Taihu based on GF1-WFV October 27, 2018; (b) to (e) are the
level of eutrophication, chlorophyll-a concentration, suspended solids, and transparency of Lake
Dianchi, respectively, based on GF1-WFV April 11, 2017. Note: GF1 images are RBG ¼ 432.
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et al. (2015) designed an airborne ultraviolet imaging system to monitor
and track oil slicks in coastal regions. Yan, Wang, Chen, Zhao, and Huang
(2015) developed a dynamic RS data-driven system to detect oil spills, and
tests using several accidents as examples indicated that the system could
improve oil spill simulations and diffusion forecasting. Gao, Li, Lin, and
He (2017) designed an inelastic hyperspectral lidar system to discriminate
oil pollution; laboratory experiments indicated that the system was success-
ful and could be applied in both marine and terrestrial environments. Chiu
et al. (2018) proposed an oil spill forecasting system using X-band radar,
and a case study in Taipei indicated that the forecasted oil spill trajectories
were comparable to field observations. Hou, Li, Liu, Liu, and Wang (2018)
designed an ultraviolet-induced fluorescence and fluorescence filter system
to monitor oil spills, and tests performed at the port of Lingshui (Yellow
Sea, China) indicated that the system could detect oil spills at an early
stage. The detection of oil spills using either active RS sensors (e.g. SAR) or
passive optical RS sensors with the aid of sunglint is possible.

The remote detection of red tides is commonly based on Rrs (or Chla) and
bio-optical properties (Ahn & Shanmugam, 2006; Shen, Xu, & Guo, 2012).
Methods have been developed to monitor HABs and identify phytoplankton
bloom types using ocean color sensors, such as GOCI, MODIS, and MERIS
(Lou & Hu, 2014; Xu, Pan, Mao, & Tao, 2014; Tao et al., 2015, 2017). With a
high temporal frequency of eight times per day, GOCI could be applied to
investigate diurnal changes in cyanobacteria blooms, which may be caused by
the vertical migration of cyanobacteria cells and provide guidance for future
field studies (Qi, Hu, Visser, & Ma, 2018). To further improve the understand-
ing of HABs, the phytoplankton size class (PSC) should be identified. Several
recent studies have performed such identifications over the Chinese continental
shelf sea based on GOCI, MERIS, MODIS, and SeaWiFS (Hu et al., 2018; Sun,
Shen, et al., 2018; Sun, Wu, et al., 2018; Zhang, Wang, et al., 2018).

4. Challenges

4.1. RS-based water quality information does not meet the demands
of China’s war on pollution

In 2014, the Chinese Central Government declared war on pollution and
subsequently amended the Water Pollution Prevention and Control Law
(Peking University Center for Legal Information, 2017). Since that time,
the government has issued firm policies, such as the Water Pollution
Prevention and Control Action Plan (10-Point Water Plan) (The State
Council, 2015), and unveiled guidelines to comprehensively enhance eco-
logical and environmental protection (The State Council, 2018), including
controlling water pollution and restoring degraded water ecosystems.
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Correspondingly, detailed actions were initiated, such as urban water pollu-
tion control (Xinhua News, 2018a) and a difficult battle against pollution
in the Bohai Sea area (Xinhua News, 2018b). According to the Bulletin of
first National Census for Water (MWR and NBS, 2013), lakes with an area
<10 km2 accounted for 77.4% of the investigated lakes, whereas the ratio of
small reservoirs (total storage <106 m3) was 95.2%. We found that the
minimum area of the studied lakes was at least 10 km2 (Zhang, Yao, et al.,
2014; Feng, Hou, & Zheng, 2019). In addition, more than 2000 black odor-
ous waters with a total length of 5798 km in urban areas that needed to be
restored were identified in the 13th Five-year Plan (2016–2020)
(MOHURD, 2017). Particularly in relatively developed delta cities, urban
rivers are often seriously polluted and require urgent remediation. As such,
water pollution control and the restoration of aquatic ecosystems require
adequate information. However, RS has mainly been applied in relatively
large lakes and reservoirs, and major gaps still exist that prevent such infor-
mation from being obtained for most inland waterbodies using RS data at
the required scale (Han et al., 2016). Therefore, remotely assessing and
monitoring the water quality of these waters is currently limited due to a
lack of professional sensors for inland waters, although many satellite sen-
sors provide big data. This lack of sensors has caused a mismatch between
the demands of the war on pollution in Chinese inland waters and the
availability of adequate information.

4.2. Lack of professional sensors for inland waters

As shown in the abovementioned context and Tables 1 to 3, the sensors
used for assessing inland water quality are designed for either ocean water
or land surfaces, including the Chinese Hyperspectral Imager (HSI) (115
bands covering 450–950 nm) on board HJ-1A and the Visual and Infrared
Multispectral Sensor (VIMS) (330 bands covering 400–2500 nm) onboard
the recent launched GF-5 satellite. While the data from these sensors pro-
vide distinct spectral characteristics of water absorption and reflectance,
their coarse spatial resolution (kilometer-scale) is insufficient for studying
inland waterbodies with areas smaller than 12 km2, as indicated by Feng
et al. (2019). However, inland rivers are typically short laterally, e.g. the
width of the Yangtze River is normally < 3 km (Chen, Li, Shen, & Wang,
2001); hence, coarse resolution may not capture these waters well, or the
signals may contain large uncertainty. While sensors with decameter-scale
pixel resolution (or better) designed for land monitoring can capture inland
waters with small areas or widths, the sensors may not have spectral bands
for water or the spectral resolution may not adequately capture the charac-
teristics of water absorption and reflectance (see Section 4.3 for details).
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For example, most sensors have only four bands in the visible spectrum.
With limited spectral bands, water quality indices are commonly retrieved
from empirical methods (examples in Table 3) that may have local applica-
tions. Even HIS and VIMS provide data with high spectral resolution at
30m, the narrow swath (�60 km) is far insufficient for water environment
monitoring at the national scale. The lack of professional sensors for inland
waters that can meet the demands required to tackle the water pollution
crisis nationwide is a major challenge for water resource monitoring and
management in China.

4.3. Dilemma between spatial, spectral, and temporal resolution

High spatial resolution is necessary to capture and provide accurate infor-
mation for inland rivers and small lakes and reservoirs. However, a sensor
with high spatial resolution should have a small instantaneous field of view
(IFOV). A small IFOV reduces detectable energy because as the IFOV
decreases, radiometric resolution decreases, and fine energy differences can-
not be detected. Thus, to maintain the radiometric resolution without
decreasing the spatial resolution, the detected wavelength range should be
broadened for a given band, which unfortunately reduces the spectral reso-
lution of the sensor. Conversely, a relatively coarse spatial resolution would
improve the radiometric and/or spectral resolution. The balance between
these three types of resolution is a major challenge in sensor design
(Figures 8 and 9). In addition, high-spatial-resolution data with low spectral

Figure 8. The spatial and spectral resolutions of the sensors listed in Tables 1 to 3.
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resolution commonly have a low signal-to-noise ratio (SNR), such as
Landsat-8 OLI, as summarized in Zheng and DiGiacomo (2017). Because
the SNR would affect the ability to distinguish target information from the
surrounding water, a high SNR must be preferred. Furthermore, water
quality monitoring requires high temporal resolution. Except for GOCI
(eight times per day) and MODIS (twice per day), other satellite sensors
normally provide data in a several-day cycle, which also hampers timely
water quality monitoring.

5. Future outlooks

Information on inland water quality is essential for water resource manage-
ment and aquatic ecosystem restoration. To address the problems discussed
above, especially for the large number of unstudied small lakes and reser-
voirs, a possible solution may be to assess the water quality of these inland

Figure 9. An example showing the impact of spectral bands of a sensor on the ability to
detect fine differences: false color images are in the left column, and red crosses are the target
water (a) and vegetation (b) pixels; the corresponding spectral characteristics for the water
(c) and vegetation (d) pixels are in the right column. Note: the false-color image that was
combined using a Landsat 8 (RBG ¼ 432, path 122 and row 44) scanned on October 23, 2017,
covers the coastal region of Hong Kong; the acquisition dates of the sensors differ.

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 21



waters first using empirical methods and current high-resolution sensors,
such as the GF series. Inland waters can be classified into certain categories
based on primary water quality information, and typical waters in each
class can be selected to perform further studies, including the establishment
of field monitoring networks, measurement of water optical properties and
the development of water quality retrieval algorithms. Additionally, these
processes can also result in the accumulation of fundamental experience for
developing inland water sensors.
Moreover, the long-term fundamental solution is to accelerate the develop-

ment and launch of inland water sensors. Even the current MWI has a rela-
tively poor ability to retrieve Chla in inland lakes due to design limitations,
i.e. a failure to detect signals at 700–710 nm (Cao, Duan, Song, et al., 2018).
Such limitations should be considered in the design of new sensors. In add-
ition, these new sensors should be designed with designing high spatial and
spectral resolution, a wide dynamic swath, a high SNR, and high revisit cap-
ability, e.g. the sensors on HJ-2 to be launched in 2020. Achieving such a
goal may require a substantial amount of time and funding. Therefore,
unmanned aerial vehicles (UAVs), which have been proven to be useful for
assessing and monitoring water quality (Shang et al., 2017; Xu, Gao, et al.,
2018), can be used as an alternative to monitor inland waters.
Considering the water pollution conditions and rapid urbanization in

China, monitoring urban black odorous waters is a matter of great urgency
that is good not only for the war on water pollution but also for building
eco-cities and livable civic environments. In addition, future water resource
management may require switching from single water index monitoring to
aquatic ecosystem monitoring, which requires even more information and
generates more challenges for RS monitoring.
Furthermore, some of the major international rivers in Asia originate in

China; therefore, China faces complex cross-border water and related eco-
logical problems. Especially under the Chinese government’s Belt and Road
Initiative development strategy, utilizing and protecting these international
rivers can influence China’s regional cooperation strategies with related
countries; therefore, the collection of detailed information on these remote
international rivers by RS is urgently required.
Finally, the quality consistency of RS data should be considered when

estimating water quality (Pahlevan, Chittimalli, Balasubramanian, &
Vellucci, 2019) not only for different sensor types but also for similar sen-
sor series and even the same sensor. Signal attenuation occurs over time
for a given sensor and lowers the quality of scanned data. Studies on the
impact of such inconsistencies in data quality on RS estimates are limited
in China, and few studies have been published, e.g. by Liu’s group (Fan &
Liu, 2014, 2016, 2017).
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6. Summary

Water quality information across a wide spatiotemporal scale is crucial for
water pollution control and aquatic ecosystem restoration in China, and
these data can be obtained at such scales by only RS methods. Recent
achievements in remotely assessing and monitoring coastal and inland
water quality in China were reviewed in this paper. Particular focus was
placed on the progress of sensor design and algorithm development as well
as on the necessary methods for processing RS data prior to water quality
retrieval. Additionally, advances in monitoring sudden water pollution acci-
dents such as oil spills and HABs were discussed.
Major challenges for future studies were identified in this paper, includ-

ing 1) a large gap (or mismatch) between the water quality information
requirements and current RS datasets due to a lack of professional inland
water sensors with proper spatiotemporal resolution, 2) a scarcity of moni-
toring planning (or network) for inland waters and field experiments for
studying the optical properties of these waterbodies, and 3) the fact that
the priority of RS should be urban black odorous waters and international
rivers. This review may help enhance the understanding of remote sensing-
based water quality in China. Additionally, this review will hopefully pro-
vide scientific guidelines for obtaining information about coastal and inland
waters and assist water resource managers and aquatic ecologists in con-
trolling water pollution.
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Appendix A

Table A1. Water quality standards in China.
Surface water: GB3838-2002 Coastal and sea water: GB3097-1997 and HJ 442-2008

Grade Applicability or uses Grade Applicability or uses

I River headwaters and protected
natural headwater areas

I Protected natural sea water areas

II First class water source protection
areas for centralized
drinking supply

II Sea water areas with direct human
contact or suitable for aquaculture

III Second class water source protection
areas for drinking supply
and recreation

III Industrial water supply and
recreational water

IV Industrial water supply and
recreational water with no direct
human contact

IV Development zone, e.g. coastal port

V Limited agricultural water supply
Inferior to V Unsafe for any use Inferior to IV Unsafe for any use

Source: Ministry of Environmental Protection (MEP, 1997, 2002, 2008).

Table A2. Summary of abbreviations and their definitions.
Abbreviation Definition Abbreviation Definition

Water AOPs Apparent Optical Properties Sensors AISA Airborne Imaging Spectrometer
for Applications

quality IOPs Inherent Optical Properties CCD Charge-coupled Device
indices Kd Attenuation Coefficient CMODIS Chinese Moderate Resolution

Imaging Spectroradiometer
Rrs Spectral Reflectance CZCS Coastal Zone Color Scanner
CDOM Colored Dissolved Organic Matter ETMþ Enhanced Thematic Mapper
Chla Chlorophyll Concentration GOCI Geostationary Ocean Color Imager
CSI Chlorophyll spectral index HICO Hyperspectral Imager for the

Coastal Ocean
DOC Dissolved Organic Carbon MERIS Medium Resolution Imaging

Spectrometer
FAH Floatingmacro Algae Height MODIS Moderate Resolution Imaging

Spectroradiometer
FAI Floating Algal Index MSI Multi-Spectral Instrument
FLH Fluorescence line height OLCI Ocean and Land Color Instrument
AFAI Adjusted Floating Algal Index OLI Operational Land Imager
GABI Generalized Algal Bloom index PMS Panchromatic and

Multispectral Sensor
IGAG Index of floating Green Algae for GOCI SeaWiFs Sea-viewing Wide

Field-of-view Sensor
PC Phycocyanin Pigment Concentration TIRS Thermal Infrared Sensor
PCI phycocyanin index TM Thematic Mapper
POC Particulate Organic Carbon VIIRS Visible Infrared Imager

Radiometer Suite
SAI Spectral absorption index WFV Wide Field of View
SPM Suspended Particulate Matter WV-2 Worldview 2
SS Suspended Solids Spectral

bands
MIR Mid-Infrared

SSC Suspended Sediment Concentration NIR Near-Infrared
SST Sea Surface Temperature SWIR Shortwave Infrared
TIN Total Inorganic Nitrogen TIR Thermal Infrared
TIP Total Inorganic Phosphorus UV Ultraviolet
TN Total Nitrogen Others ANN Artificial neural network
TP Total Phosphorus NTU Nephelometric turbidity units
TSM Total Suspended Matter
TSS Total Suspended Solids
ZSD Secchi Disk Depth
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