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a b s t r a c t

Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton
communities is of huge importance in the current context of increasing anthropogenic pressures on
natural ecosystems. This is of particular concern in densely populated urban areas where usages and
impacts of human populations onwater ecosystems are strongly interconnected. Microbial biodiversity is
commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few
studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and
their consequences on the structure and functioning of these communities. Here, we studied the causes
and consequences of phytoplankton dominance in 50 environmentally contrasted waterbodies, sampled
over four summer campaigns in the highly-populated Île-de-France region (IDF). Phytoplankton domi-
nance was observed in 32e52% of the communities and most cases were attributed to Chlorophyta (35.5
e40.6% of cases) and Cyanobacteria (30.3e36.5%). The best predictors of dominance were identified
using multinomial logistic regression and included waterbody features (surface, depth and connection to
the hydrological network) and water column characteristics (total N, TN:TP ratio, water temperature and
stratification). The consequences of dominance were dependent on the identity of the dominant or-
ganisms and included modifications of biological attributes (richness, cohesion) and functioning
(biomass, RUE) of phytoplankton communities. We constructed co-occurrence networks using high
resolution phytoplankton biomass and demonstrated that networks under dominance by Chlorophyta
and Cyanobacteria exhibited significantly different structure compared with networks without domi-
nance. Furthermore, dominance by Cyanobacteria was associated with more profound network modi-
fications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger
disruption of the structure and functioning of phytoplankton communities in the conditions in which
this group dominates. Finally, we provide a synthesis on the relationships between environmental
drivers, dominance status, community attributes and network structure.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Continental aquatic ecosystems are considered among the most
vulnerable to the combined pressure of anthropogenic activities
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and climate change (Adrian et al., 2009). In the recent decades,
these pressures have led to an increase in the frequency and in-
tensity of phytoplankton blooms in lakes all around the world
(Aguilera et al., 2017b; Almanza et al., 2018; Beaver et al., 2018;
Dokulil and Teubner, 2000; Moura et al., 2018; Ndlela et al., 2016;
Paerl and Huisman, 2008; Paerl and Otten, 2016). Phytoplankton
blooms correspond to rapid increases of primary producer's
biomass, often associated with the dominance of only a handful of
taxa. Even if blooms are naturally occurring phenomena, repeated
dominance events have been associated with reduced number of
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species in eukaryotic and prokaryotic communities in lake eco-
systems (Bagatini et al., 2014; Louati et al., 2015; Toporowska and
Pawlik-Skowro�nska, 2014; Yang et al., 2017b). In addition, the
decomposition of phytoplankton blooms has been shown to
generate greenhouse gases (CO2, CH4, N2O) and release dissolved
nutrients that can retroactively favor climate change and eutro-
phication (Li et al., 2017). Further, biomass accumulation into a
single group of primary producers can modify the resource use
efficiency of phytoplankton and the transfer of biomass to
zooplankton communities (Filstrup et al., 2014; Tian et al., 2017).
Ultimately this may generate ecosystem-wide modifications of
food web dynamics leading to trophic collapse (Filstrup et al., 2014;
Ullah et al., 2018), impacting on the long term the numerous ser-
vices that lakes provide to human populations (Vaughn, 2010). This
is of particular concern in densely populated urban areas where
usages and impacts of human populations on lakes ecosystems are
strongly interconnected. Surprisingly, studies at the regional scale
on the drivers of dominance in phytoplankton communities are still
relatively scarce (Almanza et al., 2018) or were mostly focused on
Cyanobacteria (Beaver et al., 2018; Marion et al., 2017; O'Farrell
et al., 2019) and sometimes on only one or two species (Bonilla
et al., 2012; Marmen et al., 2016). Moreover, there is no compari-
son of the consequence of dominance by various organisms on the
structure and functioning of phytoplankton communities.

There is increasing evidences that the capacity of microbial
systems to support ecological functions and resist environmental
forcing are emerging properties arising from the interactions be-
tween many taxa (Dai et al., 2019; Faust and Raes, 2012; Goldford
et al., 2018; Peura et al., 2015; Shi et al., 2016). Network-based
approaches provide an integrated representation of such inter-
taxa associations in microbial communities (Barber�an et al., 2012;
Deng et al., 2012) and were thus recently proposed as potential
indicators of environmental quality (Karimi et al., 2017). Similarly,
other approaches have been developed to estimate the amount of
cohesion experienced by microbial communities, with the under-
lying idea that this constitutes a fundamental yet neglected facet of
the biodiversity of microbial communities (Dai et al., 2019; Danczak
et al., 2018; Herren and McMahon, 2018, 2017). Most studies on
planktonic networks in lakes focused on bacterial communities or
were based on sequencing data (Van Goethem et al., 2017;
Woodhouse et al., 2016; Yang et al., 2017a; Zhao et al., 2016).
Additionally, there are few studies related to the impact of domi-
nance on the structure of phytoplankton networks (Carey et al.,
2017; Moe et al., 2016), despite the fact that recent studies have
shown the under-appreciated role of evenness (the inverse of
dominance) in shaping microbial co-occurrence networks (Faust
et al., 2015; Liu et al., 2019a,b; Xue et al., 2018). In addition, the
ability of network approaches to provide meaningful ecological
information and to reflect the impact of dominance on commu-
nities is still a matter of debate (R€ottjers and Faust, 2018).

In this study, we wanted to address two main objectives. In a
first time, to identify the factors driving the dominance by a limited
number of taxa in phytoplankton communities from periurban
waterbodies located in a highly-populated region and representing
contrasted environmental conditions (e.g. size, depth, watershed
characteristics, anthropogenic pressure). In a second time, to
determine the consequences of dominance on the structure and
functioning of phytoplankton communities, and more particularly
on the characteristics of co-occurrence networks. To do so, we
analyzed phytoplankton communities across four summer cam-
paigns in 50 waterbodies located in the IDF region and estimated
the absolute biomass of taxa composing them. Then, we combined
variables at various spatial scales (water column, waterbody,
catchment) to identify the drivers of dominance and analyzed its
consequences on the biological and ecological characteristics of
these communities. Our approach is based on the hypothesis that
dominance should be triggered by a combination of drivers directly
related to the intensity of human pressures on these ecosystems
with consequences on the structure and functioning of phyto-
plankton communities depending on the dominant phytoplankton
group.

2. Material and methods

2.1. Study area, sampling and in situ data acquisition

A stratified sampling strategy was used to select 50 waterbodies
(Figure A1) representative of the contrasted environmental condi-
tions observed in the 248 waterbodies of IDF with a surface area
>5 ha (Catherine et al., 2008). According to the chlorophyll a-based
OECD definition (OCED, 1982), 6% of the selected waterbodies are
oligotrophic, 24% mesotrophic, 26% eutrophic and 44% hyper-
eutrophic (Catherine et al., 2010). Sampling was conducted over
two weeks in summers 2006, 2011, 2012 and 2013, where we
sampled 50, 48, 49 and 49 waterbodies, respectively, providing a
total of 196 phytoplankton samples. To integrate spatial heteroge-
neity, each waterbody was sampled in three stations and each
station was sampled at three depths using a 5L Niskin water
sampler. The nine samples per waterbody were pooled for micro-
scopy analyses. Ammonium (NH4

þ), orthophosphate (PO4
3�), total

nitrogen (TN) and total phosphorus (TP) analyses were carried out
using colorimetric methods previously described (Beck et al., 1992).
Nitrate (NO3

�) was measured using a DX600 ion chromatograph
equipped with an AS14 Ion Pack analytical column (Dionex
Corp.,Westmont, IL). Dissolved oxygen concentration, water tem-
perature, depth and pH were measured using a multiparameter
Sea-Bird SBE 19 Seacat Profiler (Sea-Bird Electronics Inc., WA). The
values for each of the three sampling stations were averaged to
obtain a single value per waterbody.

2.2. Phytoplankton data

Phytoplankton characterization was done in triplicate from the
pooled nine samples from each waterbody using an inverted mi-
croscope (Nikon Eclipse TS100) following the Uterm€ohl method
(CEN (European Committee for Standardization), 2006). A mini-
mum of 500 units (single cells, colonies and filaments) were
counted in each sample. To estimate the biovolume, each identified
taxon was associated to a geometric shape (Hillebrand, 1999; Sun
and Liu, 2003). For each waterbody-campaign combination, we
measured the dimensions on 30 individuals from each taxon rep-
resenting more than 5% of the total abundance, and reported it in a
database that was used to infer the biovolume of those taxa when
they represented less than 5% of the total abundance. The bio-
volume of rare taxa was taken from the HELCOM phytoplankton
check list (Olenina et al., 2006). Phytoplankton carbon biomass was
estimated from biovolumes assuming a density of 1 g cm�3 as
suggested elsewhere (Filstrup et al., 2014; Holmes et al., 1969).

We estimated three proxies of phytoplankton communities
functioning. Total community biomass was estimated as the sum-
med phytoplankton carbon biomass in the community (Filstrup
et al., 2014). Resource use efficiency (RUE) was estimated as com-
munity biomass divided by the amount of available resources, both
for TP and TN (Ptacnik et al., 2008). Although the sampling strategy
and the counting procedure were shown to provide accurate esti-
mates of local taxa richness (Maloufi et al., 2016), direct estimation
of taxa richness might be biased by low detection limit of rare taxa
in communities under a strong gradient of dominance. To safeguard
against such a bias, community taxa richness was estimated from
individuals counts using abundance-based Chao extrapolation
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method (function estimateR from the R package vegan v 3.4.4; (Chiu
et al., 2014; Oksanen et al., 2016).
2.3. Determination of taxa connectedness and community cohesion

We used the recently developed cohesion framework (Herren
and McMahon, 2018, 2017) to describe the potential of individual
taxon for inter-taxa associations (i.e. connectedness) but also the
overall degree of connectivity within communities (i.e. cohesion).
First, we estimated the pairwise correlation matrices between taxa
across all communities, separately for positive and negative cor-
relations. Then, we used a null model to account for bias in these
correlations due to the skewed distribution of taxa biomass (Herren
and McMahon, 2017). We followed the authors recommendations
to select appropriated type of null model and after considering taxa
distribution across and within communities we choose to maintain
taxa average biomass while randomizing the data. Then, “expected”
correlations generated by the null model were subtracted from the
original correlation matrices to obtain corrected correlations
matrices. For each taxon, the average positive and negative cor-
rected correlation corresponded to their positive and negative
connectedness values, respectively. Connectedness was estimated
for the 227 taxa (out of the 506 detected) that appeared in at least
four out of the 196 sampled communities. For each community,
cohesion was calculated as the summed connectedness of taxa
composing the community, weighted by their respective biomass.
Because positive and negative connectedness are calculated sepa-
rately there are two metrics of cohesion, a positive and a negative
one.

Differences in connectedness between eight phytoplankton
phyla (i.e. Bacillariophyta, Chlorophyta, Cryptophyta, Cyanobac-
teria, Dinophyta, Euglenophyta, Chrysophyta and Xantophyta)
were tested using Kruskal-Wallis rank sum test and Dunn test (R
package dunn.test; Dinno, 2017).
2.4. Definition and estimation of dominance

The first step to identify the drivers and consequences of
dominance in phytoplankton communities was to identify groups
of communities under various dominance scenarii. In other terms,
we needed to identify (i) whether communities were under
dominance by a reduced set of taxa or not, and (ii) what was the
identity of the dominant taxon. In a first time, for each community
we calculated a dominance index that corresponded to 1 minus the
Pielou evenness index estimated using biomass matrices (even-
ness¼H’/log(S); with H’¼ Shannon-Weiner diversity and S¼ taxa
richness). This dominance index ranged from 0 when the biomass
distribution across taxa was perfectly even to 1 when community
biomass corresponded to a single taxon. Then, this index was used
to separate communities not under dominance (i.e. with in-
dex< threshold) from those under dominance (index> threshold).
In a second time, communities considered under dominance in step
1 were grouped according to the identity of the dominant phyla,
that is the phyla whose relative biomass was above a selected
threshold. In order to avoid biases related to the selection of a
unique threshold for each of these steps, we used a range of values
for the dominance (0.45, 0.5, 0.55) and relative biomass (0.45, 0.5,
0.55) thresholds, which generated nine thresholds combinations
that were used to separate communities into various dominance
groups (i.e. not-dominated and dominated by different phyla,
Table A1). Data were analyzed in a similar way for each of the nine
thresholds combinations and the results were summarized across
all combinations to identify the global trends in our data.
2.5. Identification of the drivers of dominance in phytoplankton
communities

To identify the environmental drivers of dominance in the IDF
region, we used classification models and variables at the water
column, waterbody and catchment scales to p the dominance
group in which communities belong to. The set of predictor vari-
ables was defined on the basis of their assumed contribution to
the environmental conditions experienced within the water-
bodies and modified from (Table A2, Catherine et al., 2010). At the
water column scale, nutrient concentration (total N and P) were
used to reflect the quantity of available resources, while water
temperature and thermal stratification were used to reflect
physical conditions of the water column. At the waterbody scale,
several predictors related to their characteristics were included.
Mean depth and waterbody surface were used as variables
reflecting the capacity of the lake to dilute nutrient loadings.
Waterbodies position within the landscape was reflected by their
altitude, their connection to the hydrological network (i.e. the
network of channels connecting small rivers and waterbodies
throughout the IDF region) or their location in a regularly flooded
area. At the catchment scale, the ratio between catchment and
waterbody size was used to reflect the loading ‘potential’ of a
catchment system relative to the waterbody buffering capacity
(Almanza et al., 2018). The density of drainage connections within
catchments was considered as it affects the catchment's ability to
transport nutrients. Land use variables such as the proportion of
catchment surface classified as forest, agricultural and urban,
suburban or industrial referred as impervious cover were included
as they constitute variables known to affect both the quantity and
nature of loading. Variables at the catchment scale were estimated
using the Carthage 3.0 hydrological database and the MOS data-
bases (“www.iau-idf.fr”).

Two classification approaches were compared, random forest
(RF using the randomForest function from the R package random-
Forest v 3.4.4, with n¼ 1000 trees, Liaw and Wiener, 2002), which
has been shown to accurately predict the eutrophication level of
waterbodies in the region (Catherine et al., 2010) and multinomial
logistic regression (MLR) using the multinom function from the R
package nnet v 3.4.0 (Venables and Ripley, 2002). Three models
were tested (Table A3). Model 1 was the more complex and aimed
at predicting the classification of communities into six groups that
corresponded to the absence of dominance or the dominance by
Bacillariophyta, Chlorophyta, Cyanobacteria, Dinophyta or other
phyla. Model 2 focused on predicting the dichotomy between
dominated versus not-dominated communities. Model 3, focused
on communities under dominance and aimed at predicting the
identity of the dominating taxon. For each model the RF and MLR
methods were compared based on the proportion of communities
accurately classified in their respective group (i.e. confusion
matrices). The predictor variables that contributed to the classifi-
cation success were subsequently identified using likelihood ratio
Chi-square test (O'Farrell et al., 2019; Venables and Ripley, 2002).

2.6. Determination of the consequences of dominance on
community-level properties

To determine the consequence of dominance at the community
level we compared the communities under various dominance
scenarii in terms of community biomass, estimated taxa richness,
RUE (separately for N- and P-based RUE) and cohesion (positive and
negative). As widely different numbers of communities composed
the different dominance groups, global and pairwise differences
between groups were tested using non-parametric Kruskal-Wallis
rank sum test and Dunn test, respectively (R package dunn.test;
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Dinno, 2017). Community biomass and RUE were log transformed
before analyses.

2.7. Construction and characterization of co-occurrence networks

Co-occurrence networks were used to summarize the impact of
dominance by a limited number of species on the structure of
phytoplankton communities (Deng et al., 2012). Albeit promising,
network approaches are not devoid of limitations (R€ottjers and
Faust, 2018). First, a large number of replicates are required to
create a single network as its construction relies on co-variations in
the biomass of taxa across communities. Hence, only the three
groups with the largest number of communities were analyzed
using this approach: no-dominance (17< n< 56 depending on the
selected thresholds), dominance by Chlorophyta (22< n< 39) and
dominance by Cyanobacteria (22< n< n 31). Second, microbial
data are compositional by nature (Faust and Raes, 2012) and are
thus prone to spurious correlations (Jackson, 1997; Lovell et al.,
2011). To limit these compositional biases, we used absolute taxa
biomass to estimate taxa association. Third, microbial matrices
contain a large proportion of zeros, a phenomenon referred as the
data sparsity problem (Paulson et al., 2013). Hence, organisms ab-
sent from toomany samples are often excluded from the analysis in
search for a trade-off between the amount of available data and
their reliability. Here, networks from each group were constructed
using taxa detected in more than 12.5% of communities, which
corresponded to a compromise between the need to keep taxawith
a maximum number of observations to accurately estimate their
co-occurrence and the need to keep enough taxa in the analysis to
construct networks that are representative of the communities
observed in the field (we also tried with 7.5, 10, 12.5, 15, 20 and 25%,
R€ottjers and Faust, 2018). Another issue lies in the choice of the
metric used to estimate taxa association, which should be made to
reduce as much as possible the number of false-positives (Karimi
et al., 2017). Here we used the Pearson correlation, which is the
standard in microbial networks studies and has been successfully
used in associationwith RandomMatrix Theory in soils (Deng et al.,
2012; Wang et al., 2015), rhizosphere (Shi et al., 2016) and lakes
(Yang et al., 2017b; Zhao et al., 2016). This index assumes linear
relationships between taxa biomass and is sensitive to data sparsity
and compositional issues (Kurtz et al., 2015). However, we are
confident that we considered all the ways to reduce the impact of
methodological biases on our correlation-based analyses. Then,
Random Matrix Theory (RMT) was used to objectively identify a
cutoff determining which associations were kept in the final
network (Luo et al., 2006). Networks were generated using the
Molecular Ecological Network Analyses (MENA) pipeline (Deng
et al., 2012) and represented using Cytoscape 3.6.0 (Shannon
et al., 2003).

Networks are composed of nodes, which correspond to indi-
vidual taxon, connected by links (or edges), that represent signifi-
cant associations between nodes. Networks structure was
characterized using indexes derived from the graph theory
(Pavlopoulos et al., 2011) and recently suggested as potential bio-
indicators of the state of a system (Karimi et al., 2017). At the node
level, we estimated two centrality indexes describing the impor-
tance of nodes in the network. Node degree was defined as the
number of links to this node while node betweenness was defined
as the number of geodesics (i.e. shortest path between two nodes)
passing through the node. Betweenness reflects how central and
influent a node may be in the network by being on the paths
relating other nodes in the network. We also tested whether the
biomass of a taxonwas related to its centrality in the network using
correlation tests (cor.test function in R). Nodes clustering coefficient
was used to describe how well a node was connected with its
neighbors. At the network level, we estimated the proportion of
positive and negative links, along with global network properties
(Deng et al., 2012). Average geodesic distance corresponds to the
average length of the shortest path between every pairs of nodes in
the network. Geodesic efficiency reflects the size of the network
while network density reflects its complexity and corresponded to
the ratio between realized and potential links.

3. Results

3.1. Characteristics of phytoplankton communities in the
waterbodies of the IDF region

A total of 506 phytoplankton taxa corresponding to 181 genera
were identified across the 196 samples (four campaigns with
48e50 waterbodies), 72.5% were classified at the species level and
the remaining 27.5% at the genus level. The generic term taxa will
be used in the text to refer to the diversity unit used in this study.
Community richness ranged from four to 213 taxa per community,
with an average of 42.6± 27.8. The proportion of communities
identified as dominated by a reduced number of taxa during
summer in the IDF region ranged from 31.6 to 51.5%, depending on
thresholds combinations used to define groups (Table A1). The
proportion of communities not under dominance was more vari-
able and ranged from nine to 29%. Two phylum, the Chlorophyta
and the Cyanobacteria, represented most of the cases of domi-
nance, with 35.5e40.6% and 30.3e36.5% of dominance cases,
respectively. The most dominant Chlorophytes taxa included Coe-
lastrum polychordum, Botryococcus sp., Pediastrum boryanum,
Pediastrum simplex, Pediastrum duplex and Pandorina sp. The most
dominant Cyanobacteria taxa included Aphanizomenon flos-aquae,
Dolichospermum sp., Aphanizomenon klebahnii, Planktothrix agard-
hii, Dolichospermum flos-aquae and Microcystis aeruginosa. The
other phyla dominated in a smaller number of cases: Dinophyta
(9.4e11.0%), Bacillariophyta (7.3e9.0%) and the remaining other
groups (8.8e12.5%).

3.2. Association potential of phytoplankton organisms

The inter-taxa association potential (i.e. connectedness) was
estimated for the 227 most occurring taxa and significant differ-
ences were observed across phyla. The effect of phylum was
stronger for positive than for negative connectedness (Kruskal-
Wallis test, p.value< 0.001 and 0.039, respectively, supplementary
Figure A2 and Table A4). Pairwise tests revealed that Cryptophyta
and Dinophyta exhibited significantly stronger negative connect-
edness than other phyla (Dunn test, p.value< 0.05, Table A3).
However, these two groups exhibited highly variable negative
connectedness and were represented by a limited number of taxa
(n¼ 4 and 5, respectively). In terms of positive connectedness,
Cyanobacteria differed significantly from five out of the seven other
phyla (Dunn test, p.value< 0.05, Table A5), with the exception of
Xantophyta and Bacillariophyta. This later phyla was significantly
different than Chlorophyta. These results position Cyanobacteria
apart from the other phytoplankton phyla, with lower positive
inter-taxa association.

3.3. Environmental drivers of dominance in phytoplankton
communities

Classification approaches were used to identify the environ-
mental factors that determined the dominance status in phyto-
plankton communities (cf. Table A3 for a description of data). For
each of the three tested models, multinomial logistic regression
(MLR) was more accurate than random forest (RF) to determine the



Table 1
Accuracy of classification approaches for the identification of dominance status in phytoplankton communities.

MLR RF

Model 1 0.63± 0.07 0.43± 0.03
Bacillariophyta 0.84± 0.16 0.17± 0.16
Chlorophyta 0.68± 0.07 0.50± 0.16
Cyanobacteria 0.61± 0.06 0.55± 0.12
Dinophyta 0.61± 0.23 0.00± 0.00
Others 0.73± 0.19 0.33± 0.07
No dominance 0.59± 0.06 0.39± 0.20

Model 2 0.69± 0.08 0.67± 0.12
Dominance 0.73± 0.09 0.84± 0.13
No dominance 0.58± 0.17 0.19± 0.16

Model 3 0.80± 0.14 0.57± 0.02
Bacillariophyta 0.98± 0.06 0.31± 0.26
Chlorophyta 0.79± 0.14 0.74± 0.03
Cyanobacteria 0.81± 0.14 0.72± 0.06
Dinophyta 0.72± 0.22 0.00± 0.00
Others 0.83± 0.16 0.37± 0.06

This table represents the proportion of communities under dominance by a given group that were correctly classified as dominated by this group. For each model and each
group, accuracy values were averaged (mean± sd) across the nine combinations of dominance thresholds. MLR: multinomial logistic regression; RF: random forest.

A. Escalas et al. / Water Research 163 (2019) 114893 5
dominance status of phytoplankton communities using the
selected predictor variables (Table 1). Indeed, MLR accurately
classified communities in 63, 69 and 80% of the cases while RF
accurately classified communities in 43, 67 and 57% of the cases, for
models 1, 2 and 3, respectively. This was mostly due to the low
accuracy of RF in categories with low sample sizes (i.e. Bacillar-
iophyta, Dinophyta and Others categories). Interestingly, both
models that included a no-dominance category (1 and 2) exhibited
a low classification accuracy for this category.

The predictors that contributed in the accuracy of MLR models
included variables at various scales, from thewater columnphysical
and chemical features to the catchment characteristics (Table 2).
Overall, the variables with the highest number of significant con-
tributions were the total N concentration followed by the water
temperature, the TN:TP ratio and the connection of the waterbody
to the hydrological network, while water thermal stratification,
depth and waterbody surface contributed less frequently.
Regarding the quantitative contribution to classification accuracy
(i.e. c2 values), the connection of the waterbody to the hydrological
network, the water temperature and TN:TP ratio were the promi-
nent variables. Variables representing the state of thewater column
Table 2
Environmental drivers of dominance in phytoplankton communities.

Predictors Model 1

Average c2 number of p.value<

Water column Total Nitrogen 9.4 4
Total Phosphorus 4.2 0
N:P ratio 9.3 2
Temperature 9.6 3
Thermal stratification of lake water 7.0 1

Waterbody Surface of waterbodies 7.0 1
Depth of waterbodies 5.8 1
Altitude of waterbodies 7.3 1
Connection with hydrological network 12.9 3
Waterbody is on a flooded area 2.8 0

Catchment Surface of catchment 4.4 0
Catchment to waterbody surface ratio 5.3 0
Drainage intensity 6.7 0
Percentage of impervious surface 0.6 0
Percentage of agricultural surface 1.8 0
Percentage of forested surface 0.4 0

The three models are multinomial logistic regressions (MLR). Average c2 values and numb
across the nine threshold combinations.
and the characteristics of the waterbody were mostly influencing
classification accuracy in models that included the identity of the
dominant taxon (models 1 and 3). In model 2, only TN:TP ratio was
significant across the nine tested dominance thresholds.

3.4. Structure and functioning of phytoplankton communities under
various dominance scenarii

We compared several community-level properties across
dominance scenarii to determine whether dominance and the
identity of the dominant group were associated with differences in
the structure and functioning of phytoplankton communities
(Fig. 1). All the tested variables significantly differed across groups
(Kruskal-Wallis test, p.value< 0.05, Table 3), but a more detailed
picture was provided by pairwise comparison (Table A6). In terms
of total community biomass, we observed a clear dichotomy, with
the communities dominated by Bacillariophyta, Chlorophyta or
Cyanobacteria reaching a significantly higher biomass than com-
munities from the others groups. Regarding community richness,
the effect of dominance appeared more contrasted and dependent
on the identity of the dominant phylum (Fig. 1). On one hand,
Model 2 Model 3

0.05 Average c2 number of p.value< 0.05 Average c2 number of p.value< 0.05

0.2 0 6.4 4
0.7 0 4.5 1
1.5 1 10.0 3
1.1 0 11.0 4
1.3 0 9.6 3

1.0 0 7.9 2
1.5 0 10.0 3
0.6 0 2.8 0
0.7 0 11.0 2
0.1 0 1.6 0

0.3 0 4.1 1
0.4 0 5.4 0
1.1 0 3.7 0
0.0 0 2.2 1
0.0 0 1.7 1
0.0 0 0.0 0

er of times the variable participated significantly in the classification were estimated



Fig. 1. Biological characteristics of phytoplankton communities in various dominance contexts.
Here, and for illustrative purpose, we present the case were both the dominance and relative biomass thresholds were set to 0.5. Communities were first separated according to the
estimated value of the dominance index, i.e. no dominance (index< 0.5) or under dominance (index> 0.5). Then communities under dominance were grouped according to which
phyla was dominating the community (i.e. with a relative biomass >0.5). The box and whiskers plots represent the median (black line) the first and fourth quantiles (colored boxes)
and the 95% confidence interval (whiskers). The dots represent actual data points.

A. Escalas et al. / Water Research 163 (2019) 1148936
Chlorophyta-dominated communities exhibited a higher richness
compared to all the groups, with the exception of Bacillariophyta.
On the other hand, communities dominated by Cyanobacteria and
Others organisms exhibited lower richness than the no-dominance
and the Bacillariophyta groups. In terms of RUE, two groups clearly
stood out, Chlorophyta and Cyanobacteria, which were the only
ones to differ significantly from the Others and no-dominance
groups. This was particularly striking for the use of nitrogen re-
sources (i.e. RUEN). In terms of community cohesion, the
Cyanobacteria-dominated communities were apart from the



Table 3
Global test for differences across dominance groups for various community-level
properties.

KruskaleWallis test df c2 p.value number of p.value< 0.05

log(Biomass) 5 23.4 0.000 9
Richness 5 29.2 0.000 9
RUEP 5 13.8 0.023 8
RUEN 5 24.3 0.000 9
Negative cohesion 5 43.8 0.000 9
Positive cohesion 5 44.8 0.000 9
Evenness 5 72.1 0.000 9

The c2 and p.values presented are averages estimated across the nine thresholds
combinations.
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others, exhibiting significantly lower negative and positive cohe-
sion (Fig. 1). To conclude, the consequence of dominance on com-
munity structure and functioning appeared taxa-specific and
dependent on the considered community-level property. Overall,
dominance by Cyanobacteria showed the strongest effect on all the
studied variables and tend to separate these communities from
others, notably in terms of cohesion. Dominance by Chlorophyta
also has strong effects on community functioning while Bacillar-
iophyta dominance seemed to have a lower, albeit significant effect.
Fig. 2. Structures of phytoplankton co-occurrence networks under various dominance
Nodes correspond to taxa and links correspond to significantly positive (green) and negati
resents their average biomass in the communities composing the network. These networks
and relative biomass thresholds equal to 0.5. . (For interpretation of the references to color
3.5. Characteristics of phytoplankton co-occurrence networks in
various dominance scenarii

We constructed co-occurrence networks to summarize the
structure of phytoplankton communities in various scenarii of
dominance by a limited number of taxa (Fig. 2 and Figure A3). This
was done for the nine tested combinations of dominance index and
relative biomass thresholds and for the three groups for which we
had the most replicates: dominance by Chlorophyta or Cyanobac-
teria and absence of dominance. The pairwise similarity cutoffs
estimated using RMT were similar among the three groups and
across the nine thresholds combinations, with average values of
0.33± 0.02, 0.32± 0.01 and 0.32± 0.03 for Chlorophyta, Cyano-
bacteria and no-dominance, respectively. Comparison of observed
networks topological properties with those of randomized net-
works indicated that networks structures were non-random and
unlikely due to chance. The observed networks exhibited a ratio of
clustering coefficient to geodesic distance higher than 1, which is
thought to be characteristic of small-world networks (Humphries
and Gurney, 2008). This ratio was the highest in the no-
dominance networks (2.1± 0.9), then decreased under dominance
with intermediate and low values for the Chlorophyta- (1.5± 0.3)
and Cyanobacteria-dominated (1.2± 0.1) networks.
contexts.
ve (red) associations. Nodes are colored according to their taxonomy. Nodes size rep-
were constructed based on communities grouping determined using both dominance
in this figure legend, the reader is referred to the Web version of this article.



Table 4
Characteristics of co-occurrence networks.

Number of communities used to construct networks No dominance Chlorophyta dominated Cyanobacteria dominated

35.7± 14.3 30.4± 7.0 26.1± 3.4

Global network characteristics
Number of nodes 89± 10 106± 4 64± 7
Number of links 838± 611 1312± 595 728± 232
% of negative links 34.7± 24.8 34.5± 14.7 48.0± 7.5
Density 0.20± 0.11 0.23± 0.1 0.35± 0.08
Geodesic efficiency 0.54± 0.1 0.58± 0.07 0.66± 0.05
Average geodesic distance 2.20± 0.44 1.98± 0.24 1.76± 0.15

Nodes characteristics
Average degree 18.1± 10.8 24.7± 10.7 22.3± 5.8
Average betweenness 52.2± 18.2 50.9± 12.4 24.1± 5.0
Average clustering coefficient 0.58± 0.08 0.55± 0.04 0.65± 0.05

The presented index values are mean± sd estimated across the nine thresholds combinations.

Table 5
Relationship between biomass and centrality in phytoplankton co-occurrence
networks.

df stat r p.value Number of significant cases

Node degree
Not dominated 87 �1.87 �0.18 0.375 3
Chlorophyta 104 �1.75 �0.17 0.232 3
Cyanobacteria 62 �2.69 �0.32 0.023 8

Node betweenness
Not dominated 87 �1.08 �0.12 0.305 0
Chlorophyta 104 �1.07 �0.10 0.364 0
Cyanobacteria 62 �1.53 �0.19 0.194 4

The presented index values are mean ± sd estimated across the nine thresholds
combinations.
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The observed numbers of nodes and links decreased from the
Chlorophyta-dominated networks, the no-dominance and the
Cyanobacteria-dominated networks (Table 4). Network density was
the highest in the Cyanobacteria-dominated networks while the
Chlorophyta and no-dominance networks exhibited lower and
more similar density. Two indexes reflecting the size of the net-
works, geodesic efficiency and average geodesic distance, respec-
tively increased and decreased from no-dominance, Chlorophyta-
and Cyanobacteria-dominated networks. The highest proportion of
negative links was observed in the Cyanobacteria-dominated net-
works with, on average, 48.0± 7.5% of negative links. No-
dominance (34.7± 24.8%) and Chlorophyta-dominated
(34.5± 14.7%) networks exhibited lower proportions of negative
links. The wide range of values observed in the no-dominance
networks (5.3e71.4% of negative links) was associated with a
more variable number of communities used for constructing net-
works in this group. It is worth noting that the most extreme values
(i.e. 63.3 and 71.4% of negative links) were observed in networks
constructed with the smallest number of communities, that is with
n¼ 17, 20 and 20 communities.

In terms of average node degree, the three networks differed
significantly (in eight out of nine thresholds combinations, Kruskal,
p.value< 0.05, Table S8), with the networks under dominance
exhibiting higher average node degree than the no-dominance
network (Dunn, p.value< 0.05). The three networks differed
significantly in terms of node betweenness (for every threshold
combination, Kruskal, p.value< 0.001) and Cyanobacteria-
dominated networks exhibited systematically lower values
compared with other groups. In terms of clustering coefficients, the
three networks differed significantly (in eight out of nine thresh-
olds combinations, Kruskal, p.value< 0.05), with Cyanobacteria-
dominated networks exhibiting higher values than other groups.

Then, we tested whether the biomass of a taxon was related to
its centrality in the network using Pearson correlation (i.e. degree
and betweenness, Table 5 and Figure A4) and all the estimated
correlation coefficients were negative. In the absence of dominance
centrality and biomass appeared unrelated. Betweenness was
never significantly related to biomass across the tested threshold
combinations while degree and biomass were significantly related
three times. As observed for the proportion of negative links, these
significant relationships were only observed in networks con-
structed with the lowest number of observations. In Chlorophyta-
dominated networks, betweenness was never significantly related
to biomass, while node degree was related to biomass three times
and only with the most stringent dominance threshold, i.e. 0.55. In
Cyanobacteria-dominated networks, betweenness was signifi-
cantly related to biomass four times, while node degree was
significantly related to biomass eight out of nine times.

4. Discussion

4.1. Drivers of dominance in phytoplankton communities from the
periurban waterbodies of the IDF region

The best predictors of the dominance status in phytoplankton
communities of the periurbanwaterbodies of the IDF region during
summer were related to human pressures on these ecosystems.
Dominance by a limited number of taxa was frequently observed
(31.6e51.5%, depending on the thresholds used) and was mostly
attributed to two phyla, Chlorophyta (35.5e40.6% of the cases) and
Cyanobacteria (30.3e36.5%). Dominance was determined by a
combination of (i) water column characteristics, that are related to
the intensity of local anthropogenic pressures (TN and TN:TP) and
meteorological conditions (water temperature and stratification),
and (ii) the capacity of waterbodies to buffer these pressures
(surface, depth) or the potential for immigration of taxa from other
lakes including harmful algea (connection to the hydrological
network). Our results support previous investigations showing that
high N concentrations (Almanza et al., 2018; Beaver et al., 2018;
Bonilla et al., 2012; Marion et al., 2017; Paerl and Otten, 2016;
Persaud et al., 2015) and warmer waters (Dokulil and Teubner,
2000; Paerl and Huisman, 2008; Wagner and Adrian, 2009) favor
the dominance of Cyanobacteria in phytoplankton communities at
large scales. This is thought to be related to the particular ecological
traits of these organisms (Mantzouki et al., 2016), such as higher
increase in growth rates per unit of temperature compared with
other groups (Carey et al., 2012), their ability to fix atmospheric N2,
or to regulate their buoyancy in stratified water columns associated
with warmer waters (Rinke et al., 2010). Regarding dominant
Chlorophyta taxa, the most prominent genera (Coelastrum,
Pediastrum and Pandorina) were known for their wide spatial
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distribution and their high abundance in meso to eutrophic fresh-
water ecosystems. Additionally, these genera exhibited similar
features. They are known for their colonial lifestyle and for being
hard to graze by zooplankton due to a combination of thick cellu-
lose cell walls and the production of a gelatinous envelope (Porter,
1977). Further, these genera are known for self regulating their
vertical position and are typically blooming in early summer, often
preceding blooms of Cyanobacteria (Salmaso, 2000; Salmaso et al.,
2015).

The classification accuracy of MLR models was remarkable
(63e80% depending on the models). This approach has been
compared with RF for classifying soil types and exhibited either
higher (Bernhardt-Barry et al., 2018) or lower performances
(Camera et al., 2017). In a more similar context, (O'Farrell et al.,
2019) obtained accuracy values comparable to ours while trying
to classify Cyanobacteria into different ecological strategies. Addi-
tionally, MLR models were more accurate in predicting the pres-
ence than the absence of dominance, which contradicts results
from the above-mentioned study (O'Farrell et al., 2019). This might
be due to the selected variables that, in our case, were chosen for
their expected influence on environmental characteristics within
the waterbodies. Another explanation could be that a non-
dominated phytoplankton community can be observed in a wide
array of environmental conditions and be composed of many
combinations of organisms. On the contrary, dominance implies
that particular organisms have been selected by a narrower set of
environmental conditions. In that sense, it appears less complex to
identify favorable than unfavorable conditions to dominance.

4.2. Considerations regarding the use of networks approaches

Networks-based approaches provide an integrated and explicit
representation of microbial communities, opening the way for a
better understanding of their structure and functioning (Faust and
Raes, 2012; Karimi et al., 2017). Herewe assessed and compared the
co-occurrence patterns of phytoplankton organisms under the
dominance by two different phyla, Chlorophyta and Cyanobacteria,
and in the absence of dominance. The constructed networks
represent co-variations in the biomass of phytoplankton organisms
across space and time, which could result from similar response to
environmental drivers or from inter-dependencies taking the form
of biological interactions (R€ottjers and Faust, 2018). While positive
associations might result from similar niche ormutualism, negative
associations might reflect non-overlapping niche or antagonism.
Analyses of macro-ecological networks have shown that co-
occurrences may better reflect niche preferences than biotic in-
teractions (Freilich et al., 2018). This is an important point to keep in
mind, as trying to infer associations using network analysis in
highly heterogeneous environments might produces erroneous
results (R€ottjers and Faust, 2018). Here, we tried to avoid such bias
by not considering networks as representations of biological in-
teractions but rather as a synthetic representation of the structure
of phytoplankton communities in various ecological contexts (in
our case phytoplankton dominance scenarii).

4.3. Relationships between phytoplankton communities structure,
functioning and co-occurrence networks

There is still no consensus about the ability of network-based
analyses to reflect biologically and/or ecologically meaningful
properties of environmental communities (R€ottjers and Faust,
2018). In the following sections, we discuss whether the observed
modifications in the structure and functioning of phytoplankton
communities were reflected in co-occurrence networks.

The co-occurrence networks observed in this study exhibited
“small-world” characteristics (low geodesic, high average degree
and high efficiency) and this type of network tend to be considered
as robust to perturbations and the random loss of nodes (Peura
et al., 2015; Watts and Strogatz, 1998). Interestingly, the test pro-
posed by Humphries and Gurney (2008) suggested that under
dominance networks departed from the typical “small-world”
network.

Community richness was highly influenced by the level of
dominance and the identity of dominant taxa. Dominance by
Bacillariophyta and Chlorophyta was associated with a higher
richness, while dominance by Cyanobacteria and other groups was
associated with lower richness compared with the no-dominance
communities. This was well reflected in the number of nodes
composing the networks. (Aguilera et al., 2017a; Dokulil and
Teubner, 2000; Litchman, 2003). Similarly, observations of
reduced number of taxa in microbial communities dominated by
Cyanobacteria are legions (Bagatini et al., 2014; Filstrup et al., 2014;
Holland and Kinnear, 2013; Louati et al., 2015; Toporowska and
Pawlik-Skowro�nska, 2014; Yang et al., 2017a,b; Zhao et al., 2016).

Although composed of fewer nodes and links, the
Cyanobacteria-dominated networks can be considered as more
complex than the others as exhibiting a higher link density and
higher average number of links (degree) per node. Similar re-
ductions in size and increased complexity have been reported in
networks associated with Microcystis aeruginosa colonies (Yang
et al., 2017a) and after inoculation of freshwater mesocosms with
the large colonial Cyanobacteria Gloeotrichia echinulata (Carey et al.,
2017). This later study reported that increasing densities
G. echinulata increased the richness, biomass, evenness and
composition stability of phytoplankton communities. However, this
study was done in oligotrophic waters and the effects of
G. echinulatawere mostly attributed to its ability to release N and P
in the environment (Carey et al., 2014). Consequently, these results
might be specific to the conditions testedin this study and not
generalizable to a wider context. On the contrary, by studying 50
waterbodies that represent heterogeneous and mostly non-
oligotrophic environmental conditions, we observed that the
increasing presence of Cyanobacteria was associated with higher
biomass along with lower richness and evenness. In addition, the
lowest evenness, richness and number of nodes in the networks
were associated with higher proportions of negative links and
corresponded to conditions of dominance by Cyanobacteria. Similar
results were reported in a large-scale analysis on the role of
dominance in shaping microbial co-occurrence networks (Faust
et al., 2015). The proportions of negative links (~50%) observed
under cyanobacterial dominance appear relatively high regarding
the values reported for other networks in the literature: 12% (Yang
et al., 2017a),<20% (Shi et al., 2016), <5% (Van Goethem et al., 2017),
23% (Hu et al., 2017) and 37e44% (Jones et al., 2018). Similarly, many
negative associations have been reported in bacterial co-
occurrence networks during a Dolichospermum-Microcystis bloom
(Guedes et al., 2018; Woodhouse et al., 2016).

The modifications of structure observed in conditions of domi-
nance were translated in modifications of community functioning,
with higher biomass and efficiency of resource use (N and P) under
dominance, as observed in other studies (Filstrup et al., 2014;
Gamfeldt and Hillebrand, 2011; Hodapp et al., 2015; Lehtinen et al.,
2017). Similarly, we observed higher efficiency in networks under
dominance, as suggested by shorter distance between nodes and
higher geodesic efficiency. In addition, community functioning
depended on the identity of the dominant taxa, with Bacillar-
iophyta, Chlorophyta and Cyanobacteria reaching the highest
biomass when dominant. Interestingly, Bacillariophyta reached
high biomass without exhibiting high efficiency but rather when
total N concentrations were very high. On the contrary,



Fig. 3. Drivers and consequences of dominance in phytoplankton communities.
This figure synthesizes the results from the paper (cf. section 4.3 of the main text and conclusion).
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Chlorophyta and Cyanobacteria dominance were associated with
elevated efficiency (RUEN and RUEP) and were observed in low
TN:TP ratio conditions but also across a wide range of TN and TP
concentrations. This suggests that these two groups are able to
bloom in a wider array of environmental conditions which can
explain why they were responsible for most of the cases of
dominance.

Cohesion metrics were developed to reflect the degree of con-
nectivity in a microbial community (Dai et al., 2019; Herren and
McMahon, 2018) or its complexity/interconnectedness (Danczak
et al., 2018). In addition, stronger cohesion (negative or positive)
is thought to reflect the stabilizing effect of biotic interactions on
community composition (Dai et al., 2019; Herren and McMahon,
2018, 2017). We observed that community cohesion was the
lowest and differed the most from the no-dominance communities
under cyanobacterial dominance. This agree with studies reporting
few and weak positive correlations of cyanobacterial nodes with
other phyla (Yang et al., 2017a; Zhao et al., 2016) and suggests that
these communities should be less stable. However, other studies at
the regional scale reported higher temporal and spatial stability in
community composition under the combined pressure of climate
change, eutrophication and cyanobacterial dominance (Filstrup
et al., 2014; Monchamp et al., 2018). Taken together, these results
show that phytoplankton communities under Cyanobacteria
dominance exhibit a lower cohesion and less interactions between
taxa but at nonetheless compositionally stable.

A significant negative relationship was observed between the
biomass of a taxon and its centrality in the networks (degree or
betweenness) in conditions of Cyanobacteria dominance, suggesting
that most of the community biomass was redirected toward the
outer part of the network. These relationships were driven by cya-
nobacterial nodes, which exhibited a low number of connections
(low degree) or were located on the edges of the networks (low
betweenness) while representing medium to high biomass. Cyano-
bacteria could redirect community biomass without participating in
inter-taxa interactions. Experimental studies testing the relationship
between biodiversity and functioning in phytoplankton commu-
nities have shown that Cyanobacteria exhibited a “high selection -
low complementarity” effect on community biomass (Behl et al.,
2011; Gamfeldt and Hillebrand, 2011). In other terms, they influ-
ence biomass through their high productivity and competitiveness
rather than their ability to positively interact with other species.

To summarize, the characteristics of co-occurrence networks
seemed to reflect the modifications of phytoplankton communities
structure (reduced richness, lower cohesion) and functioning
(higher biomass and RUE) observed in conditions of dominance.
Reduction in community richness was reflected in the number of
nodes composing the network and might be explained by the fact
that environmental conditions allowing cyanobacterial dominance
are suitable to fewer taxa than conditions allowing the dominance
by other groups (i.e. environment filtering). Dominance was asso-
ciated with more complex but also smaller and more efficient
networks, which exhibited enhanced community functioning. In
addition, more efficient community functioning seemed to arise
through selection effect (Gamfeldt and Hillebrand, 2011), as sug-
gested by the negative relationship between centrality and biomass
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in conditions of Cyanobacteria dominance. Further, the potential of
organisms for inter-taxa association (i.e. connectedness) was re-
flected in their degree in the network and dominance by organisms
with low potential corresponded to lower community cohesion.
The isolation of a taxon, represented by its low centrality and
connectedness, is not necessarily deleterious and may even be
beneficial if it reflects its ability to fill a specific niche space for
which no direct competitor exists (Peura et al., 2015). Several
studies have shown that cyanobacterial dominance generates
environmental conditions that are favorable to its maintenance and
can consequently thus be observed for prolonged periods (Corcoran
and Boeing, 2012; Filstrup et al., 2014; Scheffer et al., 1997). This
might be related to specific cyanobacterial traits involved in their
high biomass development (e.g. nitrogen fixation, specific CO2 fix-
ation, buoyancy). Another hypothesis might be related to the effect
of competition/exclusion mechanisms on community composition
(Aguilera et al., 2017a; Dokulil and Teubner, 2000; Litchman, 2003).
For instance, Cyanobacteria are more efficient than other groups for
light-harvesting in low-light conditions generated by high biomass
(Litchman, 2003; Schwaderer et al., 2011) and are able to release a
wide variety of allelochemical compounds (Dias et al., 2017;
Holland and Kinnear, 2013; Leflaive and Ten-Hage, 2007). To
conclude, it appears that the ecological particularities of this group
allow their dominance in waterbodies under anthropogenic pres-
sure, and this resulted in enhanced community functioning
through selection effect. Once established, dominance creates
environmental conditions favorable to its maintenance and we can
hypothesize that the resulting network (more complex, higher
density and proportion of negative links) reflect the fact the
remaining taxa are involved in more interactions (e.g. commen-
salism, mutualism, competition) in order to occupy the few avail-
able niches and scavenge the remaining resources.
5. Conclusions

We used a multidisciplinary approach that combined high res-
olution biomass reconstruction, dominance modeling using pre-
dictor variables at various scales (catchment, waterbody and water
column), biodiversity and functioning estimation at the community
level and co-occurrence networks. This approach was successful as
it provides a synthetic perspective on the causes and consequences
of dominance in phytoplankton communities from 50 waterbodies
in the highly populated IDF region (Fig. 3). Our results support the
idea that the phytoplankton composition and dominance status are
directly related to (i) the intensity of human pressures on these
ecosystems, and their impact onwater column characteristics (total
N, TN:TP ratio, water temperature and stratification), but also to (ii)
their capacity to buffer such pressures, which depends on their
surface, depth and connection to the hydrological network). The
consequences of dominance were dependent on the identity of the
dominant taxa, and conditions leading to Cyanobacteria dominance
challenge more strongly the structure and functioning of phyto-
plankton communities than conditions favoring the dominance by
other groups. Finally, once established this dominance appear to
create condition favorables to its self-maintenance as suggested by
worldwide increases in the frequency and intensity of cyano-
bacterial blooms.
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