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Abstract
A warmer ocean will change plankton physiological rates, alter plankton community composition, and in

turn affect ecosystem functions, such as primary production, recycling, and carbon export. To predict how tem-
perature changes affect plankton community dynamics and function, we developed a mechanistic trait-based
model of unicellular plankton (auto-hetero-mixotrophic protists and bacteria). Temperature dependencies are
specifically implemented on cellular process rather than at the species level. As the uptake of resources and met-
abolic processes have different temperature dependencies, changes in the thermal environment will favor organ-
isms with different investments in processes such as photosynthesis and biosynthesis. The precise level of
investments, however, is conditional on the limiting process and is ultimately determined dynamically by com-
petition and predation within the emergent community of the water column. We show how an increase in tem-
perature can intensify nutrient limitation by altering organisms’ interactions, and reduce relative cell-size in the
community. Further, we anticipate that a combination of temperature and resource limitation reduces ecosys-
tem efficiency at capturing carbon due to strengthening of the microbial loop. By explicitly representing the
effects of temperature on traits responsible for growth, we demonstrate how changes on the individual level can
be scaled up to trends at the ecosystem level, helping to discern direct from indirect effects of temperature on
natural plankton communities.

Climate change is expected to alter the functioning of
marine microbial communities and associated ecosystem pro-
cesses, such as primary production, trophic transfer to higher
trophic levels (HTLs), and carbon sequestration. The impacts
occur through changes in the physical environment and
through the direct effect of temperature on physiological pro-
cesses within the cell. Until recently, the focus has been on
how changes in the physical environment alter the resource
availability for plankton (Doney 2006). For example, rising
global temperatures can lead to a stronger stratification of the
water column, limiting the mixing of nutrients into the pho-
tic zone (Behrenfeld et al. 2006). Conversely, sea ice thawing
can increase light availability, triggering blooms earlier in the
year and prolonging its duration (Kahru et al. 2011). Taken
together, the changes in ecosystem function are the result of a
delicate balance between positive and negative effects driven
by changes in the physical environment.

Despite temperature being the key component of global
change, attention has only recently turned to the direct effects
of temperature on individual plankton cells and associated

ecosystem processes (Allen et al. 2005; López-Urrutia and
Morán 2007; Toseland et al. 2013; Edwards et al. 2016;
Sommer et al. 2017; Thomas et al. 2017). Temperature affects
most metabolic processes by accelerating enzyme activity
(Eppley 1972; Raven and Geider 1988). Cellular processes such
as biosynthetic and respiration rates tend to double with a
temperature increase of 10�C (Q10 ≈ 2), also leading to an
increase of the maximum potential growth rate with tempera-
ture with a Q10 ≈ 2 (Eppley 1972). Yet, in nature, growth
tends to be restricted not only by metabolic functions but also
by the availability of resources (Clarke 2003; Marañón et al.
2018; Morán et al. 2018). Therefore, the temperature depen-
dence of resource uptake rates also matters (Shuter 1979). For
example, the affinity for light (slope of the photosynthetic
rate at low light levels) is fairly insensitive to temperature, and
mainly depends on the concentration of chlorophyll and
chloroplasts (Raven and Geider 1988). Hence, in light-limited
environments, growth will be almost independent of tempera-
ture. Uptake of dissolved compounds, e.g., nutrients or dis-
solved organic matter (DOM), is limited by the diffusive rate
(Munk and Riley 1952; Kiørboe 2008); therefore, the response
to temperature in nutrient-limited environments would be
controlled by the scaling of diffusivity, which is weak, and not*Correspondence: mcsp@aqua.dtu.dk
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by enzymatic activity. Taken together, the temperature
response of a cell could vary between being neutral
(no change) to varying a factor 2 over a 10�C change, depend-
ing upon whether growth is limited by light, resource uptake,
or biosynthesis.

However, the response of a community not only depends
on the cellular-level response but also on how the community
composition changes. Species have adapted their physiology
to maximize growth in a given environment, resulting in a left
skewed unimodal curve (reaction norm), which peaks at the
optimal temperature (Thomas et al. 2012). This curve has been
shown to vary according to the level of resources (Thomas
et al. 2017), due to a balance between protein investments
into various functions, with a steep drop at high temperature
as increasing investment in chaperones to assist protein fold-
ing limits growth (Chen and Laws 2017). Conversely, species
are able to modify their optimal temperature through adapta-
tions, where an increase in the photosynthetic capacity of
cells has been observed in warmer conditions (Schaum et al.
2017). The community response to a temperature change
emerges when the curves from all species are added. Therefore,
when a resource is limiting, the growth rate of the overall
community might stay the same, but the community compo-
sition can change due to the different temperature optima of
each species (see Edwards et al. [2016], for a good example).
Therefore, an understanding of the community level tempera-
ture responses must account for the changes in the commu-
nity composition, as new winners can emerge under changed
temperature conditions (Dutkiewicz et al. 2013).

To assess how the direct effects of temperature alter the fit-
ness of individual cells, and potentially scale to ecosystem pro-
cesses, we developed a trait-based model of the plankton
community. A cell is described by two traits: its size and its
investments in phototrophy vs. biomass synthesis (biosynthe-
sis). All processes in the model are affected by temperature:
light harvesting, resource uptake, predation, and metabolism;
however, the emergent population-level temperature response
depends on which processes are limiting. The trait-based for-
mulation makes it possible to reduce model complexity dra-
matically while at the same time resolving the adaptive nature
of the plankton community under changing temperatures.
We use the model to address the question of how community
structure and function changes with temperature. We focus
on three central aspects of ecosystem function: primary pro-
duction (the amount of carbon fixed), carbon flow towards
HTLs, and export to depth and dissolved pathways (such as
refractory DOM [rDOM]). The exploration is done by embed-
ding the cell-model into a physical one-dimensional
(1D) water column model.

Methods
We consider a minimal food-web model of marine unicellu-

lar organisms that represents heterotrophic bacteria and

mixotrophic flagellates and/or ciliates. The cell model is later
embedded in a planktonic biogeochemical food-web frame-
work. In the following, we first describe the biological com-
partments (generalists and bacteria), then the temperature
scaling of vital rates, and finally the planktonic food web and
the coupling to the physical environment.

Generalists
The cell model has a simple physiology which captures the

main processes for uptake of resources, biosynthetic rate, and
respiration. How temperature affects each process is introduced
further down. A cell can acquire carbon by phototrophy, nitro-
gen by diffusive uptake, and a mix of nitrogen and carbon by
phagotrophy (Fig. 1). Cells have three functional compart-
ments: photosynthetic machinery, biosynthetic machinery,
and structural material, into which the cell invests various pro-
portions of its carbon mass. The photosynthetic mass
(e.g., chloroplasts and pigments) fixes carbon. Biosynthetic
mass (e.g., mitochondria and ribosomes) converts fixed carbon
to functional cellular material. Finally, structural mass is associ-
ated with those structures essential for the cell integrity, such
as cell walls and membranes, but that are not directly responsi-
ble for cell growth. It is assumed that cells do not have a storage
compartment, such that they grow directly in pace with the
uptake of resources and the activity of the biosynthetic appara-
tus. Finally, for simplicity, cells have a fixed C : N ratio.

Total mass of the cell V (μg C cell–1) is divided among struc-
tural mass, photosynthetic machinery φLV (μg C cell–1), and
biosynthetic machinery φBV (μg C cell–1). We assume that
cells invest half of the acquired mass on structure, and the rest
of acquired mass can be invested either in the photosynthetic
or biosynthetic apparatus (Fig. 1), with the consequent trade-
off that φL + φB = 1/2. Hence, total mass of a cell becomes
V = V(φL + φB + 1/2), allowing the resource uptake strategy of
a cell to be described by a single trait, φL = φB − 1/2.

Uptake rates of resources—light, nutrients, and food—and
biosynthesis are represented by Monod kinetics (Monod
1949). Carbon fixation JL (μg C d–1) inside a cell is

JL =M
ALL

ALL+M
ð1Þ

where L is irradiance (W m–2), AL is affinity for light (μg C d–
1 [W m–2]–1), which depends on the investments, and M is the
maximum biosynthetic rate (μg C d–1 cell–1). All fluxes J are
per cell, and thus given in units of μg C d–1 cell–1.

The affinity for light absorption depends on the investment
in the photosynthetic apparatus φL. However, absorption is
also limited by the cell surface area, proportional to V2/3. Con-
sidering both effects, the affinity for light becomes
(Chakraborty et al. 2017)

AL = cLV2=3 aLφLV
aLφLV + cLV2=3

ð2Þ
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where cL is the maximum photosynthetic affinity (μg C d–1

[W m–2]–1), and aL the affinity per investment in photosynthesis
(μg C d–1 [W m–2]–1 [μg C2/3]–1). At very high investments or
under optimal light levels, the affinity is dominated by the first
term of the right-hand side, i.e., proportional to V2/3, whereas at
low investment, the affinity is proportional to cell volume V.

Nitrogen uptake (JN) by a cell is

JN =M
QC:NANN

QC:NANN +M
ð3Þ

where N is dissolved nitrogen (μg N L–1), and AN nitrogen
affinity (L d–1 cell–1). JN is in units of carbon, whereas N in
nitrogen; the conversion is implemented through the fixed
C : N ratio QC : N (μg C μg N–1). Nutrient uptake is considered
diffusion limited, scaling with the radius of the cell rather
than by the surface area (Munk and Riley 1952). Hence, affin-
ity for nutrients becomes

AN = αNV1=3 ð4Þ

where αN is nutrient affinity per biomass (L d–1 [μg C1/3]–1).
Food uptake JF, that is, consumption of prey with concen-

tration F (μg C L–1) is

JF =M
AFF

AFF +M
ð5Þ

In the model, a large generalist (G2) can eat a smaller gener-
alist (G1), which at its turn, G1 can predate on bacteria (B).

The clearance rate of active prey encounter scales in aver-
age linearly with cell volume (Kiørboe 2011), and so affinity
AF (L d–1 cell–1) is

AF = αFV ð6Þ

where αF is the specific affinity for food (L d–1 [μg C]–1).
The maximum uptake rate of each process is determined by

the maximum biomass synthesis rate, which is proportional
to the mass of the biosynthetic apparatus.

M = μmaxφBV ð7Þ

where μmax is the specific maximum biosynthesis rate per
investment (d–1).

Respiration rate associated with cell maintenance are
assumed to be the same for all machinery, and approximately
scale with body mass (Kiørboe and Hirst 2014).

JR = kV ð8Þ

where k is the maintenance cost (d–1).
As growth requires both carbon and nutrients, Liebig’s law

of the minimum is applied. The total carbon flux is then:

Jtot = min JL + JF−JR, JN + JF½ � ð9Þ

Note that the nutrient flux is measured in units of carbon
through the assumption of a fixed C : N ratio, which is imple-
mented in Eq. 3. Finally, the carbon-specific population divi-
sion rate μ (d–1) is defined by the increase in mass.

Fig. 1. Schematic representation of the generalist cell model. Total mass of the cell (V) is divided in three compartments: structural mass (12V), photosyn-
thetic machinery (φLV), and biosynthetic machinery (φBV). Acquired carbon from photosynthesis (JL), nitrogen from diffusive uptake (JN), and carbon and
nitrogen from food (JF) are synthesized in the biosynthetic apparatus following Liebig’s law of the minimum. Newly produced biomass is then allocated
to either the photosynthetic apparatus, the biosynthetic apparatus, or to structural biomass according to the partitioning of investments in photosynthe-
sis (φL) and biosynthesis (φB) (hourglass symbols show the positive feed-backs of these allocations). Part of the cellular carbon is respired (JR). Excess N or
C resulting from Liebig’s minimum is excreted back to the environments (JNleak and JCleak, respectively). [Color figure can be viewed at
wileyonlinelibrary.com]
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μ=
Jtot
V

ð10Þ

Leakage of either carbon or nitrogen occurs when these are
in excess inside the cell. Therefore, the leakage of carbon is

JCleak = max 0, JL− JR− JN½ � ð11Þ

and the leakage of N is the inverse of the carbon leakage:

JNLeak = max 0, − JL + JR + JN½ � ð12Þ

Temperature dependencies
We consider temperature dependencies on carbon fixation,

diffusive uptake, respiration, and biosynthetic processes. All
dependencies are described by multiplying the processes with
a Q10 factor, and therefore the rate R at a given temperature
T becomes

R=RrefQ
T −Trefð Þ=10�
10 ð13Þ

The reference rate Rref is defined as the rate at temperature
Tref = 18�C (Table 1), and the value of Q10 represents the facto-
rial increase when the temperature is increased by 10�C. We
use the Q10 factor to describe temperature dependencies as
this factor is much more intuitive than the Arrhenius equa-
tion and the corresponding activation energy. When Q10 = 1,
there is no change with temperature; Q10 > 1 is an increase of
a rate with temperature and the opposite effect for Q10 < 1.
Recall that here we focus on the response of the overall com-
munity, which is the upper envelope of the temperature
response of all species together (Eppley 1972; Edwards et al.
2016). Therefore, the shape of the community curve is not
unimodal (as the species-specific response) but exponential
within the range of temperatures where biological rates are
functional. Carbon fixation at low light levels is temperature
independent (Raven and Geider 1988; Clarke 2017); therefore,
we use a Q10 = 1 for the light affinity αL (Table 1). The

Table 1. Variables and parameters.

Parameter Description Units Value Q10

G1, G2, B Concentration of G1, G2, and B in the system μg C L–1

VB Cell mass of B μg C cell–1 10−8

V1 Cell mass of G1 μg C cell–1 10−5

V2 Cell mass of G2 μg C cell–1 10−2

φL Investment in photosynthesis —

φB Investment in biosynthesis —

aL Affinity per investment in photosynthesis μg C d–1 (W m–2)–1 μg C–1 0.21 1

cL Maximum light affinity μg C d–1 (W m–2)–1 (μg C2/3)–1 0.005 1

αN Nutrient affinity L d–1 (μg C1/3)–1 3.7 × 10−5 1.5

αF Food affinity L d–1 (μg C)–1 0.005 1

αDOC Affinity for DOC L μg C–1 d–1 8.8 × 10−6 1.5

KPOM Half saturation constant for POM hydrolysis μg C L–1 80

μPOM Maximum POM hydrolysis rate μg C d–1 cell–1 4 × 10−8 2

μmax Maximum specific growth rate d–1 2 2

k Metabolic cost d–1 0.05 2

QC : N C : N ratio μg C μg N–1 5.68

δ Fraction of dead matter going to N and DOM — 0.3

γ Background mortality L (μg C d)–1 0.02

mHTL Loss rate to predation of HTL d–1 0.03 2

N Nutrients concentration μg N L–1

L Irradiance W m–2

D DOC concentration μg C L–1

P POM concentration μg C L–1

F Food: concentration of prey perceived by a predator μg C L–1

All parameters were obtained from the literature. Parameters of generalist except for biosynthetic rate come from Chakraborty et al. (2017), who
obtained those by inferring from observations. Note that in Chakraborty et al. (2017), they use structural biomass and we use total biomass, so all the
parameters that are multiplied by the structural biomass have here been divided by 2 (considering our assumption of structural biomass being half the
total biomass). Affinity for light was derived from Daines et al. (2014). Parameters from generalists that could be extended to bacteria by allometric laws
were maintained (affinity for nitrogen [αN] and maximum growth rate). Affinity for DOC was derived from Thingstad et al. (2007). Degradation rates
of POM from bacteria were obtained from Anderson and Williams (1998). Mortality rate was left as a free parameter. Loss to HTLs was derived from
Chakraborty et al. (2017).
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temperature dependency of nutrient affinity is governed by
the temperature scaling of molecular diffusivity, which is pro-
portional to viscosity. The viscosity of sea water doubles over
a 20�C temperature increase from 2�C to 22�C, implying that
diffusivity has Q10 = 1.5 approximately (Jumars et al. 1993;
Thingstad and Aksnes 2019). Active encounters with prey are
described by the clearance rate (Andersen et al. 2016). The
clearance rate has a complicated response to temperature as it
depends on the physical environment and the motility of the
organisms. Consequently, the response might vary depending
on whether the prey, the predator, or both are motile. Assum-
ing the latter case, we could consider that encounter rates
increase, also escape rates increase, with the approximate
result that both effects cancel one another. In the absence of
an empirically justified temperature scaling, we assume a
Q10 = 1. Respiration and maximum potential growth rate scale
with a Q10 close to 2 (Eppley 1972; Clarke 2003). Under
resource limitation, all the temperature scalings are below
2, because respiration has a Q10 of 2. As the Q10 of respiration
is larger than any resource-limited uptake process, the growth
efficiency of a cell (anabolic processes − catabolic processes)
decreases when resources are limiting (López-Urrutia and
Morán 2007).

Bacteria
Bacteria are similar to the generalists, but they are smaller

and they do not photosynthesize or engage in phagotrophy.
Instead, they acquire N and dissolved organic carbon (DOC)
by diffusive uptake, and so the functional responses for these
resources are the same form as for nutrients in the generalist

model (Eq. 3), with different affinity values for DOC (Table 1).
Additionally, we assume that bacteria are able to hydrolyze
particulate organic matter (POM), which is then transferred to
the dissolved N and C pools. POM hydrolysis is represented
by a saturating response (Anderson and Williams 1998):

JPOM = μPOM
αPOMP

αPOMP + μPOM
ð14Þ

where P is the concentration of POM, μPOM is the maximum
specific hydrolysis rate of POM (μg C d–1 cell–1), and αPOM is
the initial slope of the functional response for hydrolysis (L d–1

cell–1). The flux of the limiting resource determines the total bio-
mass synthesis rate:

Jtot = min JDOC− JR, JN½ �: ð15Þ

The specific division rate of the population is the same as
in Eq. 10 and leakage of C and N as in Eqs. 11 and 12, repla-
cing JL by JDOC.

Microbial community model
The generalist model is embedded in a biogeochemical food

web with six main compartments (Fig. 2): bacteria (B), small
generalist (G1), large generalist (G2), nitrogen (N), including
both organic and inorganic, DOC (D), and POM (P), the latter
including both nitrogen and carbon. Parameters and variables
are listed in Table 1. The key structural elements are the two
generalist groups. To allow adaptation of the composition and
function of the generalists, we describe them as a system of

Fig. 2. Biological system of the microbial community. The system contains six carbon and nitrogen pools: bacteria (B), small generalists (G1), large gen-
eralists (G2), DOC, POM, and a dissolved nitrogen pool (N), which includes both organic and inorganic N. Fluxes (J) are explained in Microbial Commu-
nity Model section. Dashed lines represent leakage of carbon and nitrogen. The pointed line in JPOM is the action of bacteria degrading POM which then
goes to the N and DOC pools.
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infinite diversity (Bruggeman and Kooijman 2007), i.e., as a
distribution of biomass along the trait-axis φL.

The currency of the model is μg C L–1, with the exception
of the nitrogen pool, which is given in μg N L–1, hence the
conversion factor QC : N in the corresponding equations. Pools
containing both carbon and nitrogen possess the same stoichi-
ometry, QC : N. All organisms take nutrients from the N pool,
bacteria also rely on DOC and hydrolyse POM, which goes to
the DOC pool and to nutrients. Generalists perform both pho-
tosynthesis and phagotrophy: small generalists eat bacteria
(JF1), and large generalists eat small generalists (JF2). Natural
mortality (γ) is represented by a quadratic term, allowing to
impose a control when concentrations are too high. In the
natural environment, such could represent viral lysis when
prey density is high. Still the value of γ was taken small
enough as not to rule model dynamics. A fraction δ of dead
matter goes to the dissolved pools, and (1 − δ) to the POM
pool. Excess carbon and nitrogen in the cells is leaked (JCleak
and JNleak, respectively), going to the corresponding dissolved
pools. We assume that dead material from bacteria is refrac-
tory DOM, rDOM (Jiao et al. 2010), which is removed from
the system due to its low turnover rate. The modeled system,
its compartments, and fluxes are illustrated in Fig. 2, and the
governing equations are

The last term in the large generalist equation corresponds
to losses to HTLs mHTL (d–1). The trait distributions of the two
generalist groups are discretized with n = 20 trait groups repre-
senting cells with investments in light harvesting φL, varying
from 0 to 1/2 (and, correspondingly, investments in biosyn-
thesis varying from 1/2 to 0).

Physical setup
We used the Framework for Aquatic Biogeochemical Models

(FABM; Bruggeman and Bolding 2014), which allow the cou-
pling of custom biochemical models with different ocean
models. Here, we used the 1D water column model General
Ocean Turbulence Model (GOTM; Burchard et al. 1999). The
model simulates the upper 50 m of a water column of a temper-
ate region (seasonal). Physical data from the L4 station (50�N,
4�W; in the English Channel) was used as a model setup and
later some modifications were introduced (we therefore did not
intend to explicitly model the L4 station). For the L4 station
water-column setup refer to the ERSEM (European Regional Seas
Ecosystem Model) source codes (https://gitlab.ecosystem-
modelling.pml.ac.uk/users/sign_in) explained in Butenschön
et al. (2016). In our case, we set an open bottom boundary,
allowing the entrance of nutrients and the export of detrital
matter. The input rate of nutrients is defined as VN, bottom = v
(Nb − N), where v is the exchange rate equivalent to 1 d–1, Nb a
fixed concentration (140 μg N L–1). Sinking POM leaves through
the bottom boundary at a rate equivalent to the sinking veloc-
ity, set at 10 m d–1. The simulation time was 9 yr, and by the
end of the simulations, solutions had converged to a periodic
solution. The FABM-GOTM code of the model can be found in
https://github.com/cam-sp/Plankton-temperature-resources.

As we seek to observe the direct effects of temperature on
organisms (without the physical environment being altered),
an increase in temperature was not forced in the physical envi-
ronment itself but only in the biological system, so only biolog-
ical processes are affected by the increase in temperature. We
exposed the system to a +3�C rear in temperature, expecting a
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linear response in ecosystem functions. Additionally, a 3�C
increase falls within the estimated range of temperature rise
due to climate change in the next 100 yr (Stocker et al. 2013).

Ecosystem function
As indicators of ecosystem function, we consider carbon

flux into the ecosystem (gross primary production [GPP]), car-
bon cycling within the ecosystem (carbon transfer to HTLs),
and carbon flux out of the ecosystem (respiration, carbon
export, and rDOM production). GPP, the total amount of car-
bon fixed by photosynthesis, can be directed either to popula-
tion growth if enough nutrients are available or leaked and
transferred to the dissolved pool. Redistribution inside the
ecosystem occurs through the net production to HTLs as the
amount of carbon lost from the mHTL term. The main losses
are export to depth, as the flux of POM across 50 m, and the
formation of refractory DOM, rDOM, through lysis of bacteria.
We characterize the efficiencies of these fluxes as the ratio
between them and GPP: the HTL efficiency ϵHTL as the ratio
between losses and GPP (ϵHTL = mHTLG2/GPP). The ratio of
respired to fixed carbon in the ecosystem (also referred to in
the literature as metabolic balance) is ϵresp = JR,G1 + JR,G2 + JR,Bð Þ=
GPP, where values that surpass unity mean that the system is
completely heterotrophic, i.e., more carbon is being respired
than fixed, which can happen if there has been an accumula-
tion of dissolved or POM over time. The export efficiency is
the ratio between export flux at a given depth and integrated
GPP over that depth horizon (ϵCexp =Cexported=GPP). A higher
ϵCexp indicates an ecosystem more effective in exporting car-
bon. Finally, the rDOM produced relative to GPP is ϵrDOM =
γB2/GPP, where higher values indicate a strengthening of the
microbial loop and pump.

Results
We first perform a simple optimization analysis of the cell

model to find the investments that maximize cell division rate
under various resource and temperature combinations
(“resources” include light). Next, we embed the cell model in
the biological–physical model and explore the response of the
system to a rise in temperature.

Optimization of the cell model
The optimal investment φ*

L maximizes division rate (Eq.10)
in an environment of light (L), nutrients (N), and food (F):

φ*
L L,N,Fð Þ= argmax

φL

μ φL;L,N,Fð Þf g ð17Þ

By assuming that the plankton species with the highest
division rate dominates a given environment, we can use the
traits of the optimal cells as representatives of the overall com-
munity. Figure 3 shows the temperature response of division
rate for the optimal cells, μ φ*

L;L,N,F
� �

. Depending on the

environment, there are clear variations in the cells’ invest-
ment in light harvesting vs. biomass synthesis and in their
trophic strategy.

Investments in photo harvesting increases as light
decreases when food availability is low (shaded areas in Fig. 3).
In low light conditions, cells are light limited and will priori-
tize light harvesting by increasing investments in light uptake
φL. Conversely, under high light, the cells are limited by their
capacity to synthesize biomass (φB) and consequently lower
their investment in φL to maximize their capacity for synthe-
sis. When food is abundant, investments in photo harvesting
stay constant across light gradients. In this case, cells are lim-
ited by nutrients, and therefore, light investments will be
reduced as much as possible as to maximize synthesis. This
reduction in light investments should however not make the
cell carbon limited. All in all, investments are adjusted to
lessen the constraint from the limiting process.

All cells are mixotrophic, but there are clear differences in
the degree of mixotrophy between small and large cells (dashed
lines in Fig. 3). Small cells are primarily autotrophic and obtain
most of their carbon and nutrients from photo harvesting and
nutrient uptake, while large cells get the majority of their
resources from phagotrophy. Nevertheless, large cells are not
purely heterotrophic; they do phototrophy to at least cover
their respiratory costs. In that way, the large cells can use all
the carbon and nutrients gained from phagotrophy for synthe-
sis of new biomass. Still, larger cells invest less in light harvest-
ing than small cells (see Chakraborty et al. 2017).

Exposing the cells to a rise in temperature elicits changed
investments and division rates. First, investments in photo
harvesting increase with temperature. This is a response to
biosynthesis becoming faster with temperature (Q10 = 2),
while photosynthesis does not (Q10 = 1). Therefore, increasing
temperature shifts the limiting factor for growth from biosyn-
thesis toward photo harvesting, everything else being equal.

Temperature response is highest in resource-unlimited con-
ditions and weakest in resource-limited conditions, particu-
larly under carbon (light and food) limitation (Fig. 4). The
differences in temperature responses mainly reflect whether
resource uptake or synthesis is limiting growth: response of
the cell to temperature is small when resources are limiting,
whereas when resources are under replete conditions the
response increases to a Q10 ≈ 2. To a lesser degree, the
response is determined by the temperature response of
the uptake pathway, because only nutrient uptake has a
Q10 > 1. Large cells in general have slower division rates than
small cells, which indicate that they are in general more lim-
ited by resource uptake than synthesis. It is possible for
Q10 < 1 at low concentrations of carbon resources (light and
food). This results from respiration increasing at a higher rate
with temperature than resource uptakes at limiting conditions
(Q10 = 2 for respiration vs. Q10 = 1 for affinity for food and
light). And therefore, when resources are low, an increase in
temperature results in a reduced growth, because the relative
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loss of carbon due to respiration outweighs the relative gain in
carbon fixation. This effect no longer applies when resource
levels are higher as temperature has a greater effect on biosyn-
thesis, which has the same Q10 as respiration, than on affinity.
Overall, the temperature response of the optimal cells varies
with the resource environment, being strongest under unlim-
ited resources and weakest under limiting conditions.

Biological and physical model
The optimization analysis was made for fixed resource con-

centrations; however, in reality, resource concentrations
change with time and depth (in particular light) and are

emergent outcomes of competition and predation (nutrients
and food). The resource environment will determine which
process limits growth, and the limitation (carbon, nutrients, or
biosynthesis) will ultimately shape the community’s tempera-
ture response. We thus explore a dynamic resource environ-
ment in a temperate system. The following will focus on
identifying the limiting process: carbon (photosynthesis), nutri-
ents (nutrient uptake), or synthesis. Knowing the limiting pro-
cess gives insight into the community temperature response.

The modeled seasonal succession well represents typical
observed successions (Fig. 5): an early spring bloom of mainly
phototrophic small cells is grazed by larger mainly

Fig. 3. Temperature dependency of division rate, light investments, and fraction of carbon and nutrients derived from phagotrophy for small and large
generalists (left and right column, respectively) under various resource conditions. The upper bloc of panels is at low food levels (F = 5 μg C L–1) and the
lower at high food levels (F = 5 μg C L–1). Each row of small panels is under a given condition of light (L in W m–2) and each column a given concentra-
tion of nutrients (N in μg N L–1). [Color figure can be viewed at wileyonlinelibrary.com]
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phagotrophic cells. The summer production is limited in the
upper mixed layer. A small autumn bloom is triggered by inor-
ganic nitrogen mixed up from the deeper layer. The small cells
are predominantly phototrophic, although they still obtain up
to 30% of their carbon from food. The larger cells change their
trophic strategy throughout the season. In the early summer,
they are mainly heterotrophic, feeding on the smaller cells,
while in the summer, they become increasingly mixotrophic.
Phagotrophy is the main source of nutrients during summer
for both small and large cells.

The optimization model showed how the temperature
response of cells is largely determined by whether the limiting
factor is resource uptake (weak response) or synthesis (strong
response) (Fig. 3). In the dynamic environment, the small gen-
eralists are predominantly limited by carbon (light), except in
the late summer where they are nutrient limited and their
growth rate is low (Fig. 5). As synthesis has the highest Q10, we
expect that the small cells will show a strong response to
increasing temperatures, as they tend to be less limited by
resources (Fig. 6). Conversely, large generalists are predomi-
nantly limited by resources, and their growth is not controlled
by the biosynthetic rate, due to their need for much larger
resources concentrations (Fig. 4). In summary, we expect smaller
cells to have a stronger temperature response than larger cells.

How the division rate changes with temperature is only
one part of understanding how a community responds to tem-
perature changes. Other important factors are changes in
resource availability (prey) and predation rates. Figure 7 shows
water column integrated dynamical variables over a seasonal
cycle in the base-line scenario and in a scenario in which tem-
perature was raised +3�C, illustrating how temperature
changes biomass and resulting resource availability. As sug-
gested by the analysis of limitation above, the small general-
ists responds positively to the temperature increase, while
overall the biomass of the larger cells remain largely

unchanged. However, the overall picture is more nuanced.
Increased carbon leakage increases DOC to the benefit of the
bacteria population leading to increased overall bacteria respi-
ration. Further, at higher temperature, cells are able to drive
nutrients to lower concentrations enabling a higher net pri-
mary production.

The overall functions of the ecosystem in terms of its yearly
carbon budget are shown in Fig. 8. The system fixes about
80 g C m−2 yr−1. Most is lost as refractory DOM and respira-
tion, and only about 3 g C are exported as particulate carbon,
either to the deep ocean or to HTLs. The average response of
these fluxes to the 3�C temperature increase is an increase of
about 20%, corresponding to a Q10 of about 1.8. The responses
of the ecosystem efficiencies are more modest, with a lower
fraction of GPP being exported (Q10 ≈ 1.5), unchanged effi-
ciency of DOM production and trophic transfer, and an
increased fraction of GPP being respired (Q10 ≈ 1.4). All in all,
in absolute terms, all rates increase, yet, in relative terms, we
have a more heterotrophic system (higher metabolic balance)
and a system less efficient at exporting carbon to depth.

Discussion
We have developed a trait-based model of the temperature

dependency of the primary mass flows in a pelagic protist
community. The model is mechanistic and based on temper-
ature responses of fundamental processes and on general
rules for how resource uptakes scale with cell size. There is a
growing realization of the need for a better representation of
the temperature dependence of primary producers in the
ocean, and in particular, the need to understand how these
temperature dependencies are tempered by the availability of
various resources (Schaum et al. 2017; Thomas et al. 2017;
Marañón et al. 2018). The trait-based formulation of our
model makes it possible to go beyond the responses of single
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cells and to simulate how an entire community adapts to
environmental conditions of light, nutrients, food, and tem-
perature. As an example, we have simulated the seasonal suc-
cession in a temperate system and its response to a
temperature increase. Despite the conceptual simplicity of
the model, the community response to a temperature
increase is complex.

The temperature response of the cells depends upon which
process is limiting. Limitation by biosynthesis leads to a
strong temperature response, while resource limitation leads
to weak temperature responses. On the level of individual

cells, we find that small cells are typically limited by their abil-
ity to perform biosynthesis, while larger cells are limited by
resource uptake. This difference makes small cells more sensi-
tive to changes in temperature than large cells, as the biosyn-
thesis rate changes faster with temperature than resource
uptake rates. This low-temperature response under nutrient
limitation has also been observed experimentally (Marañón
et al. 2018) and in meta-analysis (Thomas et al. 2017). Others
observed different effects of temperature depending on
whether the system was bottom-up or top-down controlled
(Chen et al. 2012; Peter and Sommer 2013; Morán et al.

Fig. 5. Seasonal succession in a temperate water column. Note varying ranges on the concentrations of carbon. Mean investments are calculated as bio-
mass weighted mean: φL =

P
i φL:i Bi=n, where n = 20 is the number of trait groups. The two lowest panels show the relative gains of nutrients coming

from phagotrophy (JF : JN). [Color figure can be viewed at wileyonlinelibrary.com]
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2017), and López-Urrutia and Morán (2007) observed a
decrease in bacterial growth efficiency with temperature when
resource limited. Here, we show that not only does nutrient
limitation plays a role but any resource uptake limitation will
tend to weaken the temperature responses. We observe a
broad range of temperature response, from flat (no response)
toward a Q10 of around 2, depending on the degree of
resources limitation. Light limitation in particular will give a
particularly weak response due to photosynthesis at nonsatur-
ating levels of light being temperature independent (Raven
and Geider 1988; Clarke 2019).

The insight regarding the key role of resource limitation
was made possible by explicitly separating the process of
assimilation and synthesis in the functional response in the

model. If these two processes are considered together, the role
of limitation becomes opaque. For instance, functional
responses are usually formulated with the half-saturation con-
stant, which is the ratio between maximum uptake and sub-
strate affinity. Hence, this formulation mixes the processes of
assimilation and enzymatic activity, which makes it unsuita-
ble for mechanistically describing the limiting process and
temperature responses (see Thingstad and Aksnes 2019).

When cells are exposed to resource competition in a water
column, they drive down the concentration of the limiting
resource (except light for which they do not compete appre-
ciably). The lowered resource concentration leads to resource
limitation and thereby weak temperature responses. The
example we used to explore resource competition was of a
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temperate seasonal succession. In this example, the early
bloom period will not be resource limited, while the summer
is. If we instead consider a low-latitude oligotrophic ocean,
resource limitation will be stronger throughout the year, and
we expect the temperature response to be even weaker. In any
case, the diversity of temperature responses makes it difficult
to apply a single Q10 or Arrhenius temperature function to pro-
tist growth rates in ecosystem models. Even assuming differen-
tial temperature effects between autotrophs and heterotrophs
(Brown et al. 2004) is insufficient (Chen and Laws 2017).

Measures of ecosystem function increase overall with a Q10

around 1.8; a warmer ocean fixes more carbon, creates more
DOM and rDOM, sends more carbon to HTLs, and respires
more carbon. Nevertheless, the warmer ecosystem is less effi-
cient at retaining carbon, as more of it is respired. We also find
a negative relationship between ef-ratio (export relative to
GPP) and temperature, in agreement with the literature
(Pomeroy and Deibel 1986; Laws et al. 2000, 2011; Cael and
Follows 2016; Cael et al. 2017). There is a reduction in relative
cell size of the community, due to higher competition for
nutrients during the stratified period (even without the ther-
mal effect on water column stability), and the better perfor-
mance of bacteria due to higher biosynthetic rate and DOC
concentrations. Overall, there is an enhancement in the
importance of the microbial loop and the microbial pump.

The model is based on simplifications, particularly in the
values of Q10, in the role of DOM, in the choice of a fixed stoi-
chiometry, and in the physics. Regarding Q10, more knowledge
is needed on the temperature of predator–prey interactions and
the uptake of dissolved compounds. If, for example, the Q10 of
predator–prey interaction is larger than 1, the overall commu-
nity Q10 will increase. Production and degradation of DOM
(labile, semilabile, refractory DOM, etc.) are sketchily repre-
sented. An example is the production of refractory DOM, which
we assume is created by viral lysis of bacteria, represented by a
quadratic mortality. The assumption of fixed stoichiometry is a

rough simplification, particularly in autotrophs, which have
variable C : N : P ratios due to luxury uptake (Droop 1974), and
to differing investments in chloroplast, ribosomes, and cell
walls in response to resource conditions (Toseland et al. 2013).
As temperature affects competition for resources and invest-
ments in biosynthesis, it will also affect stoichiometry and thus
macronutrients cycling prediction under climate change scenar-
ios (Yvon-Durocher et al. 2017). We have now resolved the
direct effects of temperature on organisms and the overall com-
munity, but left open the question of the relative strength of
indirect (effects due to changes in the physical environment)
vs. direct effects of climate change on the planktonic commu-
nity. Overall, incorporation of the considerations previously
mentioned will refine the results; however, they are not
expected to fundamentally alter the general conclusion that the
community-level temperature response is smaller than expected
from metabolic considerations.

Conclusion
Effects of temperature on physiological processes have

been studied for over a century, nevertheless, we argue that
interpretation of data related to global warming could have
been mislead by effects of resource limitation (López-Urrutia
and Morán 2007; Behrenfeld et al. 2016). Here, by explicitly
representing effects of temperature on processes responsible
for growth in a mechanistic model, we show that patterns
in the individual level can be scaled to observed trends in
the ecosystem level and that species interactions can actu-
ally exacerbate nutrient limitation by increasing competi-
tion just by temperature effects per se. We anticipate an
strengthening of the microbial activity and the increasing
importance of the dissolved pathway and the microbial
pump for carbon sequestration in the oceans, at least when
it comes to direct effects of temperature in the microbial
food web.
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