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1. Introduction

Eutrophication and subsequent harmful algal blooms (HABs) have become global 

water quality problems in recent decades (Conley et al., 2009; Glibert, 2017; Huisman 

et al., 2018; Paerl et al., 2016a). HABs are usually toxic to humans and other animals, 

can disrupt aquatic food webs, and result in hypoxia and loss of biodiversity (Peñuelas 



et al., 2013; Posch et al., 2012; Van de Waal et al., 2014; Zhang et al., 2017). In 

China, the majority of lakes are rather shallow, and have become or have been 

becoming eutrophic since the early 2000s (Le et al., 2010). Eutrophication is 

primarily attributed to intensified anthropogenic nitrogen (N) and phosphorus (P) 

discharges into freshwater ecosystems (Huisman et al., 2018; Paerl et al., 2016a; Tong 

et al., 2017a, b; Tong et al., 2018). However, the relative importance of N and P in the 

control of eutrophication remains a subject that is intensely debated (i.e., the ‘P-only’ 

paradigm (Carpenter, 2008; Schindler et al., 2016) versus the ‘P + N’ paradigm 

(Lewis et al., 2011; Paerl et al., 2016b). P has traditionally been considered the 

limiting nutrient for algal growth based on experimental manipulations of lakes in 

several previous studies (Schindler et al., 2016), and a ‘P-only control’ strategy has 

been successful in mitigating eutrophication in some lakes (Lewis et al., 2011). 

However, increasing numbers of whole-lake experiments have reported that HABs are 

stimulated by combined P and N enrichment, rather than by enrichment with N or P 

alone (Paerl et al., 2016b; Paerl et al., 2011). Besides nutrient enrichment, 

non-manageable environmental factors, such as lake warming, solar radiation, and 

wind speed, are also believed to be important in explaining the occurrences of HABs 

(Huisman et al., 2018). Lake warming could promote algal growth, alter algal 

composition, and increase the concentrations of toxin produced by Microcystis spp. 

and Planktothrix spp. (Davis et al., 2009; Paerl et al., 2016a). Reduced water turnover 

caused by lake warming could be beneficial for buoyant cyanobacteria by allowing 

them to float upwards (Posch et al., 2012). Despite continuous efforts to explore the 

relationships between the growth of algae and such environment variables, our current 



understanding of these relationships is still unclear and inadequate (Robson, 2014; 

Shimoda and Arhonditsis, 2016).

Several strategies (e.g., nutrient discharge control, increased flushing, chemical 

treatment, sediment dredging, and aquatic food web manipulation) have been 

developed to mitigate water eutrophication and control the occurrences of HABs 

(Huisman et al., 2018; Paerl et al., 2016a). Reduction to the external nutrient 

discharges into water bodies is believed to ultimately be the most effective control 

measure, as it addresses the root cause of the problem (Huisman et al., 2018; Tong et 

al., 2017b; Yu et al., 2019). Before setting a target for nutrient discharge control, 

establishing accurate nutrient thresholds for defining eutrophication in particular 

water bodies is crucial (Huo et al., 2018). Due to the huge geographical differences 

that occur among watersheds (e.g., differences in climate and land use types) and 

lakes (e.g., with different lake depth and hydrology), ecoregion-specific criteria have 

been developed to protect water quality by assuming that lakes in the same ecoregion 

are affected by the same environmental drivers (Cardoso et al., 2007; Poikāne et al., 

2010; Richardson et al., 2018). This strategy can make full use of the nutrient 

monitoring data collected in different lakes, and provides an opportunity for nutrient 

thresholds to be established for lakes without long-term monitoring data (Huo et al., 

2019; Liu et al., 2018). However, recent studies have revealed that nutrient thresholds 

in lakes could be lake-specific, and thus region-specific nutrient criteria may fail to 

reflect the natural variations among lakes (Liu et al., 2019; Olson and Hawkins, 2013; 

Richardson et al., 2018; Rigosi et al., 2014; Taranu et al., 2012). Neglecting such 

background variations could underprotect water bodies with naturally low nutrient 



concentrations, but overprotect those with naturally high nutrient concentrations 

(Olson and Hawkins, 2013). Many studies have also acknowledged the importance of 

seasonal patterns in environment variables (e.g., water temperature, nutrient 

concentrations, and solar radiation) to algal growth (Huisman et al., 2018; Paerl et al., 

2016a; Posch et al., 2012). However, studies have only rarely addressed the variations 

in the nutrient thresholds of lakes among different seasons or months.

Establishing nutrient thresholds or criteria for lakes has long been a challenge for 

water quality managers (Huo et al., 2018). Because nutrients are not toxic to aquatic 

animals at low concentrations, nutrient criteria cannot be derived based on the 

does-response relationship used to define threshold levels for toxic pollutants (EPA, 

2010). The United States of America (US) was the first country to establish nutrient 

criteria for waterbodies (EPA, 2000a; Huo et al., 2018). In 2010, three typical 

methods were recommended by the US Environmental Protection Agency (EPA) to 

determine the nutrient criteria for particular lakes, which include the reference 

condition approach, mechanistic models, and stressor-response model (EPA, 2000b; 

EPA, 2010). In China, official technical guidelines for deriving the nutrient criteria 

for lakes were not issued until 2017 (Ministry of Ecology and Environment, China, 

2019). Among the methods to establish nutrient criteria, the stressor-response model, 

which describes the most important known relationships between primary 

productivity and nutrient concentrations, has been the most widely applied in previous 

studies (Huo et al., 2019; Huo et al., 2018; Liu et al., 2018). The chlorophyll a 

concentration in a body of water is a water quality index that is closely related to the 

growth of algae (Liu et al., 2019; Wu et al., 2017; Xu et al., 2015), and is thus usually 



used as a response variable when establishing nutrient thresholds.

Due to the complicated and sometimes unknown mechanisms involved in algal 

growth, the capacity of mechanistic water quality modelling to simulate the dynamics 

of algae that vary over time remains relatively limited (Nelson et al., 2018; Robson, 

2014; Shimoda and Arhonditsis, 2016). To study such components of complex biotic 

community dynamics as the nonlinear and unclear relationships between algal growth 

and major environmental factors, data-intensive machine learning models (e.g., 

random forest models, artificial neural networks, support vector machines, etc.) are 

among the most rigorous tools available (Chou et al., 2018; García Nieto et al., 2019; 

Liu et al., 2019; Park et al., 2015). These data-intensive machine learning models can 

achieve even better performance in the simulation of algal growth in lakes than that 

achieved by traditional mechanistic models (Liu et al., 2019; Nelson et al., 2018). 

Nelson et al., (2018) applied random forest models to quantify the nature of the 

relationships between different environmental conditions and five dominant 

cyanobacterial genera, and estimated the critical nutrient thresholds for different 

cyanobacterial species. Liu et al., (2019) applied random forest and generalized 

additive models to assess the predictability of the chlorophyll a concentration in a 

reservoir and estimate the relative importance of water temperature in driving algal 

growth. Many similar studies have demonstrated that machine learning methods could 

effectively simulate algal growth and develop the site-specific nutrient thresholds 

(Béjaoui et al., 2018; Chou et al., 2018; Park et al., 2015; Shen et al., 2019).

The primary goal of this study was to reveal the potential variations in nutrient 

thresholds in typical eutrophic lakes among different seasons and assess the potential 



responses of algal growth to nutrient control methods through the use of machine 

learning models. Using long-term and unified monitoring datasets (composed of the 

monthly nutrient monitoring data and meteorological observations collected from 

2006 to 2017) from multiple sampling sites in three eutrophic lakes (Lake Taihu, Lake 

Dianchi, and Lake Chaohu) in China, we applied random forest models to simulate 

the seasonal algal growth, estimate the critical nutrient thresholds, and assess the 

potential responses of algal growth to different nutrient control strategies in each lake. 

The results obtained could offer new insights into how flexible and season-specific 

nutrient thresholds can be set in eutrophic lakes while accounting for the natural 

variations in environmental variables, which is crucial for water quality management 

and reducing the risks of harmful algal blooms in the long-term.

2. Materials and methods

2.1 Lake descriptions

Three typical eutrophic freshwater lakes in China, including Lake Taihu, Lake 

Chaohu and Lake Dianchi, were selected for examination in this study (Figure S1). 

These lakes have received much attention from water quality managers in China since 

the early 2000s because of their serious eutrophication and frequent occurrences of 

HABs in them (Ministry of Ecology and Environment, China, 2012). Lake Taihu 

(31.41°N, 120.14°E) is located in the southeastern part of the Yangtze River Basin 

(Figure S1). It is a large and shallow lake, with an area of 2340 km2, an average depth 

of 2.2 m and a water volume of 4.4 billion m3 (Xu et al., 2015). In Lake Taihu, the 

most damaging and extensive outbreak of HABs occurred in 2007, which severely 

affected the water supply of Wuxi City and left over two million people without 



drinking waters for several weeks (Stone, 2011). Lake Dianchi (25.01°N, 102.66°E) is 

the largest plateau lake in a traditional phosphate ore mining region of China, with an 

area of 309 km2, an average depth of 5.0 m and a water volume of 1.56 billion m3 

(Wu et al., 2017). Lake Chaohu (31.56°N, 117.38°E) is the fifth largest freshwater 

lake in the lower Yangtze River Basin in China, with an area of 768 km2, an average 

depth of 2.7 m and a water volume of 20.7 billion m3 (Huang et al., 2018). 

2.2 Long-term nutrient monitoring and meteorological observational dataset

The data examined in this study consisted of monthly water quality data, including 

the chlorophyll a (μg/L), total nitrogen (TN, μg/L), total phosphorus (TP, μg/L) and 

ammonia nitrogen (NH4
+-N, μg/L) concentrations and Secchi depth (SD, cm) in each 

lake, and monthly meteorological observations, including daily water temperature 

(°C), precipitation (mm/day), wind speed (m/s), and sunshine duration (h/day) data, 

from January 2006 to December 2017. Similarly to previous studies (Chou et al., 

2018; Huo et al., 2019; Huo et al., 2018; Liu et al., 2019), we used the chlorophyll a 

concentration as a proxy for the algal growth in the lakes. Although some other 

variables could also impact algal growth, to the best of our knowledge, the selected 

factors examined here included the major potential drivers of algal growth (Huisman 

et al., 2018; Paerl et al., 2016a), and these variables were also consistently measured 

with the same standardized methods throughout the study period. In each lake, water 

quality monitoring was carried out at multiple sampling sites (17 sampling sites in 

Lake Taihu, 10 in Lake Dianchi and 7 in Lake Chaohu), and the detailed distribution 

of detailed sampling sites in each lake was shown in Figure S1. Meteorological 

information was collected from the national meteorological station operated by the 



China Meteorological Administration near the lakes (http://data.cma.cn/).

The procedures for collecting water samples and measuring nutrient concentrations 

were consistent throughout the whole study period and were based on the ‘technical 

specifications requirements for monitoring of surface water and wastewater in China’ 

(HJT 91-2002). Water samples were collected at a depth of about 0.5 m below the 

water surface. The TN concentration was determined by persulfate digestion, 

followed by automated colorimetric analysis (N-(1-naphthyl) ethylenediamine 

dihydrochloride spectrophotometry), with a method detection limit (MDL) of 50 

μg/L. The TP concentration was determined by persulfate digestion, followed by 

automated colorimetric analysis (ammonium molybdate and antimony potassium 

tartrate under acidic conditions), with an MDL of 10 μg/L. Chlorophyll a 

concentrations were determined by acetone extraction, followed by separation by 

centrifugation separation and the determination of sample absorbance, with an MDL 

of 1 μg/L. All nutrient concentrations lower than the MDL were set to 1/2 of the MDL 

in subsequent data analyses. The monthly averaged meteorological data were 

calculated based on the daily observations. In summary, the complete raw dataset 

comprised a total of 5726 chlorophyll a concentrations (2800 for Lake Taihu, 1430 for 

Lake Dianchi and 1496 for Lake Chaohu), 5768 TN concentrations (2843 for Lake 

Taihu, 1429 for Lake Dianchi and 1496 for Lake Chaohu) and 5768 TP 

concentrations (2843 for Lake Taihu, 1429 for Lake Dianchi and 1496 for Lake 

Chaohu). A summary of the monitoring data collected during the study period in the 

three lakes is provided in Table 1.

2.3 Random forest models



We applied random forest models, a typical machine learning method relying on 

the input of large dataset (Liu et al., 2019; Nelson et al., 2018), to the nutrient 

monitoring and meteorological observational dataset to characterize the relationships 

between chlorophyll a concentrations and different environment variables. The input 

variables in the model include nutrient monitoring data (chlorophyll a, TN, TP, 

NH4
+-N and SD) and meteorological data (water temperature, precipitation, wind 

speed, and sunshine duration) in each lake (Figure 1). The random forest model is a 

machine learning algorithm that is used to fit a large ensemble of randomly assembled 

decorrelated classification or regression trees to bootstrapped samples of a response 

variable, which then averages the outputs of these trees to produce a simulated 

response (Nelson et al., 2018). The random forest model was previously shown to be 

good at handling data containing the complicated interactions, and at uncovering the 

nonlinear and linear relationship structures within such datasets. It has been 

successfully applied in simulating seasonal algal growth in previous studies (Liu et 

al., 2019; Nelson et al., 2018). In this study, a random forest model was developed by 

using the ‘randomForest’ package in R 3.2.3 and SPSS modeler 18.0 (IBM, USA). 

Models were performed by the following steps: (1) the historical dataset for each lake 

during 2006-2016 was portioned into training and testing folds, with 90% of the 

dataset randomly selected as the training fold that was used to build the random forest 

model; (2) the random forests were ‘grown’ through calculations in R or SPSS 

modeler, and the models’ performance was assessed using the testing fold; (3) the 

models’ performance was validated by predicting monthly chlorophyll a 

concentrations in 2017 and comparing these to observed values; steps 1-3 were 



repeated for nine times with each new fold representing the ‘testing’ set in each 

iteration and (4) the partial dependence of all of the explanatory variables was 

calculated. The post training model was used to estimate the seasonal nutrient 

thresholds targeted at different chlorophyll a concentrations (e.g., 10, 20 μg/L, and so 

on) and assess the potential responses of chlorophyll a concentrations to different 

nutrient control strategies or water temperatures. When estimating response of 

chlorophyll a concentrations to reductions of nutrient concentrations in each lake, 

three scenarios were assumed: 10% reduction in TN (or TP) concentration, 20% 

reduction in TN (or TP) concentration and 50% reduction in TN (or TP) concentration 

relative to the monthly monitoring data in 2017. Three scenarios with different water 

temperatures were assumed: 10% increase, 20% increase and 50% increase relative to 

the monthly monitoring data in 2017 (Figure 1). The models’ performance was 

quantified using the coefficient of determination (R2) calculated between the predicted 

and observed chlorophyll a concentrations. Partial dependence values in the random 

forest models were also calculated by R 3.2.3 as a measure of each explanatory 

variable’s influence on the response variable given the effects of all the other 

explanatory variables in the model.

3. Results and discussion

3.1 Summary of long-term nutrient monitoring results

Figure 2 shows the monthly changes in chlorophyll a, TN and TP concentrations 

from 2006 to 2017 in Lakes Taihu, Dianchi and Chaohu. Among these three lakes, 

Lake Dianchi had the highest chlorophyll a, TN, and TP concentrations. In 2017, 

chlorophyll a, TN, and TP concentrations (mean ± standard deviation) in Lake 



Dianchi were 86 ± 85, 2226 ± 895 and 137 ± 69 μg/L, respectively, which were all 

much higher than the corresponding values recorded in Lake Taihu and Lake Chaohu. 

The TN and TP concentrations in Lake Dianchi were also much higher than the Grade 

III limit for water quality that is usually used as a standard for clean lakes in China, 

which is defined as a TN concentration of 1000 μg/L and a TP concentration of 50 

μg/L (Ministry of Ecology and Environment, China, 2002). In Lake Taihu and Lake 

Chaohu, the chlorophyll a concentrations in 2017 were 18 ± 32 and 11 ± 14 μg/L  

(mean ± standard deviation), respectively, and their TN and TP concentrations 

approached or were slightly higher than the Grade III limits for lakes in China. During 

the study period, the TP concentration declined significantly in all three lakes, while 

the TN concentration was only observed to have declined in Lake Taihu and Lake 

Dianchi. In response to these changes in TN and TP concentrations, chlorophyll a 

concentrations gradually declined in Lake Taihu and Lake Chaohu from the year 2006 

onward (with a monthly decrease of 0.11 μg/L in Lake Taihu (P<0.01, n=144) and of 

0.14 μg/L in Lake Chaohu (P<0.01, n=144)), while no significant decline in 

chlorophyll a concentration was observed in Lake Dianchi (P>0.1, n=143). Clear 

seasonal patterns in chlorophyll a and nutrient concentrations were observed in all 

three lakes (Figure 1). For instance, in Lake Taihu, lower TN concentrations usually 

occurred in summer, and higher TN concentrations usually occurred in spring, 

possibly due to changes in internal nutrient cycling (Finlay et al., 2013; Tong et al., 

2019; Zhong et al., 2010). In 2017, the TN concentration in July (1118±461 μg/L, 

mean ± standard deviation) in Lake Taihu was even less than 50% of the TN 

concentration in this same lake in April (2640±1020 μg/L). Driven by increased water 



temperatures (Huisman et al., 2018; Paerl et al., 2016a), higher chlorophyll a 

concentrations usually occurred in summer. Strong spatial variations in nutrient 

concentrations were observed among different monitoring sites within the same lake 

(Figure S2). Significant relationships were observed between the TN or TP 

concentration and the chlorophyll a concentration (P<0.01), indicating that nutrients 

were important drivers of algal growth (Table S1-S3).

3.2 Performance of random forest models

In general, the results of modeling by random forests fit the training data very well. 

In Lakes Taihu, Dianchi, and Chaohu, the R2 values calculated for the relationships 

between the predicted and observed chlorophyll a concentrations in the training 

datasets were 0.66 ± 0.04 (n=9), 0.79 ± 0.03 (n=9), and 0.73 ± 0.05 (n=9), 

respectively (Figure S3). In previous studies carried out using linear regression 

models (LRM) or generalized additive models (GAM), R2 coefficient values between 

predicted and observed chlorophyll a concentrations approaching or above 0.2 were 

believed to indicate effective prediction by the models (Huo et al., 2018; Liu et al., 

2018). This indicates that the random forest models used herein could simulate algal 

growth quite successfully. The results of the comparison of the cross-validated 

predictions to the testing data are provided in Figure 3A, and these results showed that 

the random forest models made better predictions of chlorophyll a concentrations in 

Lake Dianchi (R2 = 0.48 (0.37 - 0.64), n=9) and Lake Chaohu (R2 = 0.50 (0.34 - 

0.68), n=9) than of those in Lake Taihu (R2 = 0.26 (0.12 - 0.43), n=9). The models 

were further validated by predicting the monthly chlorophyll a concentration in each 

lake in 2017 and comparing it to the observed value. As shown in Figure 3B, the 



predicted results effectively displayed the correct seasonal variation in chlorophyll a 

concentrations, and were quite consistent with the observed concentrations in all three 

lakes (for Lake Taihu, R2=0.27, P<0.01, n=204; for Lake Dianchi, R2=0.38, P<0.01, 

n=120; and for Lake Chaohu, R2=0.19, P<0.01, n=96; shown in Figure S4).

3.3 Seasonal variations in nutrient thresholds in eutrophic lakes

Partial dependence plots for the random forest models revealed that the 

relationships between the response variable and the explanatory variable were 

predominantly nonlinear, and the curves representing these were composed of the 

average modelled values across the range of observed values of the explanatory 

variable (Hastie et al., 2009; Nelson et al., 2018). In this study, the steepest curves 

were associated with the TN concentration, TP concentration, water temperature, and 

Secchi depth measured in the lakes, while the NH4
+-N, sunshine duration, 

precipitation, and wind speed variables were largely invariant (Figure 4). In general, 

the chlorophyll a concentration had a relatively stronger partial dependence on the TP 

concentration in these lakes. In particular, these curves indicated that there was a 

threshold in the relationship between the TP concentration and chlorophyll a 

concentration, where the partial dependence rose sharply for TP concentrations 

between 100 and 350 μg/L (Figure 4). In Lake Taihu, this curve plateaued at TP 

concentrations greater than about 200 μg/L, while in Lake Chaohu and Lake Dianchi, 

these curves plateaued after about 300 μg/L. Compared with the curves for the TP 

concentration, the curves between the TN concentration and chlorophyll a 

concentration were less steep, particularly in Lake Dianchi and Lake Chaohu. With a 

TN concentration of less than 3000 μg/L, the chlorophyll a concentration remained 



stable, even as the TN concentrations increased (Figure 4). This result possibly 

indicates that algae in different lakes could respond differently to the same changes in 

nutrient concentrations (Olson and Hawkins, 2013; Richardson et al., 2018). As the 

water temperature rose, the chlorophyll a concentration increased gradually (Figure 

4). In Lake Dianchi, a sudden and steep increase in chlorophyll a concentrations 

occurred at a water temperature of 25 °C, while in Lake Chaohu, a steep increase 

occurred at a water temperature of 30 °C, suggesting that different algal species could 

have different sensitivities to increasing water temperatures (Huisman et al., 2018), 

and that the algae in Lake Dianchi could grow well at mild temperatures (Wang et al., 

2019).

By applying the random forest models, we estimated the seasonal variations in the 

TN and TP thresholds in these lakes that were needed to target different chlorophyll a 

concentration limits. When estimating thresholds for one variable, we used the 

monthly monitoring data in these lakes for 2017 as inputs to the models. In general, 

the estimated TN and TP thresholds varied significantly among different lakes and 

different months (Figure 5). To limit the chlorophyll a concentration to below 20 

μg/L, the estimated monthly TN thresholds in Lakes Taihu, Dianchi, and Chaohu 

were 2180 ± 479, 2340 ± 295, and 1849 ± 261 μg/L, respectively. The estimated 

monthly TP thresholds in these lakes were 66 ± 9, 149 ± 28, and 100 ± 22 μg/L, 

respectively (Figure 5). Significant variations in nutrient thresholds were also 

observed among different seasons. In Lake Taihu, the TP threshold to limit the 

chlorophyll a concentration to below 20 μg/L was estimated to be 58 ± 12 μg/L in 

May, but increased to 82 ± 18 μg/L in September. In Lake Chaohu, the TN threshold 



was estimated to be 1472 ± 45 μg/L in July, but increased to 2438 ± 200 μg/L in 

February. The estimated TN and TP thresholds in this study approached the results 

estimated in a previous study based on bioassay experiments in Lake Taihu (Xu et al., 

2015), which were 1260 μg/L for TN and 82 μg/L for TP to limit the chlorophyll a 

concentration to 20 μg/L in summer. The results of comparing the estimated TN and 

TP thresholds with the measured results in 2017 showed that the measured TN 

concentrations approached or were even lower than the estimated thresholds (except 

for those in the spring in Lake Chaohu). However, the measured TP concentrations 

were still much higher than the predicted thresholds in summer (Figure 5). For 

instance, in Lake Taihu, the measured TP concentration (132 ± 51 μg/L) in September 

was much higher than the estimated threshold value (82 ± 18 μg/L), indicating that the 

high TP concentrations could possibly be responsible for the high chlorophyll a 

concentration observed there in summer.

3.4 Responses of chlorophyll a to changes in nutrients and water temperature

Quantifying how algal growth responds to declines in the TN and TP 

concentrations in lakes is of great importance to setting nutrient control targets for 

water quality management (Huisman et al., 2018; Paerl et al., 2011; Xu et al., 2015). 

By applying the random forest models, we estimated the potential declines in 

chlorophyll a concentrations under scenarios with decreases in TN or TP 

concentrations of different magnitudes. Figure 6 shows that, the chlorophyll a 

concentrations in different lakes could have quite different responses to the same 

decreases in TN and TP concentrations, and greater decreases in chlorophyll a 

concentrations were observed in scenarios with TP declines than in those with TN 



declines. With a decline in the TP concentration but no change in the TN 

concentration, a significant reduction in the chlorophyll a concentration was observed 

in all three lakes. Larger declines in chlorophyll a concentration were observed with 

greater decreases in TP concentrations. The largest decrease in chlorophyll a 

concentration in these scenarios usually occurred in the summer (from July to 

October) in all three lakes, while only slight changes were observed in spring and 

winter (Figure 6A). In August, the chlorophyll a concentrations in Lakes Taihu, 

Dianchi, and Chaohu were predicted to decline from 50 ± 14 to 39 ± 8 μg/L, from 175 

± 120 to 140 ± 100 μg/L, and from 14 ± 18 to 7 ± 1 μg/L, respectively, with a 50% 

decline in the TP concentration relative to the measured values. However, in spring 

and winter, the decline in the chlorophyll a concentration in these lakes was usually 

less than 10% (Figure 6A). Compared with its response to TP concentration, the 

response of the chlorophyll a concentration to decreases in the TN concentration was 

not significant (Figure 6B). In all three lakes, the chlorophyll a concentration was 

only observed to decline as the TN decreased in Lake Chaohu in spring, while only 

slight changes were observed in the other seasons and lakes. There being different 

responses of chlorophyll a concentration to nutrient declines in different lakes and 

seasons revealed the importance of adopting a season-specific nutrient management 

strategy for controlling the growth of algae. We further estimated the responses of 

chlorophyll a concentrations to scenarios in which water temperatures increased, and 

found that the promotion of algal growth by increased water temperature could be 

quite different in different seasons (Figure 7). In Lake Taihu, a 20% increase in water 

temperature was estimated to result in a 16% and 23% increase in the chlorophyll a 



concentration in March and May, respectively, while the corresponding increases in 

chlorophyll a concentration in July and August were less than 5%, indicating that 

water temperature might not be a limiting factor for algal growth in this lake in 

summer (Huisman et al., 2018). In Lake Dianchi, the response of chlorophyll a 

concentrations to increased temperature was less significant throughout the year 

(Figure 7), which is consistent with the results presented in Figure 4.

3.5 Implications to future nutrient management in lakes

Although a full mechanistic understanding of the relationships between algal 

growth and environment variables remains to be attained (Liu et al., 2019; Nelson et 

al., 2018; Shimoda and Arhonditsis, 2016), the simulated chlorophyll a concentrations 

produced by the random forest models established in this study were fairly robust 

(Figure 3, Figures S2 and S3) and demonstrated the importance of establishing 

lake-specific and season-specific TN or TP thresholds for the control of algal blooms 

in lakes (Figure 5). Ecoregion-based nutrient criteria provide the possibility of 

establishing nutrient thresholds for lakes for which long-term nutrient monitoring data 

are not available (Huo et al., 2019; Huo et al., 2018), and the variations among 

individual lakes can then represent historical changes in nutrient concentrations 

(Olson and Hawkins, 2013). Region-based nutrient criteria have been proposed and 

applied in previously established regional and national nutrient management strategies 

for lakes (EPA, 2000a; Huo et al., 2018), and they have proven to be effective in 

water quality protection in some regions (Huo et al., 2018). However, recent studies 

have revealed that the relative importance of different environmental variables to 

algal growth could be lake-specific and season-specific, rather than region-specific 



(Richardson et al., 2018; Taranu et al., 2012). The natural variations among lakes 

within the same ecoregion could be so large that the adoption of region-based nutrient 

criteria could underprotect waterbodies with naturally low nutrient concentrations and 

overprotect those with naturally high nutrient concentrations (Olson and Hawkins, 

2013). For each eutrophic lake selected for use in this study, the estimated nutrient 

thresholds were quite different, particularly the TP thresholds (Figure 5). The 

estimated TN nutrient thresholds to limit the chlorophyll a concentration to below 20 

μg/L were 2180 ± 479 μg/L for Lake Taihu, 2340 ± 295 μg/L for Lake Dianchi, and 

1849 ± 261 μg/L for Lake Chaohu. In Lake Dianchi, the corresponding TP threshold 

was estimated to be 149 ± 28 μg/L, which was much larger than the estimated values 

for Lake Taihu (66 ± 9 μg/L, with a range of 56 - 82 μg/L) and Lake Chaohu (100 ± 

22 μg/L, with a range of 62 - 126 μg/L). Lake Dianchi is located in a traditional 

phosphate ore mining area in China, which thus has a naturally high background TP 

concentration (reaching 100 μg/L as early as 1982) (Ouyang et al., 2015). The 

previously estimated TN and TP criteria for the region wherein Lake Dianchi was 

located were estimated to be about 500 μg/L and about 20 μg/L, respectively (Huo et 

al., 2018). The previously estimated TN and TP criteria for the region wherein Lake 

Taihu and Lake Chaohu were located were about 360 - 785 μg/L and about 14 - 43 

μg/L, respectively (Huo et al., 2018). Because of lack of specific nutrient criteria for 

many individual lakes, the Grade III limits for TN (1000 μg/L) and TP (50 μg/L) have 

also been used as the standards for defining clean lakes in China (Ministry of Ecology 

and Environment, China, 2002; Yu et al., 2019). However, the estimated TN and TP 

thresholds for the three lakes in this study were much higher than the region-based 



nutrient criteria and the Grade III limits (Figure 5), which suggests the possibility that 

these nutrient criteria might have overprotected the water quality of these lakes.

Besides the nutrient enrichment of lakes (Huisman et al., 2018; Paerl et al., 2016a), 

water temperature is also believed to be a crucial factor determining the algal growth 

(Huisman et al., 2018; Paerl et al., 2016a). Dimictic lakes usually have a heightened 

susceptibility to cyanobacterial blooms under stratified eutrophic conditions (Taranu 

et al., 2012). Lake warming may promote the growth of many bloom-forming species 

of cyanobacteria and lead to the more stable stratification of the water column and 

reduced water turnover (Posch et al., 2012). Lake warming could cause changes in 

algal compositions and further alterations in toxin concentrations (Posch et al., 2012). 

Different algal species in lakes could have different responses to increasing water 

temperatures, and toxic Microcystis spp. exhibited more significantly elevated growth 

rates than non-toxic species (Davis et al., 2009). Cyanobacterial species typically 

reach their maximum growth rates at water temperatures of approximately 30 °C, 

while chlorophytes and dinoflagellates species usually reach their maximum growth 

rates at about 25 °C (Paerl et al., 2016a). Due to concerns over the negative impacts of 

algal blooms caused by climate change, new nutrient management strategies have 

been proposed, such as setting updated nutrient reduction targets and establishing 

stricter nutrient criteria for the impacted waterbodies (Huo et al., 2019; Liu et al., 

2018). In this study, the analyses of different scenarios carried out using the random 

forest models showed that the responses of chlorophyll a concentrations to lake 

warming could differ among different lakes and seasons. Algal growth was not 

sensitive to lake warming throughout the year in Lake Dianchi. In Lake Taihu, algal 



production could be promoted significantly by warming in the spring, but not in 

summer (Figure 7), which indicates the these algal species in this lake may have 

already reached their maximum growth rate in the summer under present-day 

conditions (Huisman et al., 2018).

On the other hand, water temperature could also significantly affect the nutrient 

concentrations within each lake by altering the natural processes occurring therein 

(e.g., strengthened denitrification, sediment nutrient release, etc.) (Ding et al., 2018; 

Finlay et al., 2013; Wu et al., 2017), and further can affect the growth of algae (Finlay 

et al., 2013). Such impacts of water temperature on nutrient concentrations could be 

particularly important for lakes for which the effective control of anthropogenic 

nutrient discharges has been established (Wu et al., 2017). In this study, much higher 

TN concentrations usually occurred in spring and winter, and negative relationships 

were observed between the water temperature and TN concentration in all three lakes 

(P<0.01; Figure 8). Higher water temperature is beneficial for the denitrification 

process, which converts inorganic N species (e.g. NO3
- and NO2

-) into N2 and N2O, 

further resulting in decreases in TN concentrations (Yao et al., 2016; Zhong et al., 

2010). It was also previously reported that higher water temperature could promote 

the releases of P from the sediment and increase TP concentrations in water columns, 

especially in summer (Ding et al., 2018). The strong variations in both TN and TP 

concentrations within particular lakes could even shift the lakes from following a 

‘P-limited pattern’ in spring to an ‘N-limited pattern’ in summer (Xu et al., 2015). 

This fact indicates that, in addition to promoting algal growth, changes in water 

temperature could also cause seasonal changes in nutrient levels, which might be 



good (if they lead to deceasing TN concentrations) or bad (if they lead to increasing 

TP concentrations) for algal control. 

Strong seasonal variations in nutrient concentrations and other environmental 

drivers of algal growth (e.g., water temperature and solar radiation) require that  

season-specific, rather than ‘one-size fits all’, nutrient management strategies are used 

for eutrophic lakes (Richardson et al., 2018; Taranu et al., 2012). Considering that 

societies must make decisions based on trade-offs between environmental protection 

and economic costs, it is necessary to adopt nutrient management strategies based on 

the monthly nutrient thresholds for bloom-forming cyanobacteria (Yu et al., 2019). 

Results obtained with the random forest models herein showed that it is more 

important to control the TP concentration in these lakes than the TN concentration to 

reduce the chlorophyll a concentrations in therein (Figure 6). The estimated TN and 

TP thresholds varied significantly among different seasons. In Lake Taihu, the TP 

criterion to limit the chlorophyll a concentration to below 20 μg/L was estimated to be 

58 ± 12 μg/L in May, but increased to 82 ± 18 μg/L in September. In Lake Dianchi, 

the TP criterion was estimated to be 149 ± 29 μg/L in August, but increased to 202 ± 

80 μg/L in April. In Lake Chaohu, the TP criterion was estimated to be 79 ± 29 μg/L 

in September, but increased to 100 ± 47 μg/L in January (Figure 5). This suggests that 

it is feasible and necessary to set flexible nutrient criteria in different months, and also 

that less strict TP criteria might be applied in spring or winter. By comparing the 

estimated TN and TP criteria with the measured nutrient data in 2017, only the 

measured TP concentrations in summer were much larger than the estimated nutrient 

criteria (from July to October), while in other seasons, the measured values 



approached or were even lower than the estimated thresholds (Figure 5). However, in 

actual environmental management, the nutrient control target is usually fixed for the 

same lake throughout the whole year (Huo et al., 2019; Liu et al., 2018), which 

neglects the natural variations in nutrient concentrations and other environmental 

variables that occur. This means that many waterbodies are probably overprotected, 

which increases the economic costs of environmental protection. Specifically, for the 

studies lakes, the control of TP concentrations in summer could be considered a 

priority, while the nutrient criteria might be relaxed slightly in other seasons.

4. Conclusion

In this study, we applied random forest models to long-term nutrient monitoring 

and meteorological observational datasets for Lake Taihu, Lake Dianchi, and Lake 

Taihu in China. This was done to characterize the relationships between chlorophyll a 

concentrations and various environmental drivers, establish season-specific nutrient 

thresholds for each lake, and assess the potential declines in chlorophyll a 

concentrations that could be achieved through nutrient management. In general, the 

random forest models performed well at predicting chlorophyll a concentrations, and 

successfully displayed monthly variations in chlorophyll a concentrations. The 

estimated TN and TP thresholds were quite variable among different months, and 

were usually stricter in summer than in winter. To limit chlorophyll a concentrations 

to remaining below 20 μg/L in August, the estimated TN thresholds in Lakes Taihu, 

Dianchi, and Chaohu were 2145 ± 683, 2372 ± 918, and 1527 ± 71 μg/L, respectively, 

and the corresponding TP values were 82 ± 24, 149 ± 22, and 120 ± 22 μg/L. The 

model results showed that it is more important to control the TP concentration in 



summer than the TN concentration to reduce the chlorophyll a concentration. The 

strong seasonal variations in the estimated nutrient thresholds suggest that a 

‘one-size-fits-all’ nutrient control target could overprotect these water bodies and 

increase the economic costs of eutrophication control. In addition, our results showed 

that natural changes in water temperature should be considered when establishing 

such nutrient criteria and establishing a nutrient management strategy.
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Figure 1. Flowchart of model development and application in predicting nutrient thresholds 

and response to different nutrient reductions;

Figure 2. Monthly changes of TN, TP and chlorophyll a concentration in Lake Taihu, 

Dianchi and Chaohu between 2006 and 2017;

Figure 3. Overall cross-validated predictions by the random forest model in Taihu, Chaohu 

and Dianchi. A. Comparison between predicted chlorophyll a concentration and measured 

value in the testing data set; B. Prediction of monthly chlorophyll a concentration in three 

lakes in 2017;

Figure 4. Partial dependence plots of chlorophyll a concentration to different explanatory 

variables in the random forest model

Figure 5. Estimated monthly nutrient thresholds for (A) TP concentration and (B) TN 
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Figure 6. Response of chlorophyll a concentration to decrease of TP (A) and TN (B) 

concentrations in the lakes;
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three lakes;
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Figure 2. Monthly changes of TN, TP and chlorophyll a concentrations in Lakes Taihu, 

Dianchi and Chaohu from 2006 to 2017
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Figure 3. Overall cross-validated predictions by the random forest model in Taihu, Chaohu 

and Dianchi. A. Comparison between predicted chlorophyll a concentration and measured 

value in the testing dataset; B. Prediction of monthly chlorophyll a concentration in three 

lakes in 2017.  

 TN concentrations (μ g/L)

1500 3000 4500 6000

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100
Taihu
Dianchi
Chaohu

TP concentrations (μ g/L)

0 100 200 300 400

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100

NH3-N concentrations (μ g/L)

0 1000 2000 3000 4000

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100

Secchi depth (cm)

0 25 50 75

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100



Water temperature (oC)

10 15 20 25 30 35

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100
Taihu
Dianchi
Chaohu

Sunshine duration (h)

2 4 6 8

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100

Daily precipitation (mm)

0 25 50 75 100

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100

Wind speed (m/s)

1.5 2.0 2.5 3.0

P
ar

tia
l d

ep
en

de
nc

e 
pl

ot
s 

of
 c

hl
or

op
hy

ll a
 (μ

 g
/L

)

10

100

Figure 4. Partial dependence plots of chlorophyll a concentration to different explanatory 

variables in the random forest model
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 (B)

Figure 5. Estimated monthly nutrient thresholds for (A) TP and (B) TN concentration in 

Lakes Taihu, Dianchi and Chaohu
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Figure 6. Response of chlorophyll a concentrations to decrease of TP (A) and TN (B) 

concentrations in the lakes
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Figure 7. Response of chlorophyll a concentration to the increases of water temperatures in 

the lakes 
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Dianchi and Chaohu



Table 1. Basic characteristics of selected lakes and distribution of variables in data set 

(median and 95% confidence intervals, n=sampling number)

(1) All the variables in the data set were monitored monthly enduring from January 2006 to 

December 2017. (2) The detailed locations of the monitoring sites were provided in Figure 

S1; (3) Chl a – Chlorophyll a; TN – total nitrogen; TP – total phosphorus; NH4
+-N – ammonia 

nitrogen; SD – Secchi depth; WT – water temperature; Rad – daily sunshine duration; Rain – 

daily precipitation; Wind – wind speed; (4) The data is calculated based on the data set 

throughout the study period.

Highlights

 Chlorophyll a concentrations predicted by random forest models successfully 

displayed the seasonal variations.

 Estimated total nutrient thresholds were quite variable and higher in summer than 

in winter.

 It was more effective to control the TP concentrations in these lakes than the TN 

concentrations to control algal growth.

 Seasonal variation in nutrient concentrations and environmental drivers should be 

considered when establishing nutrient criteria.
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Lake name Location
Lake area

(km2)
Average 

depth (m)
Chl a
(μg/L)

TN
(μg/L)

TP
(μg/L)

NH4
+-N

(μg/L)
SD

(cm)
WT
(oC)

Rad
(h)

Rain
(mm)

Wind
(m/s)

Taihu
E: 120.14o; N: 

31.41o
2329 2.2

12 (3-71), 

n=2800

1920(690-6136), 

n=2843

60 (20-180), 

n=2843

110(30-2129), 

n=2843

30 (10-50), 

n=2830

19.3(4.6-31.4), 

n=2591

4.8 (2.8-7.5), 

n=2844

2.7(0.6-10.2), 

n=2844

2.5 (1.9-3.0), 

n=2844

Dianchi
E: 102.66o; N: 

25.01o
298 5.0

63(18-177), 

n=1430

2230(1290-1249), 

n=1429

144(66-1066), 

n=1429

279(110-8906), 

n=1428

43(27-76), 

n=1430

18.7(11.1-24.3), 

n=1310

6.3(3.2-9.6), 

n=1440

12.7(0-81.4), 

n=1430

24.5(18.5-37.2), 

n=1440

Chaohu
E: 117.38o; N: 

31.56o
787 2.6

9.3(1.7-69.0), 

n=1496

1520(646-3545), 

n=1496

94(41-275), 

n=1496

372(108-1460), 

n=1496

35(15-55), 

n=1496

19.7(4.5-30.8), 

n=1368

4.8(2.8-7.1), 

n=1512

2.4(0.3-8.0), 

n=1512

2.0(1.7-2.6), 

n=1512



Abstract

Eutrophication and subsequent harmful cyanobacteria blooms are global water 

quality problems, and identifying the key drivers of water eutrophication and 

estimating nutrient thresholds for it in waterbodies have long been challenges for 

water quality managers. Data-intensive machine learning models have been shown to 

be better able to reveal the nonlinear relationships between variables in the study of 

complex biotic community dynamics than traditional mechanistic models. In this 

study, we applied random forest models to long-term datasets from nutrient 

monitoring and meteorological observations to characterize the relationships between 

algal growth and different environmental drivers in three eutrophic lakes in China. 

We further attempted to estimate the season-specific nutrient thresholds in these lakes, 

and assess the potential decreases in chlorophyll a concentrations that could be 

achieved through nutrient management. In general, chlorophyll a concentrations 

predicted by the random forest models were consistent with the values observed in the 

lakes, and successfully displayed the same seasonal variations. The estimated total 

nitrogen (TN) and total phosphorus (TP) nutrient thresholds were quite variable 

among months, and were higher in summer than in winter. To maintain chlorophyll a 

concentrations below 20 μg/L, the estimated TN thresholds in Lakes Taihu, Dianchi, 

and Chaohu in August were 2145 ± 683, 2372 ± 918 and 1527 ± 71 μg/L (mean ± 

standard deviation), respectively, and the corresponding TP thresholds were 82 ± 24, 

149 ± 22, and 120 ± 22 μg/L. The modelling results indicated that it was more 

important to control the TP concentrations in these lakes than the TN concentrations 



to control algal growth in summer. In summary, the strong seasonal variation in the 

estimated nutrient thresholds suggests that a ‘one-size-fits-all’ nutrient control target 

could overprotect these water bodies. Seasonal variation in nutrient concentrations 

and environmental drivers should thus be considered when establishing nutrient 

criteria and setting nutrient control targets.


