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• Simulated data can show factors affect-
ing reliability of statistical endpoints.

• Simulated datasets were varied for dif-
ferent means of 1 or 2 stressors with
varying dispersion.

• Logistic regression is optimal with one
stressor, quartiles are better with two
stressors.

• When an additional stressor is present
all methods are likely to underestimate
thresholds for a single stressor.

• Different endpoints are appropriate for
different applications, e.g. protection
vs. remedial goals.
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Various methods have been proposed to identify threshold concentrations of nutrients that would support good
ecological status, but the performance of these methods and the influence of other stressors on the underlying
models have not been fully evaluated. We used synthetic datasets to compare the performance of ordinary
least squares, logistic and quantile regression, as well as, categorical methods based on the distribution of nutri-
ent concentrations categorised by biological status. The synthetic datasets used differed in their levels of variation
between explanatory and response variables, and were centered at different positions along the stressor (nutri-
ent) gradient. In order to evaluate the performance of methods in “multiple stressor” situations, another set of
datasets with two stressors was used. Ordinary least squares and logistic regression methods were the most re-
liable when predicting the threshold concentration when nutrients were the sole stressor; however, both had a
tendency to underestimate the threshold when a second stressor was present. In contrast, threshold concentra-
tions produced by categorical methods were strongly influenced by the level of the stressor (nutrient enrich-
ment, in this case) relative to the threshold they were trying to predict (good/moderate in this instance).
Although all the methods tested had limitations in the presence of a second stressor, upper quantiles seemed
generally appropriate to establish non-precautionary thresholds. For example, upper quantiles may be appropri-
ate when establishing targets for restoration, but not when seeking tominimise deterioration. Selection of an ap-
propriate threshold concentration should also attend to the regulatory regime (i.e. policy requirements and
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Fig. 1. Typical scatter plots showing relationships between
and a second pressure. (data were for a mean TP of 50 μg
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environmental management context) withinwhich it will be used, and the ease of communicating the principles
to managers and stakeholders.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Legislation such as theWater Framework Directive (WFD: European
Union, 2000) offers significant opportunities to incorporate ecological
knowledge into regulatory mechanisms that ensure sustainable water
resources. A key assumption behind such legislation is that, if reasons
for deterioration of ecosystems can be identified, then appropriatemea-
sures can be put in place to remediate and/or protect against future de-
terioration. To this end, a large number of metrics summarising the
response of the aquatic biota have been developed to meet WFD objec-
tives (Birk et al., 2012) and the position of good and high ecological sta-
tus boundaries have been harmonised between Member States (Birk
et al., 2013; Poikane et al., 2014, 2015). In practice, however, the dy-
namic nature of ecosystems creates uncertainty in relationships be-
tween biology and stressors, with the consequence that predictions of
the benefits of remediation lack precision (Moe et al., 2015; Prato
et al., 2014). This is widely recognised as a major weakness of WFD im-
plementation (Hering et al., 2010, 2015; Carvalho et al., 2018).

A good understanding of the relationship between biology and a
pressure should, in theory, enable a regulator to set threshold concen-
trations beyond which ecological degradation is likely to occur; how-
ever, relationships with stressors such as nutrient enrichment are
often weak and confounded by interactions with other stressors (Page
et al., 2012; Harris and Heathwaite, 2012; O'Hare et al., 2018; Munn
et al., 2018). Consequently, the process of defining thresholds also
needs to account for uncertainty in the relationship between biology
and pressure.

A number of methods for setting thresholds for nutrient concentra-
tions have been described.

Broadly speaking, these fall into two types:

• those that assume a continuous response of both explanatory and re-
sponse variables, from which a threshold concentration can be
simulated EQR and total phosphorus
L−1 and an error standard deviation
inferred using linear regression models. This is the case when ecolog-
ical status (or other measures of biological condition – e.g. Davies and
Jackson, 2006) is defined as a position along a metric scale;

• those that assume a categorical response of one of these variables,
allowing threshold concentrations to be inferred using a number of
approaches, including binomial logistic regression and methods
based on the distribution of pressure values within the class(es) of in-
terest. This is the case when ecological status is expressed as one of a
number of classes, but would also be relevant if a particular species or
habitat required protection. Free et al. (2016), for example, describe
the development of nutrient standards to protect the distinctive
Chara-dominated communities found in shallow, marl lakes in
Ireland, protected under the European Union's Habitats Directive
(European Community, 1992).

A range of approaches for calculating threshold concentrations,
encompassing both of these strategies, have been described in the liter-
ature (Dodds and Oakes, 2004; Free et al., 2016; Hausmann et al., 2016;
Poikane et al., 2019) but, as far as we know, there has been no attempt
to compare the effectiveness of different methods and, importantly, no
systematic consideration of the extent to which the values produced
may be confounded in the presence of a second stressor. This is impor-
tant as the biological response to nutrient enrichment in European
freshwaters (Phillips et al., 2018), transitional and coastal waters
(Salas et al., 2019) is often distorted by the presence of other stressors,
posing difficulties for setting nutrient thresholds that ensure the integ-
rity of aquatic systems. Recent evidence indicate furthermore that nutri-
ent stress occurs in 71% to 98% of multi-stress situations in Europe's
surface waters (Nõges et al., 2016). The importance of multiple pres-
sures in shaping communities in aquatic systems is now widely ac-
knowledged (Borja et al., 2011; Nõges et al., 2016; Hering et al., 2015;
for a) single stressor gradient of phosphorus, b) combined stressor gradient of phosphorus
of 0.15).



Fig. 3. Range of TP concentrations at the good/moderate threshold predicted in the
presence of a second stressor (“wedge-shaped” data).

Fig. 2. Range of TP concentrations at the good/moderate threshold predicted by the
different methods. (in this and subsequent figures the dotted line shows the true
threshold concentration (83 μg L−1)).

427G. Phillips et al. / Science of the Total Environment 684 (2019) 425–433
Feld et al., 2016) although there are, as yet, no definitive approaches to
setting protective thresholds for constituents of any pressure or stressor
“cocktail”. Multiple stressors are likely to interact in different ways and
their effects can be difficult to predict, as there is evidence for additive,
synergistic and antagonistic effects of multiple stressors in aquatic eco-
systems depending on the nature of those stressors and the type of eco-
system (e.g. Jackson et al., 2016; Gieswein et al., 2017; Rodrigues et al.,
2018).

Although the WFD requires member states (MS) to establish
threshold values for physico-chemical metrics that support good
status there is no requirement for these values, unlike the biologi-
cal metrics, to be harmonised. Given that different methods were
used and the inherent uncertainty in relationships, it is not surpris-
ing that a wide range of values are now in use across Europe
(Phillips and Pitt, 2016). To overcome this and facilitate the use
of more uniform threshold values, guidance supported by a statis-
tical toolkit has been produced (Phillips et al., 2018). This encour-
ages the use of a variety of approaches and in this paper we
apply these approaches to synthetic datasets, designed to resemble
stressor-response relationships between nutrient enrichment and
biological community changes, in order to draw out some general
lessons on the suitability of different approaches in situations
where nutrients are the principal stressor shaping biological com-
munities, and also in the presence of a second stressor. It is not
our intention to investigate complex effects. Rather, we use simu-
lated datasets to support identification of data patterns and show
sensitivity of commonly used statistical methods to the presence
of unmeasured stressors.

2. Materials and methods

2.1. Datasets

In order to make comparisons between the different methods, a
series of synthetic datasets were produced. Each dataset contained
200 random values of total phosphorus (TP) concentration, a simu-
lated observed Ecological Quality Ratio (EQR) representing overall
environmental conditions where only this single stressor influences
the observed EQR, and a second simulated EQR where the value was
determined by a combination of phosphorus and a second unknown
stressor that also had a negative effect on the observed EQR. Apart
from the negative effect of both stressors, the synthetic data does
not explore the nature of the interaction between the two stressors
(i.e. additive, synergistic or antagonistic, sensu Piggott et al., 2015)
as this is also often unknown in real case scenarios. The only assump-
tion is that where a second stressor is suspected different methods
will show different sensitivities to its presence. Likewise, the nutri-
ent thresholds derived from the relationship observed may be
more or less reliable or approximate to the “true” value of the mea-
sured stressor depending on the method.

Each dataset was generated as follows:

1) A normally distributed random set of 200 total phosphorus (TP) con-
centrationswith a knownmean and standard deviationwas created.
The distribution of these data was chosen such that the true EQR
would range across the biological gradient from high to moderate
status.

2) A “true” EQR was generated from these values, using the regression
parameters for a relationship between log10TP and EQR. (parameters
taken from the relationship between TP and phytoplankton in lakes
used during the Central-Baltic GIG lake intercalibration exercise:
Phillips et al., 2014).

EQRTrue ¼ −0:62 Log10 TPð Þ þ 1:79 ð1Þ
This equation can be re-arranged to determine the “true” TP concen-
tration at the good/moderate boundary EQR, assumed to be 0.6

TP ¼ 10 0:6–1:79ð Þð =−0:62 ¼ 83 μg L−1 ð2Þ

3) A simulated observed EQR was then created from TP by adding a
normally distributed random error term (E), which had a mean of
0 and a known standard deviation (Fig. 1a).

EQRSimObs ¼ −0:62 Log10 TPð Þ þ 1:79þ E ð3Þ

4) Another normally-distributed set of EQR values (EQR2ndPressure)
with a fixed mean and standard deviation) was then generated to
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represent a hypothetical second stressor together with a random
probability (0–1) that this second stressor occurs at a particular site.

5) A simulated observed EQR (EQRSimObs 2 pressures) resulting from
both TP and the 2nd stressor was calculated by taking the lowest of
either the simulated EQR from phosphorus (EQRSimObs) or the 2nd
stressor EQR (EQR2ndPressure) where the probability of the second
stressor was N0.5. Where the probability of the 2nd stressor was
≤0.5, the EQR from phosphorus was used. Scatter plots produced
from this approach typically had “wedge-shaped” data clouds, an ex-
ample of which is shown in Fig. 1b.

To assess the effect of different levels of uncertainty and data that
span different levels of stress, ten replicate datasets were generated
Fig. 4.Range of TP concentrations at the good/moderate threshold predicted by each of themeth
cloud, characterised by the true EQR calculated using Eq. (1) from themean TP of dataset and ar
(for clarity only 4 of the 10 different stressor levels are shown (40,60,90,130 μg L−1)). Dashed
with the same mean TP and error standard deviation. The process was
repeated using ten different mean TP values (40, 50, 60, 70, 80,90,
100, 110, 120, 130 μg L−1) and 10 different error standard deviations
(0.12–0.30), representing increased scatter in the true relationship, to
finally produce 1000 datasets for each of the single and two-stressor
scenarios, an example with mean TP of 50 μL−1 and error standard de-
viation of 0.15 is shown in Fig. 1.
2.2. Methods for estimating nutrient threshold concentrations

The following methods were used to identify threshold concentra-
tions of TP corresponding to the good/moderate status boundary (as-
sumed to be EQR = 0.6):
ods using simulated datawith a single stressor (TP). Boxes grouped by position of the data
ranged (coloured) by variability of the relationship between the simulated TP and EQR (r2)
line represents the true mean phosphorus threshold.
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2.2.1. Ordinary least-squares regression (OLS)
The most obvious approach uses a linear regression between EQR

(dependent variable) and log TP (independent variable), with nutrient
threshold values determined from the regression parameters.

2.2.2. Logistic regression
An alternative approach that treats ecological status as a categorical

variablewhere a logisticmodel is fitted between categorical data using a
binary response, “biology moderate or worse” = 1 or “biology good or
better” = 0 and log TP. Threshold concentrations are determined to
be where the probability of being moderate or worse was 0.5. In the
case of two stressors an additional value was determined at probability
of 0.75.

2.2.3. Categorical methods
Nutrient concentrations associated with a particular ecological sta-

tus class (e.g. good ecological status) could also be expressed as a distri-
bution from which an upper quantile might be chosen to indicate a
nutrient concentration above which good status was very unlikely to
be achieved, or a lower quantile below which good status was very
likely to be achieved, so long as nutrients were the main drivers of sta-
tus. However, the variation inherent in biology-nutrient relationships
means that there will be many instances where lower concentrations
of nutrients are not associated with good status and vice-versa. The
risk of misclassification could, therefore, be reduced by also considering
the distribution of nutrient concentrations in the adjacent class (moder-
ate, in this case), where a lower quantile could be adopted to indicate
the nutrient concentration below which moderate status was unlikely
(and good status was likely to be achieved). Three different approaches
were included in these comparisons: average of medians of adjacent
classes; average of adjacent quartiles (75th percentile of “good status”
and 25th percentile of “moderate status”) and the use of the 75th per-
centile of “good status” alone.

2.2.4. Minimisation of mismatch of classification
An approach that estimates the nutrient threshold value by

minimising themismatch between status (good or better andmoderate
or worse) for ecological status and the stressor. The method calculates
the proportion of records where the biological status is better than the
stressor and where it is worse for incremental values of the nutrient
threshold. The nutrient threshold value where these two sets of propor-
tions are equal determines the point at which there is the lowest mis-
match of classifications. To determine this value a bootstrap approach
was used. For each dataset 75% of the data were randomly selected
Table 1
Analysis of variance table showing the influence of variability (r2 category) and position of data
methods applied to synthetic dataset.

Method Dataset Variability

F p

OLS regression
Single stressor 3.5 0.06
Two stressors 50.8 b0.00

Ave. median Single stressor 3.8 0.05
Two stressors 4.1 0.04

Ave. quartile
Single stressor 53.5 b0.00
Two stressors 117.6 b0.00

75th percentile
Single stressor 578.2 b0.00
Two stressors 512 b0.00

Mismatch
Single stressor 0.2 0.65
Two stressors 0.1 0.80

Logistic regression (p = 0.5)
Single stressor 1.2 0.27
Two stressors 279.1 b0.00

Logistic regression (p = 0.75) Two stressors 36.5 b0.00
Quantile regression (p = 0.75) Two stressors 272.9 b0.00

Significant F values shown in bold.
and the proportions of mis-classification determined. A loess model
was then fitted to these data to determine the nutrient concentration
where the mismatch was equal. This was repeated 50 times and the
mean nutrient concentration determined.
2.2.5. Linear quantile regression
When the nutrient-biology interaction is confounded by other

stressors or environmental variables, the variance around the mean of
the response variable is also a function of those explanatory variable
(s), leading to wedge-shaped distributions. In such cases, the quantile
regression allows different rates of change in the response variable to
be predicted along the upper (in the presence of stressors) or lower
(in the presence of mitigating factors) boundary of the conditional dis-
tribution of the data (Cade and Noon, 2003). The choice of an appropri-
ate quantile to use is somewhat arbitrary, though more extreme values
will have a greater potential to be influenced by outliers. We have used
the 75th percentile as a compromise that enables upper threshold to be
modelled with a reasonable degree of precaution and confidence.
2.3. Comparison of methods

Each of these methods was applied to the synthetic datasets and
the predicted good/moderate threshold concentrations (assumed
to be EQR = 0.6) for each were recorded for comparison with the
“true” threshold concentration defined by Eq. (2) above. The extent
of uncertainty was also recorded using the coefficient of determina-
tion (r2) from the regression between EQRSimObs and TP, these
values were categorised into 5 levels (5 ≥ 0.6, 4 ≥ 0.5, 3 ≥ 0.4, 2 ≥
0.3, 1 b 0.3) to allow the effect of scatter to be determined. To assess
the influence of the data distribution along the stressor gradient, re-
sults for each of the datasets categorised bymean TP were compared.
When applying the methods to real datasets, the threshold nutrient
at the good to moderate EQR boundary would be unknown so it
would be impossible to determine how a derived threshold relates
to the average TP. In such cases, the mean EQR could be used so we
present results for the synthetic datasets using the true EQR value
determined from the mean TP of the dataset using Eq. (1).

All analyses were performed using R statistical software (R
Development Core Team, 2006). Base statistics were used for all
methods except linear quantile regression, which was fitted using the
rq function from quantreg package (Koenker and Hallock, 2001). Origi-
nal computer code is available from the first author on request.
cloud (mean TP) on TP thresholds predicted for good ecological status using the different

Position data cloud (mean
TP)

Interaction

F p F p

0.362 0.548 0.332 0.564
1 29.4 b0.001 2.9 0.09
1 7731 b0.001 312.2 b0.001
4 8572.1 b0.001 173.7 b0.001
1 53.5 b0.001 6091.7 b0.001
1 6807.7 b0.001 146.2 b0.001
1 3149 b0.001 239.7 b0.001
1 3062.1 b0.001 203.5 b0.001
1 2178.1 b0.001 219.1 b0.001
3 4069.3 b0.001 48.5 b0.001
7 0.059 0.809 0.617 0.432
1 75.2 b0.001 0.565 0.452
1 113.5 b0.001 1.6 0.209
1 1.3 0.251 0.342 0.559



430 G. Phillips et al. / Science of the Total Environment 684 (2019) 425–433



431G. Phillips et al. / Science of the Total Environment 684 (2019) 425–433
3. Results

3.1. Average differences

A comparison of the range of predicted TP threshold values for the
Good-Moderate boundary shows that ordinary least squares (OLS) re-
gression and binary logistic regression at a probability of 0.5 predicted
the smallest range of values (c±5 μg TP L−1, Figs. 2 and 3). The variabil-
ity of the categorical methods was substantially higher (typically ±15
μg TP L−1), while the minimisation of mismatch method predicted a
range of values that lie between the regression and categorical methods
(±8 μg TP L−1). When TP was treated as a single stressor all methods,
except the 75th percentile of the TP concentration in siteswith good- bi-
ological status, predicted values that were centred around the true
threshold value (83 μg L−1 – see Eq. (2)). The 75th percentile predicted
significantly higher values than the other methods (F = 163 p b 0.001,
Fig. 2).

When a second stressor was present (Fig. 3) the predicted range of
values did not change, but both linear and logistic regression (at a prob-
ability of 0.5), underestimated the true threshold value by 36 μg TP L−1,
suggesting that these methods are not appropriate under such circum-
stances. In contrast the categorical methods were less influenced; the
two averaging approaches (median and adjacent quartiles) slightly
underestimating (−5 μg TP L−1), with the upper 75 percentile closer
to the true mean (+12 μg TP L−1). The minimisation of mismatch
method also underestimated the true threshold, although less so than
was the case for the regression methods (−20 μg TP L−1). Quantile re-
gression, using the 0.75 quantile and the logistic regression using a
probability of 0.75 provided nutrient threshold estimates for the good-
moderate boundary that were higher than the true threshold (+26
μg TP L−1 and + 34 μg TP L−1).
3.2. Influence of position of data cloud along stressor gradient and at differ-
ent levels of variability

For a single stressor neither OLS nor logistic regression (using a
probability of 0.5) methods were significantly influenced by either
their uncertainty or position on the stressor gradient (Fig. 4 &
Table 1). In contrast, all of the categorical methods and the mismatch
approach were significantly influenced by the level of stressor, under-
estimating the true threshold at low exposures (i.e. predicting a lower
nutrient threshold thus more stringent than necessary) and over-
estimating at high pressures (i.e. predicting a higher nutrient threshold
thusmore relaxed than that required). The average of adjacent quartiles
and the 75th percentile of TP in good-moderate status were the most
sensitive to uncertainty, the minimisation of mismatch the least, but
all had a significant interaction term showing an increasing effect of un-
certainty as the stressor level increased. Where a second stressor was
present, a similar pattern was seen (Fig. 5 and Table 1), although the ef-
fects of uncertainty and stressor levels were slightly higher. For exam-
ple, both OLS and logistic regressions (p = 0.5) predicted boundary
values that were significantly affected by both variability and their posi-
tion on the stressor gradient when two stressors influenced ecological
status, although the effect was much smaller than for the other
methods. Logistic regression predictions using p = 0.75 were particu-
larly influenced by position on the stressor gradient, overpredicting
the true threshold at low stressor levels. The predictions using quantile
regression (p = 0.75) were not significantly influenced by stressor
level, but were by variability, with higher predictions at high levels of
uncertainty.
Fig. 5.Range of TP concentrations at the good/moderate threshold predicted by each of themeth
Boxes grouped by position of the data cloud, characterised by the true EQR calculated using Eq.
between the simulated TP and EQR (r2) (for clarity only 4 of the 10 different pressure categor
threshold.
4. Discussion

Where a single stressor dominates the response of biology, linear re-
gression or binary logistic regression are the most reliable approaches.
Neither are substantially influenced by the mean of the dataset and
both are only slightly influenced by scatter in the data. This is unsurpris-
ing given that the data were generatedwith normally distributed errors
and thus conform to the requirements of regression models.

Any attempt to develop nutrient thresholds in freshwaters or coastal
waters, however, also needs to be aware that nutrients rarely act in iso-
lation (Vinebrooke et al., 2004; Wagenhoff et al., 2011; Piggott et al.,
2015; Gunderson et al., 2016), particularly in rivers and estuaries, and
our analyses indicate how interactions with a second stressor can con-
found the face-value relationship between biology and the stressor of
interest. Consideration of the complex relationships between the eco-
logical response and stressors acting simultaneously is essential to de-
cide management actions, because of non-linear and interactive
effects of stressors (Brown et al., 2013).

In these situations, neither linear nor logistic regressions are appro-
priate as the confounding effect of the second stressor will result in the
under estimation of nutrient thresholds. Such data show
heteroscedasticity, with decreasing variance as stressor levels increase,
caused by the 2nd stressor overriding the otherwise low influence of
nutrient effects. The categorical approaches initially appear to be less in-
fluenced by this problem, as on average they make predictions that are
clustered around the true mean. However, unlike the regression
methods, they are much more sensitive to the position of the data
cloud on the stressor gradient. If the data are clustered around the
boundary being predicted (the good/moderate boundary, EQR = 0.6,
in our study), they are the least sensitive to the effect of a 2nd pressure.
However if the data are centred below or above the boundary of inter-
est, they are likely to under- and overpredict, respectively, with the
threshold error increasing as uncertainty increases. The least influenced
was the minimisation of mismatch method, but all the approaches,
other than those seeking to describe the behaviour of the upper distri-
butions of the data, are likely to underestimate threshold values due
to the influence of other stressors.

The best solution to this problem would be to develop a more com-
plex model that could account for additional pressures; however, a lack
of reliable data and the complexity of modelling make this impractical
(Feld et al., 2016; Duarte et al., 2009). Whilst the combined effect of
multiple stressors was previously assumed to be additive, this is not al-
ways the case in ecological systems, where antagonistic and synergistic
interactions may dominate (e.g. Crain et al., 2008; Jackson et al., 2016;
Gieswein et al., 2017; Munn et al., 2018; Rodrigues et al., 2018).

An alternative approach would be to fit an upper quantile, which
identifies an upper surface to the relationship between EQR and nutri-
ent concentration. The problem with this approach is that it needs to
consider the uncertainty in the relationship between EQR and phospho-
rus. Our simulations show that quantile regression predicts higher
values as uncertainty increases. As the uncertainty of the true relation-
ship between nutrient and EQR decreases, a clearer upper boundary
emerges, with the upper quantile that is modelled to determine a
threshold value approaching, or better reflecting, the true effect of the
single stressor. On the other hand, it does indicate the highest values
of a physicochemical parameter that is consistent with good status
(Müller et al., 2017). Beyond this point, nutrients are likely to exert an
effect regardless of the presence of other stressors.

There is no ‘correct’ quantile, and one should inspect the distribution
of quantiles within the particular range of interest (Koenker and
Hallock, 2001). Higher quantiles offer greater chance that the true
ods using simulated datawith a stressor (TP) and an additional second unknown stressor.
(1) from the mean TP of dataset and arranged (coloured) by variability of the relationship
ies are shown (40,60,90,130 μg L−1)). Dashed line represents the true mean phosphorus
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response to nutrient stressor is being captured butwith the risk that the
regression line is anchored by fewer, and more extreme, records at any
level of pressure (Koenker, 2011). This problem is particularly acute
with small datasets. In practice, the 75th percentile offers a balance be-
tween precaution and statistical robustness when dealing with
medium-size datasets, although our simulations suggest that even this
value may be too high, over predicting at all levels of pressure.

Choosing anupper probability valuewith logistic regression is a sim-
ilar approach, potentially allowing threshold values to be determined
when a second pressure is present despite any confounding effects.
However, again it is difficult to determine the appropriate probability
to use. The selection of probability should obey fit-for-purpose criteria,
for which several classification measures exist that can be used as sup-
port (Fielding and Bell, 1997).

Taylor et al. (2018) advocate a combination of spatial, temporal and
experimental approaches in order to characterise the response of biota
to nutrient enrichment whilst, at the same time, recognising that com-
prehensive study designs can become prohibitively expensive. Their
study was limited to a single group of biota, diatoms, whilst we would
advocate the examination of the response of different ecosystem com-
ponents to enhance the insights (Robertson et al., 2006). Teichert et al.
(2016), by contrast, used random forest algorithms to detect the domi-
nant stressors in estuaries. At the heart of these approaches, however,
lie datasets that capture the spatial and/or temporal variation in assem-
blages along a strong nutrient gradient and it is also important that sta-
tistical analysis of such datasets are both robust and easy to
communicate to non-specialist managers and stakeholders.

In practice, however, such approaches are a necessary elementwhen
developing such thresholds because they offer themost straightforward
means of capturing the range of uncertainty associated with the water
body type under investigation. It is, however, important to validate
thresholds using independent sources of evidence. The use of experi-
mental systems (Bowes et al., 2012; McCall et al., 2017; Taylor et al.,
2018) is one means of doing this, but other options are also available
(e.g. Free et al., 2016).

5. Conclusions

Our simulations suggest that, where there is a strong stressor-
response relationship between nutrients and ecological status, any of
the tested modelling methods, with the exception of the threshold de-
rived from the 75th percentile of nutrient concentration in sites with
good ecological status, are likely to give reliable estimates of nutrient
concentrations that are associated with the ecological good-moderate
boundary. Of these, OLS and logistic regression are the most reliable,
while the minimisation of mismatch method is perhaps the easiest to
communicate to managers. This is likely to be the situation for lakes
where the dominance of the algal response to nutrients is clear.

In rivers, estuaries and coastal waters however, multiple stressors
are common; here the assumed robust regression approaches may be
strongly influenced by stressors other than nutrients and there is a
risk that threshold values that are lower than neededmay be generated,
in effect penalizing nutrients for impacts caused by other stressors. Such
situations can be identified from wedge shaped scatter plots and from
plots of model residuals and it is important that these are carefully con-
sidered before the results of modelling are translated to regulatory
regimes.

Where there is evidence of multiple stressors, quantile regression or
the use of logistic regressionwith nutrient threshold concentrations de-
termined using a quantile or a probability N0.5 have potential. However,
the selection of an appropriate quantile remains an unresolved issue.
Supporting chemical element threshold values determined for different
EQR categories are unlikely to be precautionary as, by their nature, they
seek tominimise false positives, i.e. effect detectionwhen there is no ef-
fect. Such boundaries may be appropriate when establishing targets for
restoration, but less so when seeking to minimise deterioration.
Eutrophication is a complex issue (Dodds, 2006; O'Hare et al., 2018)
but, for strategic planning and high-level overviews, there are still ben-
efits in knowing threshold values beyond which consequences can be
expected. Understanding the challenges involved in deriving such tar-
gets does, at least, enable regulators to interpret results, and combine
various strands of evidence to make robust decisions.
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