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ARTICLE

The ‘cottage effect’ in citizen science? Spatial bias in aquatic
monitoring programs
Edward E. Millara, E. C. Hazella and S. J. Mellesb

aEnvironmental Applied Science and Management, Ryerson University, Toronto, Canada; bChemistry and
Biology, Ryerson University, Toronto, Canada

ABSTRACT
Citizen science aquatic monitoring programs often rely on oppor-
tunistic, incidental contributions, which can lead to spatial bias, the
uneven geographical distribution of sample sites. It is less known
how this spatial bias compares to professional monitoring activities,
or how geospatial biases (e.g. terrain slope, population density, road
density) influence aquatic citizen science and professional lake
monitoring programs. This paper compares sample sites in
Ontario’s volunteer Lake Partner Program, against those identified
by a stratified random sampling method currently used by the
Province of Ontario, Ministry of Natural Resources and Forestry.
Exploration of spatial bias within each sampling method was con-
ducted using Kernel Density Estimation, a nonparametric approach
to interpolating the spatial trend of a given variable. Results indicate
that two distinct patterns of sampling clusters exist between the
two datasets, suggesting a ‘cottage effect’ in which volunteers are
more likely to sample accessible locations associated with recrea-
tion and summer home ownership. Although professional monitor-
ing programs are not exempt from spatial bias, our research
suggests that citizen science lake monitoring programs in Ontario
are more influenced by natural and demographic biases related to
the location, accessibility, size and general attractiveness of lakes.
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1. Introduction

Over the past two decades, public participation in data collection has transformed the
fields of spatial ecology, ecological mapping and geographic environmental science. The
popularity of citizen science, in which volunteers actively participate in scientific research,
is driven by the availability of easily operated networked technologies and user-friendly
software, as well as recognition by professionals that volunteers can provide an efficient
source of labor (Silvertown 2009). Citizen science is considered a form of crowd-science
(Franzoni and Sauermann 2014), or crowd-sourced geographic information (See et al.
2016), following Brabham’s discussion of crowd-sourcing as ‘an online, distributed pro-
blem solving and production model whereby an organization leverages the collective
intelligence of an online community for a specific purpose’ (Brabham 2012, p. 394). While
web-based tools allow scientists to mine this public collective intelligence, the growth in
scientific crowd-sourcing also involves direct collaboration between professionals and
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amateurs in the field (Dickinson et al. 2012). This form of citizen science is sometimes
referred to as community-based monitoring (CBM) and involves volunteers travelling to
physical locations to monitor the status of an area or ecosystem, thus providing environ-
mental scientists and managers with the data required to govern natural resources and
evaluate existing management strategies (Conrad and Hilchey 2011).

Though CBM does not always involve networked mobile devices or GIS tools, the
practice nevertheless corresponds with Goodchild’s (2007) vision of participatory
geography that sees citizens as sensors of environmental change. One emerging
opportunity for professional ecologists is to consolidate information gathered by
volunteer monitors, scaling up local monitoring by centralizing findings into larger
databases to build broader baseline data (Gouveia and Fonseca 2008). This practice
remodels ‘classic citizen science’ (in which sparsely distributed volunteers conduct
monitoring efforts as a hobby), into ‘geographical citizen science’, which demands
greater spatial precision and accuracy, and in which the precise geographic location
of the data point is essential (Haklay 2013).

1.1. Data quality in citizen science

Effective protocols, well-designed technological platforms and training activities can
improve the accuracy of volunteer-generated data for all types of citizen science
(Wiggins et al. 2011, Bonter and Cooper 2012, Jacobs 2016); however, the unstructured
and ad hoc nature of data gathered using these methods means that crowd-sourcing is
particularly susceptible to the challenges of sampling bias as a source of error. Crowd-
sourced ecological data have been referred to as opportunistic data, since it is typically
gathered in the absence of standardized sampling design or established field protocols
(Van Strien et al. 2013). According to Isaac et al. (2014) and Geldmann et al. (2016),
sampling bias in opportunistic data can come in four primary forms:

(1) temporal bias, referring to irregular recording effort over time;
(2) geographical bias, or spatial bias, referring to irregular coverage across the space

of a given area;
(3) observation bias, referring to irregular or uneven recording per site visit;
(4) detection bias, referring to differences in volunteer abilities to detect species,

leading to selective or incomplete reports.

Bias in sampling effort and intensity has the potential to generate statistical noise,
obscuring true indicators of change, or generating the appearance of patterns in the
data which do not, in fact, exist (Isaac et al. 2014). Sampling bias in species distribution
data can lead to miscalculations, skewed results or false conclusions (Geldmann et al.
2016). Our research focuses on the second type of sampling bias: geographic or spatial
bias and is from here on referred to as spatial bias.

1.2. Spatial bias

Availability of online citizen science programs, platforms and data repositories has
increased the volume of opportunistic biodiversity data (Van Strien et al. 2013).
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However, in the absence of a thoroughly designed sampling collection method that
controls for sampling intensity, results may be skewed by survey effort and method of
data collection (Fernández and Nakamura 2015). Even when data verification protocols
are used to enhance the validity of citizen-generated data, geographic inaccuracy can
result from positional errors in GPS technology (Rocchini et al. 2011).

Most sites sampled by volunteers in large-scale citizen science projects do not
explicitly control for spatial bias and are unevenly distributed through space (Van
Strien et al. 2013). Spatial sampling bias is also known to be influenced by proximity
to roads and larger cities (Kadmon et al. 2004, Fernández and Nakamura 2015,
Geldmann et al. 2016). A study of citizen science projects surveying 13 different taxo-
nomic groups revealed that citizen sampling is heavily biased toward accessibility and
that sample sites are influenced not only by roads and population density but also by
landscape features like steepness and elevation (Mair and Ruete 2016). In a study of four
major Danish citizen science projects, each with different objectives, protocols, study
areas and sampling designs, volunteers oversampled agricultural areas and under-
sampled forests and grasslands, suggesting that citizen science databases may be
more susceptible to spatial bias toward human-modified land (Geldmann et al. 2016).
Volunteers are also known to focus their effort on protected areas such as national parks
or designated wildlife zones, which are both publicly accessible and often have attrac-
tive landscapes known for biodiversity value (Boakes et al. 2010).

The problem of spatial bias is not unique to citizen science, and ecological data
collected by professionals are often correlated with the accessibility of sample sites. In
studies of biodiversity and species distributions, this can emerge from a focus on hot
spots in which areas known to contain greater biodiversity are sampled more frequently
by biologists (Hurlbert and Jetz 2007). These hot spots are also more likely to be close to
the recorders’ places of residence (Dennis and Thomas 2000) and often occur in hyper-
diverse regions that are of specific interest to scientists and natural historians at the time
of collection (Boakes et al. 2010). Factors known to influence sampling bias in studies
conducted by professionals include minimum, maximum, mean elevation, elevation
range, land-use variables (urban and industrial areas, irrigated croplands, non-irrigated
croplands, pasturelands), distance to the home of the researcher and even ‘topographi-
cally varied areas with comparatively pleasing summer temperatures, and more varied
landscapes’ (Romo et al. 2006, p. 883).

Spatial bias in volunteer sampling can lead to misguided or inappropriate observa-
tions. In a citizen science study of large-scale bird distributions, spatial bias in sampling
location and effort led to results that erroneously suggested forest species prefer non-
forested areas (Higa et al. 2015). Spatial bias can also impact conservation policy as the
spatiotemporal variability of citizen science can lead to under-sampling of remote areas,
which could in turn impact conservation management (Tulloch et al. 2013). If spatial bias
is not taken into consideration, it is possible that conservation measures or environ-
mental management strategies may miss key areas of concern, simply because these
remote regions are unstudied or understudied.

Spatial bias can result in an overall picture of species distribution that is incomplete,
unbalanced and potentially misleading, as the datasets fromwhich we build our knowledge
about the natural world can be ‘skewed by cultural, socioeconomic, and policy constraints’
(Romo et al. 2006, p. 873). Although spatial bias is typically studied in areas of ecology that
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focus on species counts and species distribution, the impact of accessibility and attractive-
ness of sample sites are less understood in CBM andwater resourcemanagement initiatives.
To date, studies assessing data quality in aquatic citizen science and CBM focus on compar-
ing the accuracy of physical and chemical samples collected by volunteers to those
collected by professionals (Fore et al. 2001, Loperfido et al. 2010, Hoyer et al. 2012, Storey
et al. 2016). Though these studies suggest that under the right conditions, volunteers can
collect useful aquatic data, they do not determine how the accessibility and attractiveness of
sample locations can influence where information is collected. Furthermore, existing
research discussing spatial bias in volunteer aquatic monitoring programs does not speci-
fically assess how spatial bias in aquatic citizen science compares to traditional methods for
site selection (Deutsch et al. 2009, Deutsch and Ruiz-Cordova 2015, Jollymore et al. 2017).
For instance, Deutsch et al. (2009) find that volunteer water monitoring groups may cluster
around specific regions based on population dynamics and socioeconomic factors but leave
open the question of the degree to which this spatial bias might differ in a program
administered entirely by professional scientists.

This paper aims to explore the presence of spatial bias in two distinct sampling
programs in Ontario, Canada. We compare the sampling distribution of a citizen science
project (the Lake Partner Program [LPP]), which applies crowd-sourcing methods to help
identify sample sites, with the sampling distribution of a large-scale government-run and
professionally designed lake monitoring program, which uses a stratified random sam-
pling method to identify sample sites (Ontario’s Broad-scale Monitoring program, BsM).
Both programs monitor physical and chemical characteristics of inland lakes and aim to
monitor and assess the relative health of Ontario’s freshwater ecosystems, though the BsM
is much more comprehensive. Using spatial analysis techniques, distinct clusters (or hot
spots) of each sampling lake dataset were identified. To further demonstrate explicit bias
in select sampling locations, predictive models were used to explore if any statistically
significant correlations exist between the number and location of lakes sampled and
indicators of lake accessibility and attractiveness.

We hypothesized that both datasets will demonstrate significant spatial bias given
accessibility constraints, but that (1) spatial bias will be more pronounced in the citizen
science dataset, and (2) that the spatial bias in the professionally managed programwill be
correlated predominantly with factors related to accessibility, whereas the spatial bias in
the LPP citizen science dataset will be more strongly correlated with factors related to lake
attractiveness. This article is the first to directly compare the location of sampling sites
predominately identified by volunteers in an aquatic citizen science program against a
professionally led program, which monitors the same characteristics and which surveys
the same geographic area.

2. Methods

2.1. Study area and data sources

The Canadian Province of Ontario has over 250,000 inland lakes, which together may
contain up to one-fifth of the planet’s total freshwater resources (OMNRF 2017). Lakes
are vital to the culture, history and economy of the province, providing opportunities for
recreation and transportation, as well as water for households, agriculture and industry.

4 E. E. MILLAR ET AL.
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Ontario lakes are also fundamental to the province’s ecological health and biodiversity,
providing habitat for thousands of native aquatic plant species, over 150 native fish
species, and hundreds of species of birds.

However, the sheer size of the province and the number of lakes located within it make it
extremely challenging for the government to monitor consistently and comprehensively.
Ontario has an area covering 1076,395 sq. km, consisting of 917,741 sq. km of land and
158,654 sq. km of freshwater (Statistics Canada 2005). Nearly 95% of inland Ontario lakes
have a surface area of under 100 ha, and approximately 50% have a surface area of under
10 ha (DESC 2015). The geographical features of the provincemake it expensive and difficult
tomonitor inland lakes, and Natural Resources Canada estimates that only 1–2%of lakes are
sampled for water quality (DESC 2015). Furthermore, the human population in the province
is subject to extreme spatial bias, with 98% of the population concentrated around the
southern regions, within the Great Lakes Basin and Ottawa River Basin watersheds. The
north of the province is remote, spatially expansive and largely inaccessible by road, which
makes it difficult and expensive to sample. The spatial distribution of human population
does not correspond to the spatial distribution of lakes. Roughly 18% of northwestern
Nelson Basin and roughly 8% of northern Hudson basin are covered by lakes, whereas in the
Great Lakes/Ottawa river basins, inland lakes (excluding the Great Lakes) cover roughly 6%
of the land area (Dove-Thompson et al. 2011).

2.2. BsM program

The Ontario Ministry of Natural Resources and Forestry (OMNRF) approach to fisheries
management has traditionally focused on individual lakes and was historically reactive
rather than proactive (Lester et al. 2003). Environment managers would conduct lake
monitoring and develop water-related policies primarily in response to indications from
anglers, cottagers or other stakeholders that fish levels were declining (Lester et al.
2003). Though this reactive management approach incorporated input from public
stakeholders to identify key areas in need of attention, it was less capable of producing
a general assessment of the health of fish stocks throughout the province. In 2004, the
OMNRF established the Ecological Framework for Fisheries Management, which sought
to help the Ministry increase public participation in fisheries management and simplify
existing regulations (OMNRF 2005, 2009). Part of this initiative involved long-term
monitoring of inland lakes at the landscape scale, shifting from a reactive management
approach where lakes were monitored in response to feedback from stakeholders, and
toward an effort to provide comprehensive and long-term monitoring of inland lakes.
The resulting BsM program assesses lakes for water quality, water chemistry, fish levels
and productive capacity during 5-year cycles (Sandstrom et al. 2013), the first cycle of
which was completed in 2012. The BsM monitors Ontario’s 20 Fisheries Management
Zones (FMZs). FMZs are administrative boundaries that were established by the province
to facilitate fisheries management at the landscape level, which each has unique
regulations, strategies and evaluation processes (OMNRF 2012). These boundaries were
determined based on a combination of human factors (such as angling activity) and
ecological factors (watersheds, climate, road networks) (OMNRF 2012). The BsM applies a
stratified random sampling method to select sample sites, identifying lakes with surface
areas between 50 and 250,000 ha, and randomly selecting a representative number of
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lakes from each of the twenty FMZs. The OMNR calculates that more than 18,000 lakes in
the province meet these size criteria, 92% of which are situated within northeast and
northwest Ontario, and 8% of which are located within southern Ontario (OMNRF 2016).

2.3. LPP

The LPP is a citizen-science initiative that has monitored water quality levels in Ontario
lakes since 1996. The LPP began as a project initiated by the Federation of Ontario
Cottagers’ Associations (FOCA), the Lake of the Woods District Property Owners’
Association, and, in 2002, these groups established a partnership with Ontario Ministry
of the Environment at the Dorset Environmental Science Centre (DESC). Volunteers collect
total phosphorus and Secchi depth samples from lakes across Ontario, which are then
analyzed by the DESC’s chemistry laboratory. The program attracts roughly 600 volunteers
annually, who collect information about water quality and water clarity at approximately
800 sampling locations within nearly 550 lakes (DESC 2015). Volunteers measure concen-
trations of total phosphorous (TP) as a measure of nutrient status and potential for algal
growth. Volunteers also measure turbidity, or water clarity, which can be an indicator of
dissolved organic carbon and can complement information gained from TP samples (DESC
2015). In 2008, the LPP also began measuring concentrations of calcium as a means of
detecting trends and discovering correlations with TP concentrations.

The LPP provides volunteers with the necessary materials to collect their samples in
the form of a ‘Lake Stewards’ sampling kit. The LPP also provides a PDF of sampling
instructions for volunteers to follow, which describes the protocols for collecting phos-
phorus and Secchi depth samples. The FOCA provides a video with further instructions
on how to collect samples, and DESC provides volunteers with 100 ml jars, tubes, a filter
and a funnel. Volunteers collect samples according to the protocol and then mail the
samples and materials back to the DESC laboratory. Water chemistry protocols adminis-
tered by the LPP are generally considered to be robust. The LPP has compared the
accuracy of samples generated by volunteers against the accuracy of samples generated
by Ministry of Environment scientists, Conservation Authority scientists or municipal
representatives and found no statistically significant difference, indicating that volun-
teers can collect meaningful field samples (DESC 2013).

2.4. Identifying spatial bias

To test for the presence of spatial bias within the LPP or BsM sampling programs, we
divided the Province of Ontario into square (800 m × 800 m) zones of equal size, 6400 ha
squares. To minimize the number of zones with no data, the study area was limited to
the Great Lakes Basin. This resulted in 4920 zones that contained 398 BsM and 2818 LPP
sample sites. Kernel Density Estimation (KDE) was used to explore the degree of
clustering present in each dataset, by providing a graphic depiction of the density of
point samples within a given geographic area. The Mann–Whitney U test was used to
test whether the median proportion of lakes sampled per (6400 ha) zone by the BsM and
LPP datasets was equal. Principle component analysis (PCA) was used to create and
summarize ‘cottage effect’ indices to reduce collinearity among descriptor variables (e.g.
population density and road density) and to extract unique indices that capture the
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accessibility and attractiveness components of landscape features in a given zone.
Poisson generalized linear model (GLM) was used to model how the count of lakes
per zone was related to dominant cottage effect predictor variables. The following
Poisson GLM (Zuur et al. 2009) was applied to each sampling dataset using R (version
3.3.2), where the response variable Yi, the number of sampled lakes per zone i, has a
Poisson distribution with mean intensity (µ):

Ln μið Þ¼ η Xi1; . . . ;Xiq
� �

The systematic component is given by η(Xi1, . . ., Xiq) = α + β1 × Xi1 + . . . + βq × Xiq, for any
set of explanatory variables, in this case the cottage effect predictor variables (Zuur et al.
2009).

2.5. KDE

KDE is a spatial approach to measuring both the intensity and extent of a specific feature
(i.e. sample sites). Given a set of samples, S = {xi}, where i = 1. . .n, an estimate of density p
(x) can be calculated as

p xð Þ ¼ 1=N
Xn

k¼1

Kσ x � xið Þ

where Kσ is a kernel function with a bandwidth scale σ (Elgammal et al. 2002). KDE uses
the presence of specific feature locations to interpolate a continuous density surface by
fitting a series of kernels over each feature (King et al. 2015). The bandwidth of the
kernel is predetermined by the user to depict the surrounding neighborhood of each
feature, whereby the density of the feature is smoothed out across the radius of the
kernel (Thornton et al. 2011, Chen 2015) and nearby observations are given greater
weight (Charpentier and Gallic 2016). Due to the exploratory nature of this method, the
optimal bandwidth was calculated using a variant that accounts for spatial outliers,
specifically Silverman’s rule of thumb or Gaussian approximation that minimizes the
mean integrated squared error (or L2 risk function, Silverman 1986). This is an accepted
approach to predicting spatial trends across a variety of disciplines including relative
health outcomes (Maroko et al. 2009, King et al. 2015), environmental monitoring (Lin
et al. 2011) and targeted sampling efforts (Yenilmez et al. 2015). KDE analyses were
conducted using ArcGIS 10.4 spatial analyst extension.

2.6. Mann–Whitney U test

The Mann–Whitney U test can be used to compare the central tendencies of two
independent samples; we used this test to compare the distribution of sampled lakes
per 6400 ha square zone in the LPP and BsM datasets. This nonparametric approach
tests whether a random variable from one cumulative sample distribution is likely to be
greater than a random variable from a second cumulative sample distribution (Mann
and Whitney 1947) and the Mann–Whitney U test is thought to be more robust than the
parametric equivalent T test against uneven sample distributions and outliers in general.
The total number of sample sites per zone was summarized for each dataset and the
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proportion (% of total sites) was used for the Mann–Whitney U test to determine if the
proportions of lakes sampled per zone were equal for BsM and LPP methods.

2.7. Cottage desirability index

To explore potential spatial bias in citizen science sampling techniques, we determined
geographic variables that may exert an influence on the likelihood that any given lake will
be sampled by either the citizen-based method (LPP) or the stratified random sampling
method (BsM). Four high-level indicators were identified that are thought to contribute to
accessibility and attractiveness of sample sites and include infrastructure, landscape/terrain,
remoteness and protected/natural cover areas. These indicators were further broken down
into 13 variables (see Table 1). These variables were selected as a measure of the likelihood
that an area would be a desirable location for a recreational summer home, or cottage.
Summer cottages located within wilderness areas have a symbolic importance within
Ontario culture, and regular trips to these secondary recreational cabins and homes have
been a major feature of Ontario urban life since the Post-war era (Stevens 2013).

To quantify spatial bias, a composite index of cottage desirability was created using
these geographic variables and PCA. PCA is a widely accepted multivariate statistical
technique used to reduce dimensionality of large datasets. PCA reduces the number of
variables, while maximizing explained variance among the original variables (Jolliffe
2002, Mandelik et al. 2010, Bro and Smilde 2014). Ultimately, the method combines
many variables into a small number of principal components that account for varying
amounts of variance within the dataset (Ou et al. 2012).

2.8. Variable selection

Road length and road density were both included as measures of cottage accessibility.
Roadside bias is a recognized problem in ecology, with areas closer to major roads
facing a greater likelihood of being sampled, a phenomenon that is referred to as the
‘highway effect’ (Fernández and Nakamura 2015). This can lead to a distortion in data
and can reduce the accuracy of predictive models given that road networks are not
representative of the overall geographic and ecological conditions in a region (Kadmon

Table 1. Descriptive statistics of explanatory variables included in the principal component analysis.
Indicator Description Mean Std. Dev. Range

Elevation Ave. elevation (m) 302 112 39–550
Min. elevation (m) 259 103 4–497
Max. elevation (m) 371 134 52–688

Slope Ave. slope (°)a 2 2 0–10
Max. slope (°)a 19 9 0–70

Road length High volume roads (m)a 21,465 28,406 0–286,115
Local urban roads (m)a 35,306 45,414 0–517,269
Resource roads (m)a 21,155 23,239 0–162,263

Lakes Lake size (sq. m)a 5113,589 8699,052 0–64,160,100
Number of lakesa 57 55 0–526
Length of shoreline (m)a 72,341 61,054 0–602,896

Pop. density People per zonea 2575 16,276 0–394,664
Protected area Total area (sq. m)a 14,207,788 20,057,830 0–64,160,100

aVariable was log transformed for statistical analysis.
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et al. 2004). The Ontario road network features were obtained from Land Inventory
Ontario (LIO), an open data source that contains geographic data for the province. The
road network is updated on a weekly basis and includes attribute information such as
road class, which was used to further categorize the road network into three classes (see
Table 1), summarized by total length per zone.

Lake size and available shoreline were included to provide further measures of acces-
sibility and attractiveness, as recreational lake visitors tend to favor larger, deeper lakes
which can be easily accessed through entry points along the shoreline. Lake features were
derived from LIO, specifically the Ontario Hydro Network (OHN) waterbody shapefile that
provides geographic features of surface water polygons. Only waterbodies categorized as
permanent lakes (i.e. containing water for more than 9 months of the year) were extracted
and summarized per zone. Shoreline features were also obtained from LIO, specifically the
OHN shoreline shapefile that represents a dividing line where water meets land. Only lake
shoreline features were included and further summarized by total length for each zone.

Total protected area (m2) within each zone was included as a measure of attractive-
ness as well as tourist accessibility. Infrastructure provided in protected areas, such as
walking trails, camping sites and boat put-ins, provide additional opportunities for
citizen scientists to marry volunteer efforts with vacation time. A protected lands
shapefile was created by merging shapefiles that delineate provincial/federal parks,
environmentally sensitive areas, conservation areas and natural heritage systems.

Population density accounts for potential number of citizen volunteers as well as the
relative remoteness of sample sites, which relates to site attractiveness. Population
density was derived from Statistics Canada 2016 Census. Using dissemination areas
(small geographic regions of approximately 400–700 persons), the total population per
zone was estimated.

3. Results

3.1. Spatial clustering

Results from the density probability mapping exercise (KDE) for both the BsM and the
LPP sample lakes are depicted in Figure 1. Hot-spot mapping enables the reader to
quickly and easily visualize significant clusters across the study area and compare the
geographic distributions of two sampling techniques. The resulting surface maps sug-
gest that the extent of clustering for the BsM sampling technique is greater or more
spread out, while the intensity of clustering is more concentrated for the LPP dataset.

While the distribution of surface lakes across the Canadian Shield is fairly even, both
sampling distributions demonstrate a nonrandom pattern of site locations concentrated
mainly within the Great Lakes Basin, which also adheres to relative accessibility (i.e.
roads) within the Province of Ontario. However, the LPP dataset indicates an explicit
clustering pattern of sites near popular areas for outdoor tourism and seasonal homes, a
region which is known in Ontario as ‘cottage country’. This region is a popular recrea-
tional area based on its accessibility, as it is situated within a comfortable driving
distance of major metropolitan areas and population centers. The region is also attrac-
tive for its natural features as it is characterized by coniferous boreal forests, wilderness
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areas and a picturesque Canadian Shield landscape that is an important feature of the
province’s culture and identity.

These findings supported our hypothesis that sample lakes monitored by volunteers
from the LPP citizen science program exhibited more intense clustering than lake
locations selected by the BsM’s stratified random sampling method. The presence of
significant nonrandom clustering within the BsM dataset can be understood in the
context of the BsM’s protocol, which selects a representative number of lakes from
each of the 20 FMZs. These zones are not equal in size. Four larger zones cover the
Northern region of the province, whereas 13 smaller zones cover the middle section of
the province, i.e. the area that exhibits clustering in the BsM dataset (OMNRF 2012).
These results were also reinforced by the Mann–Whitney U test that suggests the
median rank proportion of LPP lakes sampled per zone was significantly (p < 0.001)
larger than the proportion of BsM lakes sampled per zone. This allowed us to reject the
null hypothesis that the spatial sampling intensity was equivalent in the two programs.

3.2. Modeling the cottage effect

Using an open source statistical package, version 3.3.2 of the R Project for Statistical
Computing, a PCA was run on 13 variables that define accessibility and attractiveness for
Ontario lakes. A correlation matrix was chosen for the PCA to ensure that all variables
included had equal weight and that variables with greater variance or range (see
Table 1) did not dominate the first principal component.

There are two important outputs from the PCA, including component scores and
loadings. Component scores (see Figure 2) represent the newly transformed variable
where each value corresponds to a particular case or record within the dataset (Jolliffe

Figure 1. Kernel density estimation models of two sampling techniques in Ontario ((a) Broad-scale
Monitoring Sample Lakes and (b) the Lake Partner Program Sample Lakes), whereby the darker
zones represent increased probability of lake sampling.
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2002, Li et al. 2012), while the principal loadings represent the relative weight that a
variable has on the principal scores. Specifically, the loadings can help to describe the
principal components within the context of the original variables. Table 2 depicts the
loadings from the first three principal components that account for approximately 68.7%
of total variance in the data cumulatively.

The first principal component (PC1) accounts for 43.9% of the variance in the original
descriptor variables and is predominantly an index of (lake or cottage) inaccessibility.
The regression models indicate that for both datasets, the probability of sampling
increases with our indicators of inaccessibility. This can be interpreted as a function of
the physical geography of the province and the distribution of lakes. In Ontario,
population density is concentrated within the southern region, which sits at a lower
elevation and has a lower density of inland lakes. As PC1 scores increase, elevation and

Figure 2. Composite indices describing the ‘cottage effect’ for Ontario lakes. Each map depicts the
relative composite index score (i.e. PC1, PC2, PC3), within each zone and darker zones represent a higher
component scores. Specifically, (a) depicts PC1 factor scores, whereby the darker zones indicate areas of
high elevation and low population density. (b) depicts PC2 factor scores, whereby the darker zones
indicate zones with fewer lakes and less shoreline. Finally, (c) depicts PC3 factors scores, whereby the
darker zones indicate zones with more environmentally protected areas present. (a) Index of cottage
inaccessibility, (b) Index of decreasing cottage desirability, (c) Index of protected area effect.

Table 2. Principal component loadings for PC1, PC2 and PC3.
Indicator Description PC1 PC2 PC3

Elevation Ave. elevation (m) 0.357 0.116 −0.401
Min. elevation (m) 0.323 0.182 −0.447
Max. elevation (m) 0.377 – −0.274

Slope Ave. slope (°)a 0.332 −0.227 –
Max. slope (°)a 0.303 −0.196 0.231

Road length High volume roads (m)a −0.264 −0.343 −0.287
Local urban roads (m)a −0.245 −0.374 −0.328
Resource roads (m)a 0.154 −0.119 –

Lakes Lake size (sq. m)a 0.256 −0.276 –
Number of lakesa 0.205 −0.489 –
Length of shoreline (m)a 0.245 −0.37 0.23

Pop. density People per zonea −0.305 −0.357 −0.189
Protected area Total area (sq. m)a 0.1 – 0.464

aVariable was log transformed for statistical analysis.
Loading coefficients correspond with the original explanatory variables included, whereby higher coefficients explain
more variation in the transformed variables or principal component.
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slope increase, whereas population and road density decrease (see Figure 2(a)). We
interpreted this as a measure of cottage inaccessibility, where sampled lakes with high
PC1 scores are farther from roads and population centers, and these areas tended to
have steeper slopes at higher elevations.

The second component (PC2) accounts for approximately 15.1% of the total variation in
the original descriptor variables and is predominantly an index of lake and shoreline density.
As PC2 increases, the number of lakes in a zone decreases as does the relative amount of
shoreline, making this an index of decreasing cottage desirability (see Figure 2(b)). The third
and final component included in this analysis (PC3) is primarily an index of the protected
area effect and accounts for approximately 9.7% of total variation in the descriptor variables.
Figure 2(c) depicts a map of this index. Presumably, cottages are consideredmore attractive
if situated near protected areas (i.e. provincial parks and environmentally significant areas),
even if they are more difficult to access (i.e. at a higher elevation).

Tables 3 (BsM) and 4 (LPP) depict the regression models for the two response variables
including the BsM and LPP sampling techniques, respectively. PC1 had twice as much
influence on model estimates of the number of BSM sampled lakes than the number of
LPP sampled lakes in a given zone (coefficients 0.363 and 0.155, respectively) suggesting
that the BSM sampling design is not as influenced by lake accessibility as LPP sampled lakes.
The coefficient is positive,meaning that as lakes becomemore inaccessible, the likelihood of
sampling a lake via BsM is greater than the likelihood of sampling lakes via LPP.

PC2 had a smaller influence on model estimates of the number of BsM sampled lakes
than on number of LPP sampled lakes in a given zone or square (coefficients −0.417 and
−1.183, respectively). This suggests more of a cottage effect in the LPP sampling design.

Table 3. Poisson regression coefficients for a model of the cottage effect on number of lakes
sampled per 6400 ha zone in the broad-scale monitoring program, Ontario.
Coefficients Estimate Std. error z Value

(Intercept) −2.945*** 0.083 −35.488
PC1 0.363*** 0.033 10.928
PC2 −0.417*** 0.060 −6.939
PC3 0.186** 0.066 2.800
PC1:PC2 0.0129 0.030 0.428
PC1:PC3 −0.110*** 0.030 −3.616
PC2:PC3 −0.051 0.047 −1.105
PC1:PC2:PC3 0.013 0.026 0.482

**p Value < 0.01; ***p value < 0.001.
Coefficients represent the relative effect or predictive capability each composite variable has on the response variable.

Table 4. Poisson regression coefficients for a model of the cottage effect on number of lakes
sampled per 6400 ha zone in the Lake Partner Program, Ontario.
Coefficients Estimate Std. error z Value

(Intercept) −1.515*** 0.038 −40.014
PC1 0.155*** 0.016 9.708
PC2 −1.183*** 0.023 −51.996
PC3 0.047 0.033 1.418
PC1:PC2 −0.059*** 0.012 −4.853
PC1:PC3 −0.050** 0.016 −3.200
PC2:PC3 0.110*** 0.020 5.451
PC1:PC2:PC3 −0.004 0.012 −0.355

**p Value < 0.01; ***p value < 0.001.
Coefficients represent the relative effect or predictive capability each composite variable has on the response variable.
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Specifically, as the number of lakes and the length of the shoreline within a zone
decreases, the number of sampled lakes also decreases, but the decrease was far sharper
in the LPP sampling design.

Finally, the index of protected area (or PC3) had a greater effect on the BsM
sample sites compared to the LPP lakes (coefficients 0.186 and 0.047, respectively).
Moreover, the effect estimate of PC3 was not statistically significant for the LPP
sample lakes, implying that the protected area index was a better predictor of BsM
sampling regimes. However, total protected area was thought to represent a lake
attractiveness score, whereby lakes situated in or near protected areas are thought to
be more attractive than those outside these areas. One explanation for this discre-
pancy could be the measure by which protected area was included in this study.
Some 6400 ha zones in our study area were entirely covered by environmentally
sensitive or protected area, and most cottages would not be located directly within
such areas due to development restrictions. Therefore, we believe that a proximity
variable (such as distance to protected area) may have provided more predictive
power in terms of the LPP sample lakes.

4. Discussion

Our results confirm existing research indicating that ecological data collection is spatially
biased (Dennis and Thomas 2000, Kadmon et al. 2004, Romo et al. 2006, Phillips et al. 2009,
Rocchini et al. 2011, Fernández and Nakamura 2015). The results contribute to findings
from previous studies that indicate data collected using citizen science methods may be
even more biased by geographic, demographic and sociocultural factors such as accessi-
bility and attractiveness of sampling sites (Tulloch et al. 2013, Ruete 2015, Maldonado et al.
2015, Mair and Ruete 2016). Existing studies investigating spatial bias in citizen science
have concentrated primarily on species counts, suggesting that the location and recording
intensity by volunteers has influenced available data about biodiversity and species
distribution. Our results extend this discussion to suggest that volunteer water monitoring
programs are also subject to an uneven distribution of sampling effort.

4.1. Impact of spatial bias on lake monitoring

To date, studies on data quality in aquatic citizen science have placed more focus on
volunteer skill and ability (Fore et al. 2001, Sharpe and Conrad 2006, Loperfido et al.
2010, Cox et al. 2012, Hoyer et al. 2012), with less attention to spatial bias, although
notable exceptions exist (Deutsch et al. 2009, Deutsch and Ruiz-Cordova 2015,
Jollymore et al. 2017). In a comparison of citizen-collected and researcher-collected
water samples from active streams and rivers, Jollymore et al. (2017) found that
samples collected by members of the public had higher concentrations of NO3,
which could have resulted from volunteers deciding to sample environmentally
degraded sites, such as urban storm-water lagoons. A study of the Alabama Water
Watch, a long-running CBM initiative, found that volunteer monitoring efforts were
correlated with factors such as education, income and population density (Deutsch
and Ruiz-Cordova 2015). Volunteers tended to be wealthy and well educated, and
their monitoring efforts were concentrated around regions that were closer to
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population centers, and which had higher levels of wealth and education (Deutsch
and Ruiz-Cordova 2015).

Correspondingly, participation tended to wane in rural areas with fewer resources, unless
these areas contained specific lakes whose size or locationmeant that they were unique and
of significant concern (Deutsch and Ruiz-Cordova 2015). While our study did not directly
account for the impacts of wealth and education on sampling sites, we nevertheless
observed that the highest concentration of sampling sites for the LPP was clustered around
the lower Canadian shield, within the Muskoka region. This is an area known within Ontario
as ‘cottage country’. As a popular summer recreation destination for wealthy families in the
more populous region of southern Ontario, the concentration of sampling sites around this
area suggests that volunteer monitoring programs may be correlated with wealth.

4.2. Motivations for monitoring

The difference in sampling design between the government-run stratified random sam-
pling design and the methods used by the LPP, which relies on data submitted by
volunteers, also corresponds with previous studies suggesting that volunteers and scien-
tists may approach collaborative research projects with different objectives and motiva-
tions (Ellis and Waterton 2004, Lawrence and Turnhout 2010, Cornwell and Campbell
2012, Jalbert and Kinchy 2016, Kinchy 2017). Whereas scientists are likely to prioritize
robustness and reliability of data and natural resource, managers may be motivated by
obtaining a neutral and comprehensive overview of the state of a given resource so that
they may make informed policy decisions; citizen volunteers often approach projects with
their own motivations, interests and agendas (Lawrence 2006). Professional scientists and
citizen scientists may share common values and goals, but volunteers participating in
citizen science may be more driven by the desire to see a specific result come to fruition
than they are to participate in basic research objectives for the sake of science (Weng
2015). This may be particularly true in aquatic citizen science projects, which have the
potential to lead to policy change or conservation outcomes.

Indeed, volunteers may experience frustration if they perceive that they are ‘monitor-
ing for the sake of monitoring’, without the possibility of a more concrete outcome from
their efforts (Sharpe and Conrad 2006, p. 403). This may be particularly true in aquatic
citizen science, since water is a resource with deeply political dimensions related to
community health and environmental justice (Sharpe and Conrad 2006, Jalbert and
Kinchy 2016, Kinchy 2017). These motivations may, consciously or unconsciously,
shape the apparently innocuous decision of where a volunteer takes their water sample.
To an extent, this subjectivity and sense of personal meaning are embedded within the
design of the LPP project, which reaches out to cottage owners, who may have a vested
interest in monitoring the quality of their cottage lake. Our results demonstrate how this
approach can have a cumulative effect of concentrating sampling locations toward areas
that are of interest to volunteers. Volunteers may be motivated to participate in
sampling based on their personal connection to a lake, as well as a desire to obtain
information about the water quality for drinking or recreation. While geographic bias
could be reduced by placing-specific limitations on where volunteers can collect their
lake water samples, such constraints may result in decreased numbers of participants
(Jollymore et al. 2017).
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4.3. Fitness of purpose

These findings also demonstrate how scale can impact the fitness of purpose for
volunteer-generated data. Proponents of crowd-sourced science often emphasize the
capability for volunteer-derived data to help scientists work at larger temporal and
spatial scales that would not be possible if professionals were responsible for both
data collection and analysis (Goodchild 2007, Devictor et al. 2010, Franzoni and
Sauermann 2014). Devictor et al. (2010, p. 354) pointed out that volunteers have enabled
spatial ecologists, environmental geographers and conservation biologists to move
‘beyond scarcity’ and investigate large-scale patterns and processes.

The issue of scale is sometimes considered to enhance the reliability of citizen science,
based on the assumption that any individual errors generated by less experienced volun-
teers will be eclipsed by the total volume of observations. Kolok et al. (2011, p. 629) referred
to this as an inherent ‘self-correctiveness’ of citizen science, in which false positives, false
negatives and erroneous results are often amended by subsequent recording from addi-
tional volunteers. However, the promise of self-correctiveness in crowd-sourcing does not
necessarily apply to datasets that are spatially biased. If sampling locations are influenced by
factors related to accessibility and attractiveness, then greater numbers of volunteers may
amplify spatial bias rather than correcting it. While the results from the phosphorous,
calcium and turbidity tests may provide a reliable indication of the status of any given
sampled lake, the results may not offer a representative overview of the overall physical and
chemical properties of Ontario lakes at broad spatial scales if sampling is concentrated and
clustered based on accessibility and attractiveness of sampling sites.

Within Ontario, the testing of physical and chemical characteristics of lakes at the
provincial scale has largely been conducted by government employees, in relation to
reactive fisheries management (Lester et al. 2003). The BsM program was developed
partly out of a recognition that government monitoring programs had traditionally been
subject to spatial bias, which had in turn impacted natural resource management. In
their paper proposing a shift toward a broad-scale adaptive management approach to
regulating recreational fisheries, Lester et al. (2003) acknowledged that effective man-
agement requires accounting for the behavioral dynamics of anglers in addition to the
population dynamics of fish. The historical management approach concentrated man-
agement action around heavily used and economically significant lakes, which gener-
ated large blind spots when it came to obtaining an objective assessment of the overall
state of the quality of Ontario lakes.

In a region that is as large and lake-dense as Ontario, obtaining a comprehensive
picture of the state of water quality is impractical to achieve province-wide using either
professionals or citizen volunteers. In general, aquatic and hydrological monitoring is
expensive and requires repeated measurements over long time periods, specialized
knowledge and advanced technologies beyond the scope of a normal budget
(Buytaert et al. 2014). Over the past few decades, government funding for environmental
science has decreased, and community-based aquatic monitoring groups have formed
in response to a perceived retreat of the state in its role as an environmental monitor
and regulator (Savan et al. 2004, Sharpe and Conrad 2006).

In the early stages of community-based water quality monitoring, some natural
resource administrators were reticent about using citizen-generated data out of concern
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that members of the public lacked the expertise required to competently gather
information relevant to scientists and policy-makers (Sharpe and Conrad 2006). There
is some indication that this perspective is shifting as more evidence emerges that citizen
science can produce comparable or nearly equivalent data about physical and chemical
characteristics of lake water (Fore et al. 2001, Loperfido et al. 2010, Hoyer et al. 2012).
However, if citizen science data are to be used to inform policy, it is important to
recognize that spatial bias in sampling effort may influence resulting analyses. We
fully acknowledge that citizen science-based programs such as the LPP often have a
different suite of goals and objectives than government-led programs, and we further
acknowledge that the data collected are valuable and reliable. Our results pertain to the
use of these data for broad scale analysis, which we infer would require estimates of
spatial uncertainty, and an in-depth understanding of the implications of that uncer-
tainty on the resulting inferences made.

Furthermore, statistical methods exist which can account for spatial bias in sampling
effort, including subsampling (Phillips et al. 2009, Isaac et al. 2014) and sample weighting
(Stolar and Nielsen 2015). Modeling approaches such as generalized linear and additive
mixed models, mixed-effects models and hierarchical models can be used when systematic
bias can be found in the sampling design (Bird et al. 2014). Ruete (2015) and Mair and Ruete
(2016) developed algorithms to generate ignorance scores and ‘maps of ignorance’ that can
help quantify presence of spatial bias in recorder distributions when biodiversity datasets
rely on citizen science methods. It should also be noted that the presence of spatial bias at
large scales does not reduce the importance of reaching out to citizens to assist in lake
monitoring. The LPP has conducted tests that indicate citizen scientists are capable of
sampling with comparable accuracy to professionals (Dorset Environmental Science
Centre (DESC) 2013). For individuals who participate in the program to help monitor lakes
that they use, cottage at or live near, the LPP data and protocols are suitable.

We suggest avenues for future research that explore how the presence of spatial bias
might impact inferences made about water quality at broad scales. We expect to see that
spatial bias may lead to misinterpretation or over and under-emphasis of pollution hot
spots and changes through time (i.e. with fluctuating high phosphorous readings), parti-
cularly in situations where there are insufficient processed-based data or knowledge about
how environmental factors can influence water chemistry and water clarity. For example,
landscape and geologic factors such as lake position within lake chains (Kratz et al. 1997)
and soil type can influence water chemistry (Dillon and Kircher 1975, Soranno et al. 1996),
but these data are not readily available for lake-sheds at broad spatial scales.

5. Conclusion

Volunteers are becoming increasingly recognized as an important and cost-effective
source of data for ecologists and natural resource managers. This may be especially true
in aquatic monitoring, which often requires a widespread geographic distribution of
sample sites and expansive spatial coverage that is cost-prohibitive when undertaken by
professionals. While government agencies across North America have fostered partner-
ships with community-based aquatic monitoring groups and have established protocols
and training mechanisms to ensure the quality of citizen-generated data, these pro-
grams nevertheless rely to some degree on opportunist and incidental contributions by
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volunteers. This can lead to a clustering of sample sites toward areas that are accessible
to the public, with more road infrastructure, and which are within a comfortable driving
distance of population centers. Additionally, crowd-sourced aquatic monitoring can be
influenced by the degree to which a given sample site is attractive as a leisure destina-
tion, and volunteers may be more drawn toward larger, picturesque lakes. While
professional monitoring programs are also subject to spatial bias, results indicate that
there was more spatial bias in the citizen science dataset than in the government-run
lake monitoring program. Furthermore, our study indicates that while both datasets
were biased toward the variables associated with accessibility (elevation, slope, road
density), the citizen science dataset was also more heavily biased toward variables
related to the subjective attractiveness of lakes, including lake density and shoreline
access. Overall our findings contribute to the existing literature on citizen science, which
suggests that greater attention must be paid to the sociological, demographic and
cultural influences that shape both the characteristics of volunteer-based research and
the data that these methods generate.
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