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Microbial metabolism drives biogeochemical fluxes in virtually
every ecosystem. Modeling these fluxes is challenged by the
incredible diversity of microorganisms, whose kinetic parameters
are largely unknown. In poorly mixed systems, such as stagnant
water columns or sediments, however, long-term bulk microbial
metabolism may become limited by physical transport rates of
substrates across space. Here we mathematically show that under
these conditions, biogeochemical fluxes are largely predictable
based on the system’s transport properties, chemical boundary
conditions, and the stoichiometry of metabolic pathways, regard-
less of the precise kinetics of the resident microorganisms. We
formalize these considerations into a predictive modeling frame-
work and demonstrate its use for the Cariaco Basin subeuphotic
zone, one of the largest anoxic marine basins worldwide. Using
chemical concentration data solely from the upper boundary
(depth 180 m) and lower boundary (depth 900 m), but with-
out a priori knowledge of metabolite fluxes, chemical depth
profiles, kinetic parameters, or microbial species composition,
we predict the concentrations and vertical fluxes of biologically
important substances, including oxygen, nitrate, hydrogen sul-
fide, and ammonium, across the entire considered depth range
(180–900 m). Our predictions largely agree with concentration
measurements over a period of 14 years (R2 = 0.78–0.92) and
become particularly accurate during a period where the system
was near biogeochemical steady state (years 2007–2009, R2 =
0.86–0.95). Our work enables geobiological predictions for a large
class of ecosystems without knowledge of kinetic parameters
or geochemical depth profiles. Conceptually, our work provides
a possible explanation for the decoupling between microbial
species composition and bulk metabolic function, observed in
various ecosystems.

geobiology | reaction kinetics | microbial system | redox gradient |
marine anoxic region

Understanding the factors that determine microbial meta-
bolic activity at ecosystem scales is essential for deciphering

the processes shaping modern ecosystems and for determin-
ing Earth’s past and future biogeochemical trajectory. Microbial
population dynamics and metabolic activity influence and are
influenced by abiotic processes, such as the diffusive transport of
electron donors and acceptors across redox gradients. This cou-
pling between biotic and abiotic processes is well illustrated in
stagnant water columns or sediments, where redox gradients and
spatially structured microbial communities develop across depth
and result from the interplay between microbial metabolism,
population dynamics, and slow physical mixing (1–3). Mecha-
nistic models aiming to predict biogeochemical reaction rates
and fluxes typically require knowledge of the kinetic proper-
ties of the resident microbial communities, such as bulk rate
coefficients, microbial growth rates, or substrate affinities, in
addition to the system’s physical characteristics (e.g., diffusion
coefficients) and boundary conditions (e.g., substrate concen-
trations at both ends of a water column) (3–8). When kinetic

parameters are unknown, as is often the case, additional data
such as geochemical depth profiles are needed for model fitting
(3, 9, 10). Over several decades, thousands of experiments have
been performed to determine reaction- and bio-kinetic param-
eters of specific microorganisms or specific systems, with the
ultimate goal of using these parameters for modeling (11, 12).
However, the vast majority of microorganisms have not been,
and may never be, kinetically characterized (13, 14). Even if
all kinetic/physiological parameters were known for all extant
microorganisms, biogeochemical predictions for natural ecosys-
tems would require knowledge of current microbial community
composition, and this knowledge is typically lacking. There is
thus a need to identify the key mechanisms actually constraining
biogeochemical flux rates at ecosystem scales and the mini-
mal set of parameters needed to describe these mechanisms,
to construct appropriately streamlined models. As we explain
below, basic ecological principles and physical arguments pro-
vide a previously unrecognized avenue toward a type of sub-
stantially streamlined models applicable to a broad class of
ecosystems.

In the presence of ample substrates for energy, microbial
population growth driven by the consumption of these sub-
strates typically leads to an acceleration of consumption rates,
until at least one essential substrate becomes scarce and lim-
iting. When substrates are supplied at a finite rate and in the
presence of competing populations, Tilman’s classical ecolog-
ical theory predicts that, at steady state, the concentration of
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a limiting substrate will eventually drop to the lowest concen-
tration at which any population could possibly survive (15). In
such systems selection for efficient substrate gathering tends to
reduce long-term residual concentrations of limiting substrates
to a low threshold, below which net population growth becomes
impossible (16). As local substrate concentrations approach this
threshold, the long-term average bulk consumption rate of a
substrate becomes constrained by the rate at which it can be
transported across space, from its site of production to its site
of consumption. For example, in some anoxic marine regions
hydrogen sulfide (H2S) produced in the underlying sediments
slowly diffuses upward, eventually reaching an oxic/anoxic tran-
sition zone where it is completely oxidized using oxidants such
as oxygen, transported downward from the euphotic zone (17,
18). In these cases, simple diffusion models predict that steady-
state H2S oxidation rates are limited by the maximum possible
rate of diffusion from the sediments to the oxic/anoxic transition
zone, which in turn depends on the mixing properties of the sys-
tem and the H2S concentration at the sediment/water interface.
Similar considerations also apply to many other systems with rel-
atively slow mixing rates and pronounced geochemical gradients
(19). In these systems, biogeochemical flux rates could become
entirely determined (and thus predictable) by the system’s trans-
port properties and chemical boundary conditions. While the
importance of transport limitation to microbial activity is gener-
ally appreciated (20) and geochemical models sometimes assume
a separation of time scales between reaction and transport rates
(21, 22), these considerations have not been systematically used
to streamline conventional geobiological models.

Here we propose a streamlined model framework for recon-
structing or predicting steady-state bulk biogeochemical fluxes in
microbial systems with pronounced geochemical gradients, when
fluxes are limited by transport rates across space. We focus on
essentially 1D systems, that is, where all gradients are aligned
along a single axis (e.g., depth), such as stagnant marine water
columns (3, 23–27), meromictic lakes (28–30), sediments (1,
31, 32), and biofilms (33). As we elaborate below, our “spatial
metabolic flux” (SMF) framework differs strongly from conven-
tional approaches in geobiology. Notably, contrary to conven-
tional reaction-transport models, our framework requires only
knowledge of chemical concentrations at the system’s boundaries
(e.g., at the top and bottom of a water column), but no reaction-
or bio-kinetic parameters, or any thermodynamic parameters,
or any a priori knowledge of metabolite flux rates. The SMF
framework also does not require chemical depth profile data,
for example for parameter fitting, a common requirement of
conventional inverse modeling methods. To showcase the pre-
dictive power of the framework, we predict the distribution
and fluxes of several biologically important chemical substances
(henceforth “metabolites”) in the Cariaco Basin subeuphotic
water column, one of the largest anoxic marine basins world-
wide (34, 35). The model’s predictions are largely consistent with
chemical depth profiles measured over the course of 14 years,
previously estimated metabolite fluxes, and microbiological
observations.

A Framework for Spatial Metabolic Flux Analysis
Our spatial metabolic flux framework is based on a minimal set
of intuitive but idealizing assumptions, the first three of which
are commonly encountered in conventional models:

i) Metabolite sources/sinks: Metabolites can be produced
and/or consumed by metabolic reactions (whose rates can
differ between locations) and may be transported across the
system’s boundaries.

ii) Physical metabolite transport: Metabolites are transported
across space according to a diffusion and/or advection pro-
cess. Examples of diffusive transport include molecular dif-

fusion in sediments (36), turbulent mixing (eddy diffusion)
in water columns (37), or (in some cases) bioturbation in
sediments (38). Examples of advective transport include
the sinking of organic particles (39), the settling of min-
erals in a water column (40), or pore water movement in
sediments (41).

iii) Steady state (flux balancing): Metabolite concentrations and
reaction rates are near steady state. This implies in par-
ticular that metabolite fluxes across space and metabolite
production/consumption rates are balanced. Note that in
practice slow changes are permitted, as long as any changes
in the system’s transport properties and boundary conditions
occur very slowly compared with the time scales at which
microbial communities respond and chemical gradients
stabilize.

iv) Efficient use of metabolic niches: At every location, every
modeled reaction is limited by the availability of at least
one substrate; that is, no metabolic niche is left unutilized
(42). Competition for limiting substrates and selection for
efficient substrate gathering lead to the concentration of
those substrates to approach zero (Fig. 1). While here we
focus on biologically driven growth-inducing reactions, this
assumption could also apply to rapidly occurring abiotic
reactions.

In 1D systems assumptions i–iii translate to a standard
reaction-transport equation, which describes the spatial distribu-
tion of any given metabolite m ,

0=
∑
r

SmrRr +
∂

∂z

[
Dm ·

∂Cm

∂z
− vmCm

]
, [1]

where Cm (z) is the metabolite’s concentration (e.g., mol per
volume) at any given depth z , Dm is the applicable diffusion coef-
ficient for the metabolite, r iterates over all reactions, Smr is the
stoichiometric coefficient of metabolite m in reaction r , vm is
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Fig. 1. Sharp chemical transition zones as hotspots. Shown is an illustration
of the interpretation of hotspots—a mathematical idealization of chemical
transition zones where microorganisms consume coupled substrates diffus-
ing from opposite ends. The aerobic oxidation of hydrogen sulfide (diffusing
from the bottom) using oxygen (diffusing from the top) along a stag-
nant water column is used as an example (H2S + 2O2→ SO2−

4 + 2H+). (A–C)
Different hypothetical scenarios for the steady-state concentration depth
profiles of H2S and O2 (dashed curves) and the corresponding reaction rate
profile (red solid curves), assuming no other reaction occurs. (A) Substrate
gathering is rather inefficient, since both substrates co-occur at substantial
concentrations. (B) Substrate gathering is largely efficient and hence the
reaction is confined to a narrow transition zone, as commonly observed in
poorly mixed systems. The overall (depth-integrated) rate of the reaction is
largely limited by substrate transport rates to the transition zone. (C) Math-
ematical idealization of B, whereby substrate gathering is infinitely efficient
and the transition zone collapses into a single point (“hotspot”). For a more
detailed discussion of how the transition zone’s width in reality depends on
the microbial kinetics, see SI Appendix, Fig. S1.
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the advective velocity, Rr is the rate of the r th reaction (e.g., mol
per volume per time), and ∂/∂z denotes the derivative along the
spatial coordinate z . In some cases, such as in the model intro-
duced below for Cariaco Basin, the advection term vm may be
zero, while in other (advection-dominated) systems Dm may be
zero. The first term in Eq. 1 corresponds to the net production
or consumption of metabolites at any given location, while the
remaining terms describe metabolite transport across space. The
equality to zero specifies that fluxes must be balanced such that
Cm is at steady state (SMF assumption iii).

The differential Eq. 1 allows the calculation of steady-state
metabolite concentrations, provided that the reaction rates Rr

and the boundary conditions (e.g., the values or gradients of
Cm at the system’s boundary) are known (see SI Appendix, sec-
tions S.1 and S.2 for details). Eq. 1 is widely used to describe
the distribution of compounds in stagnant water columns, sed-
iments, and biofilms resulting from some underlying reaction
rates (3, 5, 8, 10, 43–45). We emphasize that neither assump-
tions i–iii nor Eq. 1 make any statement about what the reaction
rates Rr should be, as this requires additional biological reason-
ing. Conventional models either require a priori knowledge of
reaction kinetics and/or microbial population dynamics to pre-
dict the rates Rr or estimate unknown kinetic parameters and/or
unknown rates by fitting the model to measured geochemical
depth profiles (3, 10, 20, 43, 45–49). Here we circumvent these
requirements by assuming that microbial communities eventu-
ally occupy every available metabolic niche and become infinitely
efficient at gathering available substrates (assumption iv). We
make no assumptions about which or how many different micro-
bial species perform each reaction. Rather, assumption iv states
only that each reaction runs at the maximum rate possible, as
permitted by substrate transport across space and supply by other
reactions. A similar idea was introduced by Bouldin (ref. 50,
model III therein), who assumed an instantaneous reaction rate
to calculate the speed at which a single oxidant/reductant inter-
face (e.g., between oxygen and ferrous iron in sediments) would
move downward over time, if the speed was limited entirely by
diffusion. The assumption of instantaneous reactions is also used
in geochemical equilibrium–reaction-transport models, where
chemical reactions are assumed to locally instantaneously con-
verge to thermodynamic equilibrium between subsequent time
steps (22, 51–53). The seemingly simple assumption of infinitely
efficient substrate gathering has profound consequences. In prin-
ciple, predicting reaction rates under the SMF framework trans-
lates to finding those Rr that, when inserted into Eq. 1, would
result in all metabolite profiles Cm satisfying assumption iv as
close as possible. Implementing this approach in practice is chal-
lenging due to the large number of unknown variables (Rr for
each r and at each location). Fortunately, as we explain below, in
many cases the number of unknown variables can be substantially
reduced.

A high efficiency in substrate gathering and limited mixing
rates imply that reactions requiring at least two coupled sub-
strates produced at distinct locations (as is the case for typical
redox reactions in systems with pronounced redox gradients) will
take place only within narrow chemical transition zones, within
which inflowing coupled substrates exhibit just sufficient overlap
and outside (on either side) of which at least one of the sub-
strates is essentially absent (Fig. 1B and SI Appendix, Fig. S1).
The same reasoning also applies to abiotic reactions that, in the
presence of ample reactants, occur very rapidly compared with
reactant transport rates (22) (further discussion in SI Appendix,
section S.4). In the theoretical limit of infinitely efficient sub-
strate gathering (assumption iv) or, equivalently, infinitely fast
reactions, such transition zones become increasingly narrow and
eventually collapse into single points, henceforth referred to as
“hotspots” (Fig. 1C). At these hotspots the concentration of at
least one substrate approaches zero, and substrate influx and

outflux rates are balanced by production and consumption rates
(Fig. 2). The expectation that transition zones become narrower
as reaction kinetics become faster is straightforward to confirm
using existing reaction-transport models (54). The emergence of
narrow chemical transition zones is well documented in virtually
all systems with low mixing rates, such as stagnant marine water
columns (3, 23–27), meromictic lakes (28–30), sediments (1, 31,
32), and biofilms (33). The flux of oxidants and reductants into
these transition zones fuels abiotic and metabolic reactions and
microbial biomass production (3, 24, 32, 55–57) (SI Appendix,
Fig. S4B), and relatively high cell abundances are often found in
such zones (58–61). In the geochemical literature, hotspots are
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Fig. 2. Constraints on the intensity and location of hotspots. (A and B)
Schematic illustration of the constraints that physical transport processes,
chemical boundary conditions, and reaction stoichiometry impose on the
location of chemical transition zones (idealized as hotspots) and reaction
rates therein under steady state. (A) The aerobic oxidation of hydrogen
sulfide (diffusing from the bottom) using oxygen (diffusing from the top)
through a water column is used as an example, similar to Fig. 1. A1–A4
show different hypothetical scenarios for the steady-state depth profiles of
H2S and O2, assuming no other reaction occurs and assuming a constant dif-
fusion coefficient across depth. Only scenario A4 is physically possible and
consistent with the SMF framework. (A1) O2 and H2S coexist at substantial
concentrations in an extended depth interval, contradicting the assump-
tion of efficient substrate gathering. (A2) The location of O2 consumption
is separated from the location of H2S consumption, and hence H2S cannot
possibly be directly oxidized using O2. (A3) O2 and H2S are consumed at the
same hotspot and at a rate that is sufficiently high to minimize the overlap
of O2 and H2S. However, the consumption rates of O2 and H2S are equal
(since their profiles have equal slopes), which is inconsistent with the reac-
tion’s stoichiometry (O2 : H2S = 2 : 1). (A4) O2 and H2S are both consumed at
the same hotspot at sufficient rates, and their flux rate ratio is consistent
with the reaction’s stoichiometry. See the main text for a mathematical dis-
cussion. (B) Two competing electron donors diffusing from the bottom are
considered (H2S and NH+

4 ) and assumed to be oxidized using O2 diffusing
from the top. Following similar arguments to those in A, at steady state only
scenario B4 is physically possible and consistent with the SMF framework.
Observe that in B4 the hotspot is closer to the O2 source compared with
scenario A4, to sustain the higher O2 fluxes needed to oxidize both elec-
tron donors. In both A and B, the location of the hotspot and metabolite
fluxes into the hotspot are completely determined by the system’s trans-
port properties and chemical boundary concentrations and thus predictable
regardless of microbial kinetics and without depth profile measurements.
Similar arguments can be made for a greater number of reactions, although
the constraints on hotspot locations and reaction rates become increasingly
complex.
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known as sharp reaction fronts that form when reactions are fast
in comparison with transport processes (22, 62).

It is important to note that the locations of hotspots and
reaction rates therein are strongly constrained by a system’s
transport properties, boundary conditions, and the stoichiome-
try of reactions. This is because at steady state stoichiometric
ratios of substrates used by reactions in a hotspot need to
match the substrate flux ratios into the hotspot, which in turn
depend on a hotspot’s distance to substrate sources (such as the
system’s boundaries). For illustration, consider the hypotheti-
cal scenario where sulfide diffuses upward from the sediments
through a water column and into an oxic/sulfidic transition zone
(modeled as a hotspot), where it is entirely oxidized using down-
ward diffusing oxygen according to a stoichiometric ratio of
O2 : H2S=2 : 1 (Fig. 2A). If we assume for simplicity that the
diffusivity D is the same for both O2 and H2S and constant
across depths, then at steady state the oxygen and sulfide fluxes
into the hotspot will be fO2 =D ·CO2(zt)/(zh − zt) and fH2S =
D ·CH2S(zb)/(zb − zh), respectively, where zt and zb are the
depths of the top and bottom boundaries of the system and zh is
the (a priori unknown) hotspot depth. Stoichiometric balancing
implies that fO2/fH2S =2, which after some algebraic reordering
leads to

zh =

[
2zt + zb

CO2(zt)

CH2S(zb)

]
·
[
2+

CO2(zt)

CH2S(zb)

]−1

. [2]

Thus, if the boundary concentrations CO2(zt) and CH2S(zb) are
specified, the hotspot location, the vertical fluxes, and thus the
reaction rate can be determined regardless of the underlying
kinetics (see Fig. 2A for illustration and Fig. 2B for a more com-
plex example). Similar algebraic arguments can in fact also be
made for more complex scenarios, for example in the presence
of multiple hotspots and reactions or in cases where D varies
across depth or between metabolites; however, explicit algebraic
solutions become increasingly difficult to retrieve. A more flex-
ible and scalable numerical approach for determining hotspot
locations and reaction rates based on the same principles is thus
presented below.

Following the above considerations, the differential Eq. 1 can
be simplified into an algebraic equation for each steady-state
concentration Cm ,

Cm(z )=C o
m(z )+

∑
h

∑
r

SmrRhrGm(zh , z ), [3]

where h iterates over all hotspots, zh is the location of hotspot h ,
Rhr is the integrated rate of reaction r at hotspot h (e.g., mol per
m2 per time), C o

m is the steady-state concentration of metabo-
lite m in the absence of any reactions, and Gm is the “Green’s
function” (63) of the differential Eq. 1. Specifically, Gm(zh , z )
is the metabolite’s hypothetical concentration at location z , if
a single point source of unit rate were present at location zh .
Green’s functions are widely used in geophysics, meteorology,
ecology, and sedimentology to describe local or nonlocal trans-
port of matter or energy (63–65), such as molecular diffusion
or bioturbation in sediments (5, 66), as an alternative to using
differential equations. Note that C o

m(z ) and Gm(zh , z ) can be
precalculated independent of the reaction rates for any arbi-
trary zh and z (details in SI Appendix, section S.1), and thus the
only free variables in Eq. 3 are the hotspot locations zh and the
reaction rates Rhr at each hotspot. In principle, zh and Rhr can
be predicted by finding those values for which the correspond-
ing steady-state metabolite concentrations (i.e., calculated using
Eq. 3) satisfy SMF assumption iv; that is, at any location out-
side of hotspots and for every reaction at least one substrate has
concentration zero.

In practice, for complex models there may not exist a combina-
tion of hotspot locations and reaction rates satisfying assumption
iv exactly. Hence, an approximate solution may be sought by
choosing a combination of zh and Rhr that minimizes a suitable
“stress” function (denoted f ), which quantifies the deviations
from assumption iv. This stress function will be zero if and
only if assumption iv is exactly satisfied; in the sulfide/oxygen
example discussed above, solving for f =0 would yield the same
hotspot location as derived from stoichiometric arguments (Eq.
2 and Fig. 2 A4). The advantage of using a stress function
is that even when no exact solution exists (e.g., if the prob-
lem is overdetermined), an approximate solution may still be
obtained by minimizing f . This approach of finding an approx-
imate solution is heuristic and should be verified using real
systems (see below) because, strictly speaking, the SMF frame-
work cannot predict exactly how real microbial systems behave
if they deviate from the framework’s idealizing assumptions.
We point out that minimizing a model’s stress function differs
fundamentally from classical model fitting, where the devia-
tions from available data are minimized to determine unknown
kinetic parameters or unknown reaction rates (3, 10, 45). Indeed,
a stress function as introduced above measures only devia-
tions from the model’s own assumption iv, but not deviations
from any data.

Comparison with Existing Approaches and Implications
The SMF framework differs from biogeochemical models that
predict instantaneous reaction rates at each location based on
current local chemical conditions (e.g., using first-order kinetics)
and which, more recently, also account for microbial popula-
tion dynamics (3, 8, 20, 43, 46–48, 51, 67–69); these include
“free boundary” models where boundary locations are a priori
unknown variables representing penetration depths of metabo-
lites, spatial bounds of a model’s validity, or transition points
between distinct kinetic/transport regimes (4, 6, 7, 50, 69–75)
(reaction rates at these free boundaries are often assumed to
be zero, and thus these boundaries should not be confused with
hotspots). Virtually all of these models require reaction-kinetic
parameters such as rate constants and/or biological parame-
ters, such as microbial growth yields and substrate affinities,
to explicitly model the dependency of reaction rates on local
physicochemical conditions and/or community state. While such
models are usually more realistic (and potentially more accu-
rate) than SMF models, they often require dozens of poorly
quantified kinetic parameters and may be overly and needlessly
complex. The SMF framework shortcuts all reaction- and bio-
kinetic dynamics by assuming that physical transport and reac-
tion stoichiometry eventually dictate large-scale biogeochemical
flux rates. While this assumption clearly does not apply to all
systems, it has profound implications in those systems where it
does. In such systems, the SMF framework provides a substan-
tially simplified approach to predicting biogeochemical fluxes
and metabolic activity. Even in systems far from steady state,
SMF predictions could provide a reasonable first-order approx-
imation or help identify a system’s eventual convergence point,
deviations from which correspond to transient processes.

The SMF framework differs from conventional “reconstruc-
tive” approaches where measured geochemical depth profiles
are used to reconstruct the underlying fluxes or reaction rates
generating those profiles, for example based on concentration
gradients (18, 27, 76–78) or via inverse transport modeling (79–
82). Similarly, the SMF framework differs from approaches that
fit unknown kinetic parameters or unknown reaction rates to
geochemical depth profiles (3, 9, 10, 45, 54, 68, 83, 84), for exam-
ple via least squares. All of these approaches require knowledge
of the geochemical profiles that resulted from the very processes
to be reconstructed; that is, they require that “nature already
took its course” and the outcome was subsequently measured in
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sufficient detail. In contrast, the SMF framework relies only on
the chemical conditions at a system’s boundary, for example sul-
fate concentrations at the water–sediment boundary (∼28 mM
in most modern marine systems), or on oxygen concentrations
at the water–atmosphere boundary (typically near saturation),
to predict the resulting process rates in the system’s interior.
Hence, SMF models could be used to predict future process rates
that have not yet occurred, requiring only knowledge of bound-
ary conditions. For example, SMF models may help predict
transitions in the biogeochemistry of expanding ocean oxygen
minimum zones (85, 86), especially since the future microbial
community composition of these systems (and thus their reac-
tion kinetics) is unknown. Reciprocally, SMF models could be
used to reconstruct past unknown geochemical boundary con-
ditions based on minimal geological data, such as the likely
location of reaction hotspots as indicated by the sedimentary
rock record.

The SMF framework exhibits conceptual similarities to flux
balance analysis (FBA), a popular framework for predicting the
metabolism of single cells at steady state based on the reac-
tions encoded in their genome (87). In FBA, the production,
consumption, uptake, and export rates of each metabolite are
assumed to be balanced so that the intracellular concentra-
tion is constant over time; reaction rates are predicted under
these constraints by assuming that a cell regulates reactions
such that it achieves the highest possible growth rate. By anal-
ogy, in SMF the production/consumption rates of metabolites
within hotspots are assumed to be balanced by fluxes across
the system’s boundaries and transport across space; the hotspot
locations and reaction rates are predicted under these con-
straints by assuming that microbial populations are infinitely
efficient at substrate gathering. As in FBA, in SMF the need
for kinetic parameters is eliminated based on some principle

of optimality. FBA allows predicting the effects of hypotheti-
cally added or removed reactions on cell metabolism without
knowledge of cell regulation, thus facilitating drug discovery and
identification of gene functions (88). Analogously, SMF allows
predicting the effects of hypothetically or putatively occurring
reactions in an ecosystem without knowledge of kinetics, thus
facilitating ecosystem engineering and assessing the potential
role of metabolic pathways at ecosystem scales. For example,
SMF could provide valuable predictions of maximum feasi-
ble biochemical flux rates during the design of spatially struc-
tured bioreactors (89), regardless of the eventual inhabiting
microorganisms.

Biogeochemical Fluxes in the Cariaco Basin
To demonstrate the applicability of the SMF framework to real
ecosystems, we constructed an SMF model for the Cariaco Basin
subeuphotic water column (depths 180–900 m, roughly spanning
from hypoxia to anoxia, with O2 concentrations∼ 0–70 µM) dur-
ing the years 2001–2014. Within this time interval and depth
range, water exchange with the open ocean was limited (34),
eddy diffusion was the main mode of vertical transport (27, 77,
90), and microbial productivity was likely largely fueled by the
supply of inorganic reductants (especially sulfide) from the sedi-
ments (18, 35, 82). While this system appeared at times to be near
biogeochemical steady state, substantial fluctuations and decadal
dynamics have also been observed, especially with regard to sul-
fide fluxes (18, 34, 82, 91) (Fig. 3C). This system thus provides an
opportunity to test the robustness of the SMF framework under
steady-state as well as non–steady-state conditions. We consid-
ered major inorganic electron donors and acceptors (oxygen,
nitrate, nitrite, hydrogen sulfide, ammonium), diffusing down-
ward from the overlying layers or diffusing upward from the basin
bottom or sediments (27, 77, 82), and redox pathways using or

Fig. 3. Chemical concentration profiles in the Cariaco Basin (data vs. predictions). (A–D) Concentrations of oxygen (O2, A), nitrate (NO−3 , B), hydrogen
sulfide (H2S, C), and ammonium (NH+

4 , D), measured in the Cariaco Basin over depth and time. Black dots indicate original data points. White dashed
curves indicate the deepest point of oxygen penetration (A, [O2]≤ 2 µM), the deepest point of nitrate penetration (B, [NO−3 ]≤ 1 µM), the shallowest
point of sulfide penetration (C, [H2S]≤ 1 µM), and the shallowest point of ammonium penetration (D, [NH+

4 ]≤ 1 µM). (E–H) Concentration profiles of the
same metabolites as in A–D, predicted solely based on the boundary values at 180 m and 900 m using an SMF model with a single hotspot. Fractions of
variance explained by the model (R2) are written inside the plots. White dashed curves indicate the location of the hotspot predicted by the model. For a
closer comparison between predicted hotspot locations and chemical zone boundaries, see Fig. 4A. (I–L) Predicted metabolite concentrations at specific time
points (January 1, 2007 or January 1, 2010, blue curves), compared with concentrations measured around that time (within ±9 mo, gray dots).
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producing these metabolites and believed to be of importance
to biogeochemical cycling in Cariaco Basin (18, 27, 57, 92–94):
aerobic oxidation of sulfide, ammonium, or nitrite; anaerobic
oxidation of sulfide using nitrate (producing nitrite); anaerobic
oxidation of sulfide using nitrite (producing N2); and anaerobic
ammonium oxidation using nitrite (anammox). We ignored car-
bon remineralization, the bulk of which likely occurs outside of
the considered depth range (mostly in the euphotic zone and sed-
iments, but potentially including the bottom of the basin, depths
900–1,400 m), based on measured heterotrophy rate profiles (SI
Appendix, Fig. S4A) and based on relatively low estimated net
in situ sulfate reduction rates (82). To parameterize and val-
idate our model, we used geochemical data generated by the
CARIACO Ocean Time Series program at a single station (34,
35) and previously estimated eddy diffusion coefficients (82). We
used chemical concentrations, measured at depths 180 m and
900 m, as boundary values for the SMF model, and predicted the
hotspot locations and reaction rates between those boundaries at
various time points, by minimizing a stress function as described
above (Eq. 14 in Methods).

We found that a single hotspot was sufficient to largely repro-
duce the concentration profiles of considered metabolites; the
fraction of variance in the profiles that could be explained by
the model (R2) was between 0.78 and 0.92, depending on the
metabolite (Fig. 3). The adequacy of a single hotspot to largely
reproduce the observed geochemical profiles is consistent with
the observation that during this period oxygen, nitrate, hydrogen
sulfide, and ammonium were typically consumed in close spatial
proximity (Fig. 4A), within a zone sometimes referred to as the
“redoxcline” (27, 34, 82, 94). The hotspot depths predicted by
our model (mean 255± 32 m SD, depending on time point) fall
within the typical range of the redoxcline (200–350 m). Measured
prokaryotic cell densities and dark carbon assimilation (DCA)
rates typically peak within the redoxcline (SI Appendix, Fig. S4),
and previous studies found elevated densities of putative sul-
fide oxidizers (95) and ammonia oxidation genes (94) therein.
Recall that the predicted hotspot location is the location at which
reductant and oxidant influxes from opposite sides are stoichio-
metrically balanced at steady state, taking into account variations

A B

Fig. 4. Hotspot depth and metabolite fluxes in the Cariaco Basin. (A)
Hotspot depths predicted by the Cariaco SMF model at various time points
(blue solid curve), compared with various chemical zone boundaries, includ-
ing the deepest point of oxygen penetration ([O2]≤ 2 µM, following ref.
34), the deepest point of nitrate penetration ([NO−3 ]≤ 1 µM), the shallow-
est point of sulfide penetration ([H2S]≤ 1 µM, following ref. 34), and the
shallowest point of ammonium penetration ([NH+

4 ]≤ 1 µM). Observe that
during years 2007–2009, where Cariaco was close to biogeochemical steady
state, the penetration depths of all metabolites are in close proximity to
each other and to the predicted hotspot location. (B) Net metabolite flux
rates into the Cariaco Basin redoxcline during the years 2007–2009, aver-
aged over time. Blue bars show SMF-predicted net fluxes into the hotspot,
solely based on the concentrations at the top and bottom boundaries. Gray
bars show depth-integrated consumption rates between depths 200 m and
400 m and for the same time period, previously independently estimated via
inverse linear transport modeling using geochemical depth profiles (82). All
flux rates are expressed as area-specific densities, normalized with respect
to the basin area at 150 m depth.

of the diffusivity across depth. Because in Cariaco Basin dif-
fusivity at depth is much greater than diffusivity near the top
(SI Appendix, Fig. S2C), the hotspot is located closer to the top
boundary. Our model thus provides a simple explanation for the
location of the redoxcline.

On a finer scale, predicted hotspot depths are often shal-
lower than peak depths of measured prokaryote cell densities
(280± 77 m SD; SI Appendix, Fig. S4C), peak depths of mea-
sured DCA rates (307± 32 m SD; SI Appendix, Fig. S4B), and
peak depths of previously estimated sulfide consumption rates
(303 m on average) (82). One potential explanation could be
that manganese and iron act as redox shuttles between sulfide
and oxygen, whereby dissolved divalent manganese (Mn2+) and
iron (Fe2+) are oxidized using oxygen, and sinking particulate
manganese and iron (oxyhydr)oxides (MnO2 and FeOOH) are
reduced using sulfide at depth (40, 57, 96). To test the plau-
sibility of this interpretation, we examined an extended SMF
model with two hotspots that incorporates putative manganese
and iron oxidation and reduction pathways (MnO2↔Mn2+ and
FeOOH↔Fe2+; schematic illustration in SI Appendix, Fig. S5).
This extended model predicts the emergence of sharp MnO2

and FeOOH concentration maxima within the redoxcline (SI
Appendix, Fig. S6 F and H), consistent with previous obser-
vations (40, 97, 98). This model also predicts a fine spatial
separation between the oxygen and sulfide fronts (∼23 m on
average; SI Appendix, Fig. S7), consistent with frequent obser-
vations (98, 99), with sulfide oxidation predicted at somewhat
deeper depths (271± 35 m SD) than in the original single-
hotspot model. These revised predictions, however, only partly
alleviate the aforementioned discrepancies with measured DCA
rates and previously estimated peak sulfide consumption depths.
A more important cause of these discrepancies is likely the fact
that the system is not at perfect biogeochemical steady state.
Indeed, sulfide concentrations and influxes at depth have been
increasing appreciably during most of the considered time period
(SI Appendix, Fig. S8 and refs. 18 and 82), leading to a mis-
match between a transiently deep zone of sulfide consumption
on the one hand and a shallower predicted steady-state hotspot
location on the other hand. The latter corresponds to the hypo-
thetical eventual point of convergence, if boundary conditions
stabilized.

To further assess the model’s performance under steady-state
conditions, we subsequently restricted our analysis to a time
period where sulfide concentrations at depth appeared rela-
tively stable (years 2007–2009; SI Appendix, Fig. S8). During
this period, the agreement of the model with the profile data
increased noticeably (R2 = 0.86–0.95), and the predicted hotspot
depths (256± 4 m SD) more closely matched the depths of peak
measured prokaryotic cell densities (252± 38 m SD), peak mea-
sured DCA rates (296± 25 m SD), and peak estimated sulfide
consumption rates (280 m on average) (82), as well as the depths
where measured oxygen, nitrate, sulfide, and ammonium concen-
trations approach zero (∼255 m, Fig. 4A). Remaining discrep-
ancies may be partly due to uncertainties in the eddy diffusion
coefficients and uncertainties in chemical boundary concentra-
tions, as well as the coarse resolution of measured DCA profiles
and estimated sulfide consumption profiles (82). Considering the
simplicity of the model and the fact that it covers a depth range
of 720 m, the model’s predictions appear remarkably accurate.
Metabolite fluxes into the hotspot, predicted by the SMF model
during the years 2007–2009 (Fig. 4B), are also highly consis-
tent with depth-integrated metabolite consumption rates within
the Cariaco Basin redoxcline, previously estimated from the full
geochemical depth profiles (82). This supports our hypothesis
that, in the system at hand, large-scale biogeochemical gradi-
ents and bulk microbially driven metabolite fluxes are largely
determined by the system’s transport properties and chemical
concentrations at the top and bottom boundaries and largely
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independent of the precise kinetics and physiological properties
of resident species.

Limitations
The simplicity of SMF models does not come without a num-
ber of tradeoffs. First, strictly speaking SMF models apply only
to steady state, although in practice the assumption of steady
state may not always be crucial. Second, while SMF models may
adequately describe bulk biogeochemical fluxes, by design they
make no predictions about the population dynamics of micro-
bial communities or about the partitioning of metabolic activity
across microbial species. Such predictions may be important in
cases where a mechanistic understanding of the underlying ecol-
ogy is important or when available microbial composition data
could otherwise be used to calibrate a model. Third, the SMF
variant presented here, whereby reactions are assumed to occur
only at discrete hotspots, requires that all reactions be limited
by transport rates of at least one substrate across space. In some
situations, some reactions may not meet this criterion, in which
case the rate of these reactions must be modeled separately, e.g.,
using kinetic parameters. A notable example is the hydrolytic and
fermentative degradation of organic matter in sediments, which
even at steady state, and even in the presence of ample organic
carbon, can proceed very slowly relative to physical transport (5,
100). This process may ultimately be limited by the number of
enzyme-secreting microorganisms that could possibly colonize
the outer surface of an organic matter particle, the reactivity
of their secreted hydrolytic enzymes, and diffusion rates at the
scale of single particles (101). To accommodate such scenarios,
our SMF code allows for explicitly specifying input rate pro-
files of organic matter degradation products (e.g., depth profiles
of methane production rates) based on kinetic models and/or
empirical rate profiles (5, 102); however, currently these products
may themselves not be limiting substrates of reactions confined
to hotspots at depths where substantial organic matter degrada-
tion occurs. Future SMF variants, allowing for reactions outside
of discrete hotspots while still satisfying SMF assumption iv, may
resolve this limitation.

Conclusions
In general, microbial activity and geochemical gradients are
bidirectionally coupled dynamic aspects of ecosystems, contin-
uously influencing each other over time and together leading
to the emergence of interwoven microbial and chemical spa-
tial structures (94). In stagnant water columns and sediments,
the eventually inevitable utilization of available metabolic niches
by microorganisms (42), the self-amplifying nature of micro-
bial metabolism, and selection for efficient substrate gathering
(15) can render physical transport processes the rate-limiting
step for bulk microbial metabolism at ecosystem scales. Simi-
lar arguments also hold for rapidly occurring abiotic reactions.
Consequently, biogeochemical fluxes may become largely deter-
mined (and as we showed, largely predictable) by a system’s
physical transport properties, chemical boundary conditions, and
the stoichiometry of metabolic pathways. In contrast, variations
in the species composition of microbial communities and poten-
tial variations in their kinetics may have little net effect on
large-scale biogeochemical fluxes in these systems (19). Here
we formalized these considerations into a scalable predictive
framework and demonstrated that such a framework can yield
accurate steady-state predictions for systems with multiple reac-
tions, with heterogeneous diffusion rates, and spanning hundreds
of meters. Indeed, our model for the Cariaco Basin reproduced
the system’s broad geochemical structure remarkably well. The
model even reproduced major changes in sulfide and ammonium
profiles occurring over time scales of months to years, indicat-
ing that exact steady state is not an essential prerequisite for
obtaining reasonable predictions. Thus, the SMF framework may

also explain the broad-brush biogeochemical structure in other
similar systems (25, 29, 30, 32).

Reciprocally, while factors such as boundary conditions and
large-scale mixing properties can strongly constrain bulk biogeo-
chemical process rates, they may have limited influence on the
precise outcome of community dynamics such as competition,
antibiotic warfare, or predation (19). Our work thus provides
an explanation for the apparent decoupling between taxonomic
community composition and bulk metabolic function frequently
observed in microbial systems, whereby stable function can coin-
cide with high species turnover over space or time (19, 103–107).
Note that the SMF framework makes no assertion as to whether
and how this species turnover affects the kinetic properties of
the resident communities; our framework merely illustrates how
these kinetic properties can become largely irrelevant to bulk
biogeochemical flux rates. Our framework may also be applica-
ble to large-scale biogeochemical processes at geological time
scales, where microbial kinetic parameters are often unknown,
thus enabling a better understanding of Earth’s past and future
biogeochemical trajectory.

Materials and Methods
Cariaco Basin Data. Chemical and physical data were downloaded from
the CARIACO Ocean Time Series project website (http://www.imars.
usf.edu/cariaco) on April 28, 2018. Methods of data collection have been
described previously (34, 35). Some of the hydrogen sulfide concentration
data, recently published in ref. 35, were obtained directly from the authors.
To obtain boundary conditions at the top and bottom and to compare
model predictions with measurements, chemical concentration data were
bilinearly interpolated onto a regular spatiotemporal grid (Fig. 3 A–D).

Cariaco Basin SMF Model. The Cariaco Basin SMF model considers the depth
range of 180–900 m during the years 2001–2014 (see SI Appendix, section
S.5 for justifications). The single-hotspot model (which is the main model
discussed in the article) considers the following metabolites: nitrate (NO−3 ),
nitrite (NO−2 ), ammonium (NH+

4 ), hydrogen sulfide (H2S), and oxygen (O2).
The model considers energy-yielding redox pathways using or producing
the above metabolites, which are thought to be particularly important in
Cariaco Basin (18, 27, 34, 57, 92–94):

• ASOS, aerobic sulfide oxidation to sulfate:

H2S + 2O2→ SO2−
4 + 2H+

. [4]

• oxH2SrNO3, oxidation of sulfide to sulfate, coupled to the reduction of
nitrate to nitrite:

H2S + 4NO−3 → SO2−
4 + 4NO−2 + 2H+

. [5]

• oxH2SrNO2, oxidation of sulfide to sulfate, coupled to the reduction of
nitrite to N2:

3H2S + 8NO−2 + 2H+→ 3SO2−
4 + 4N2 + 4H2O. [6]

• AMO, aerobic ammonium oxidation to nitrite:

2NH+
4 + 3O2→ 2H2O + 2NO−2 + 4H+

. [7]

• NXR, aerobic nitrite oxidation to nitrate:

2NO−2 + O2→ 2NO−3 . [8]

• anammox, anaerobic ammonium oxidation using nitrite:

NH+
4 + NO−2 →N2 + 2H2O. [9]

The extended two-hotspot model, incorporating metal redox shuttles, also
considered dissolved manganese (Mn2+), particulate manganese (MnO2),
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dissolved iron (Fe2+), and particulate iron (FeOOH) concentrations and also
included the following pathways:

• MnOx, aerobic oxidation of Mn2+:

2Mn2+
+ O2 + 2H2O→ 2MnO2 + 4H+

. [10]

• MnRHS, reduction of manganese oxides using H2S:

4MnO2 + H2S + 6H+→ 4Mn2+
+ SO2−

4 + 4H2O. [11]

• FeOx, aerobic oxidation of Fe2+:

4Fe2+
+ O2 + 6H2O→ 4FeOOH + 8H+

. [12]

• FeRHS, reduction of FeOOH using H2S:

8FeOOH + H2S + 14H+→ 8Fe2+
+ SO2−

4 + 12H2O. [13]

In addition to transport via eddy diffusion, particulate metals were also
subject to sinking at speeds vMnO2

= 5.3 m · d−1 and vFeOOH = 3.2 m · d−1,
based on the formula by Yakushev (48) and typical concentrations in the
order of [MnO2]∼ 50 nM (40) and [FeOOH]∼ 25 nM (97). Note that sulfide-
driven denitrification was split into two sequential steps (NO−3 →NO−2 and
NO−2 →N2), to account for a potential leakage of NO−2 that may be fuel-
ing other NO−2 -consuming reactions such as anammox (3). Nitrite rarely
accumulates in the considered depth range and is frequently below the
detection limit; however, it was included in the SMF model because it is an
important (and potentially limiting) intermediate metabolite. Metabolites
formally appearing in the reactions but not expected to limit any reaction
(e.g., H+ or H2O) were not included in the SMF model.

The hotspot locations zh and reaction rates Rhr in the Cariaco SMF model
were predicted at 29 regularly spaced discrete time points during the years
2001–2014, according to the SMF assumptions, as follows. For any given
hotspot locations zh (position along the water column) and reaction rates
Rhr (mol ·m−2 · d−1), the corresponding steady-state metabolite concentra-
tion profiles (Cm) were calculated for the depth interval 180–900 m and
using fixed-concentration (also known as “Dirichlet”) boundary conditions.
Our model accounted for geometric dilution effects due to variation of
the basin area with depth, by using an appropriately modified diffusion–
advection equation (SI Appendix, section S.3) and basin area estimates
reported by Samodurov et al. (90) (SI Appendix, Fig. S3). For each time point,
boundary values of Cm were taken from the chemical concentration time
series at the top (180 m) and bottom (900 m) boundaries. Explicit formu-
las for the Green’s functions Gm and reactionless profiles Co

m, introduced in
Eq. 3, are provided in SI Appendix, section S.1. Integrals over depth were
calculated using the trapezoid rule, after discretizing the depth range into
a regular grid of 200 points. Green’s functions were calculated for each
point on that grid using explicit formulas (SI Appendix, section S.1); for
hotspot locations (zh) between grid points, Green’s functions were linearly
interpolated.

For any given time point, hotspot locations zh and reaction rates Rhr were
determined by minimizing the following stress function:

f((zh)h, (Rhr )hr ) =Er

Ez

⊗
m∈Lr

C2
m(z)

1
2

. [14]

Here, h iterates over all hotspots, r iterates over all reactions, Er denotes
the arithmetic average over all reactions, Ez denotes the arithmetic aver-
age over all depths, Lr is the set of substrates (reactants) for reaction r,
Cm(z) are the predicted steady-state metabolite concentrations (in µM)
and

⊗
denotes the geometric mean over a reaction’s substrates. The

right-hand side of Eq. 14 penalizes nonzero concentrations of limiting
substrates for each reaction; the term is equal to zero if at every loca-
tion and for each reaction at least one substrate of the reaction has
zero concentration. Note that this stress function is in units of µM and
roughly corresponds to the geometric-mean concentration of limiting sub-
strates for each reaction, averaged over all depths and all reactions. This
stress function depends on all substrates and is differentiable with respect
to zh and Rhr , thus allowing the use of standard numeric minimization
algorithms. We mention that in other systems where concentrations vary
by several orders of magnitude between metabolites, the concentrations
Cm may need to be appropriately rescaled within the stress function to
ensure that terms corresponding to different metabolites are all within
comparable scales.

Separately for each considered time point, we minimized the stress func-
tion f by iteratively varying the zh and Rhr under the constraint that all Cm

must be nonnegative, using the MATLAB function fmincon (108). To avoid
nonglobal local minima, for each time point we repeated the minimization
process 500 times while randomly varying the starting values for zh and Rhr

(each time obtaining a separate prediction for the zh and Rhr ) and kept the
prediction from the repeat achieving the lowest stress. The average stress
value across all time points was 0.24 µM, which is well below the aver-
age oxygen, sulfide, nitrate, and ammonium concentrations in the system,
meaning that SMF assumption iv was almost exactly satisfied.

Code Availability. MATLAB code implementing the SMF framework, as well
as demonstration code for the Cariaco Basin and other scenarios, is available
at http://www.loucalab.com/archive/CariacoMetabolic. The code can handle
an arbitrary number of metabolites, reactions, and hotspots; separate diffu-
sion coefficients and advection speeds for each metabolite (each of which
can vary with depth); and optional constraints on hotspot locations and/or
individual reaction rates; as well as various combinations of boundary con-
ditions (fixed concentration and/or fixed flux). The code can account for
variation of the lateral (cross-sectional) area with depth and can optionally
take into account available depth-profile data to improve predictive accu-
racy (the latter functionality was not applied in the present study, since the
profile data were used for a posteriori model validation).

Data Availability. Raw data used in this article are publicly available
at the Cariaco Basin Time Series project website (http://www.imars.
usf.edu/cariaco). Alternative sources of Cariaco time series data are the
NOAA National Centers for Environmental Information (NCEI), the Ocean
Carbon Data System, the US Biological and Chemical Oceanography Data
Management Office (BCO-DMO), and the NASA SeaBASS database.
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