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1. Introduction

A special issue of Environmental Modelling and Software (Gal et al.,
2014) listed “key challenges” in aquatic ecosystem modelling and col-
lated case studies that applied novel modelling tools and approaches to
address these challenges. These challenges were:

A. Model development and integration of models
1. Selection of most suitable modelling approach
2. Identification of appropriate degree of complexity
3. Improvement of accuracy of model process representation (model
structure) given our prior biophysical and ecological under-
standing of the system

4. Integration of models
5. Improved sharing and coupling of models

B. Model reliability
1. Definition and quantification of impacts of uncertainty and sen-
sitivity of complex models on their results

2. Delineation of appropriate application of models (i.e. improve
our ability to select the most suitable model for an application at
hand)

3. Improved model assessment
C. Model implementation and usage
1. Incorporation of emerging rich data sources
2. Providing timely predictions to facilitate operational manage-
ment through near-real time and forecasting models

3. Using complex models to increase ecosystem understanding
4. Enhancement of model coupling with management tools to in-
crease integration into the decision making process

Recently, 35 modellers from nine countries gathered in Brisbane,
Australia, to discuss these challenges and the progress that has been
made over the past few years. Of the challenges identified by Gal et al.
(2014), we, the authors, identified the following nine areas in which
significant progress has been made in either addressing or further elu-
cidating these challenges:

1. Model development

2. Model facilitation
3. Model parameterisation
4. Model structure
5. Optimising model practice
6. Model integration
7. Data and data repositories
8. Advancing transdisciplinary global networks
9. The value of modelling

Our aim in this paper is not to provide a comprehensive literature
review, but to stimulate discussion on deficiencies in methods and
model development, as well as on how to overcome some of the iden-
tified deficiencies. Our focus is on aquatic ecosystem models (AEMs),
but most subjects discussed are applicable across a broad range of en-
vironmental models.
AEMs quantify the state of an aquatic ecosystem based on internal

or external forcing of that system (sensu Janssen et al., 2015). Most
AEMs consider water column transport and transformations of one or
more major nutrients (typically nitrogen, phosphorus and/or carbon),
together with aspects of plankton ecology and sometimes other eco-
system components (Robson, 2014a). Mooij et al. (2010) compare a
range of AEMs; Janssen et al. (2015) provide a comprehensive list of
AEMs that are currently in use in the supplementary material in their
paper.

2. Model development

In recent years there has been a strong drive by modellers to adopt
open source approaches to enhance model development, facilitating
interactions with model code by a broader subset of the aquatic eco-
system modelling community. Online model repositories are the stan-
dard for open source models (e.g. https://github.com), allowing for
version control and a standardised documentation process. However,
open source code also presents challenges. For example, technical issues
may arise when there are different branches of a model, requiring a
custodian or overseeing group to decide on whether new or modified
algorithms should be incorporated into the parent code, and the point
in time when this should occur.
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The aquatic ecosystem modelling community has also tended to
divide into three specialist groups: model designers, programmers and
users (Robson, 2014b). Typically, only a small proportion of modellers
contribute to code development. Several studies have shown that sci-
entific models are improved by coding collaboratively and cross-cutting
disciplinary areas (e.g., through interactions amongst software en-
gineers, scientists and practitioners), and that it leads to higher quality
of software in terms of algorithm accuracy and relevance (Storer,
2017). By contrast, a single programmer may act as a custodian of the
model code and disseminate it upon evaluating requests to develop and
use it. The community development approach may be sustained by
funding for a research coordination network or researcher cluster, while
the single programmer model generally requires funding to be sustained
by a local group. The latter approach can be limited by the continuity of
research support at a local scale, by the workload required for model
documentation and bug-checking, and by sharing knowledge with users
about model limitations and new model developments.
Community models therefore tend to engage a wider cross-section

of the aquatic ecosystem modelling community, facilitating increased
dialogue and interrogation of approaches, but may require develop-
ment of protocols and policies that facilitate version control, model
development and funding support.

3. Model facilitation: “easing the pain of modelling”

A coordinated community approach is key to improving modelling
efficiency and adoption of improved modelling practices and technol-
ogies. The move towards open source code allows a broader suite of
scientific models and software tools to be developed, used and tested
amongst a global modelling community. Making software resources
available is important to allow easier entry into the modelling process
and for growing the community and engaging researchers globally.
Emerging high-volume ecological datasets and efficient computational
algorithms have greatly enhanced opportunities for data assimilation
(Zobitz et al., 2011) as has the use of advanced visualisation techniques
to interpret outputs (Rink et al., 2018). Community efforts supporting
software environments such as R or Python have become integral to the
development and application of AEMs. For example, the R package
“rodeo” (Kneis et al., 2017) facilitates model development by com-
bining the widely used language R with automatically generated For-
tran code to achieve high computational performance. Software
packages have been designed to handle specific models (e.g., the R
package “glmtools”, Read et al., 2016b) and to support generation of
figures or animations from NetCDF files, e.g., the R package “Ocean-
View” (Soetaert, 2016) and the Python-based graphical user interface
“PyNcView” (https://sourceforge.net/projects/pyncview/).
Virtual laboratories (like the Biodiversity and Climate Change

Virtual Laboratory BCCVL, http://www.bccvl.org.au/) provide user-
friendly interfaces to allow users to focus on the experimental or syn-
thetic systems created by the model, rather than on code development
and runtime issues. They are not yet available for AEMs, but tools like
the Database Approach To Modelling (“DATM”; Mooij et al., 2014) can
carry out automated translation of information in a database into a
model framework. Similarly, the Water Ecosystem Tool (“WET”;
http://projects.au.dk/wet/, Nielsen et al., 2017) links climate change
and catchment model output scenarios as input to the hydrodynamic-
ecosystem model GOTM-FABM-PCLake. These tools help to simplify
AEM applications and can be linked to virtual laboratories. Another
model interface, GRAPLEr (https://github.com/GRAPLE/GRAPLEr,
Subratie et al., 2017), allows a user to utilise distributed computing
resources to run large numbers of simulations. Together with parameter
databases (e.g., http://shiny.csiro.au/CDM/parameterlibrary/latest/,
Robson et al., 2018), code libraries (e.g., LibBi to support Bayesian
inference: http://libbi.org/faq.html, Murray, 2013) and statistical
packages to support model enquiry such as Monte Carlo simulation and
sensitivity analysis (e.g., the R package “FME” by Soetaert, 2016;

“PEST”, http://www.pesthomepage.org/Home.php by Doherty, 2015),
these interfaces effectively provide a toolbox to promote advanced
discussion on parameterisation and calibration of complex models.

4. Model parameterisation

With increasingly rich sources of data, better matching the time and
space resolution of our models (Hamilton et al., 2014) it is possible to
more thoroughly calibrate and evaluate models (e.g., Adiyanti et al.,
2016). Remote sensing and the Internet of Things (IoT) are con-
temporary fields of research that can greatly enhance data acquisition
for AEMs. Recent and planned launches of Sentinel satellites
(https://sentinel.esa.int/web/sentinel/home) provide data on an in-
creasing number of optically active constituents, with opportunities to
enhance spatial and spectral resolution, suitable for modelling smaller
lakes and reservoirs (Toming et al., 2016). AEMs have already been
adapted to represent water colour or reflectance at specific wavelengths
and align directly with true colour images of the water surface derived
from Earth observation missions (e.g., Baird et al., 2016). Cheap sensors
and expanding sensor networks will provide a greater spatial coverage
of environmental monitoring data, supporting model validation (Hipsey
et al., 2015). Efficient algorithms are therefore required to assimilate
sensor data for model application (Baracchini et al., 2019).
Collaborations between experimentalists and modellers are im-

portant to determine new ways to align or measure parameters that are
commonly calibrated through inverse modelling (Flynn, 2005). The
need for innovation in measurements to better match what is modelled
is an important component of parameter identifiability. This has been
considered with respect to zooplankton observations and modelling by
Everett et al. (2017), and is an ongoing theme in papers by Flynn et al.
(2015, 2016). Few current applications of complex AEMs have dealt
with the emerging complexity of species and strain-level diversity being
revealed by molecular techniques. Methods that explore differences
amongst isolates and strains of species indicate intra-species genetic
and phenotypic variability that in some cases can be of similar mag-
nitude to inter-specific variability (e.g., Xiao et al., 2017). Bayesian
methods (e.g., Arhonditsis et al., 2007; Couture et al., 2018; Jia et al.,
2018), individual-based models (Hellweger et al., 2016) and adaptive
trait-based models (Smith et al., 2014) offer methods to explore the
inherent variability in biota but these have not commonly been applied
at an ecosystem scale.

5. Model structure

Most of the AEMs used today have gained acceptance through a
sustained period of development and application that has demonstrated
their utility. As a result, many models employ equations based on
process understanding that often extends back to the 1960s (e.g.,
Eppley et al., 1969), with code that was initially written in the 1970s-
90s (e.g., Cerco and Cole, 1995; Di Toro et al., 1975; Hamilton and
Schladow, 1997; Postma, 1984). Although much of the underlying
conceptual understanding still holds today, advances in knowledge may
provide either better representations of existing processes or identify
entirely new processes that need to be embedded within AEMs. Ex-
amples of processes identified in the 1990s but neglected in most AEMs
are anammox (Mulder et al., 1995; Van de Graaf et al., 1990), uptake of
dissolved organic nitrogen by plants and phytoplankton (e.g., Berg
et al., 1997; Glibert et al., 2004; Vonk et al., 2008). Other processes are
phosphorus uptake enhanced by alkaline phosphatase production
(Prentice et al., 2015) and production of greenhouse gases such as CO2,
CH4 and N2O associated with organic matter from different sources and
ages (Koehler et al., 2012; Sinsabaugh et al., 2013).
We argue that structural uncertainty needs to be revisited more

frequently. The modularisation of models (e.g., the Aquatic
Ecodynamics Modelling Library “AED2”, the Ecological Regional Ocean
Model “ERGOM”) and multiple algorithm options supported by high
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frequency observations (e.g., Woolway et al., 2015) make testing, va-
lidation and re-coding of processes easier. Structural uncertainty can
further be explored by comparing different process representations
within a complex model (Frassl et al., 2014; Sadeghian et al. 2018) or
output from model ensembles (Trolle et al., 2014a; Van Vliet et al.,
2019). Applying models of different complexity and structure (La-
keMIP: http://www.unige.ch/climate/lakemip/, Stepanenko et al.,
2010) can help with selecting models and modules that are fit for
purpose. Applying a single model across a diverse range of lakes with
different morphologies, residence times or climates is time consuming
but importantly can reveal model structural deficiencies (GLM-MLCP,
Bruce et al., 2018).

6. Optimising model practice

Methodological summaries (Bennett et al., 2013; Brown et al.,
2011) and modelling guidelines (Jakeman et al., 2006; Pianosi et al.,
2016; Wilson et al., 2017) have helped to disseminate best practices
within the modelling community. The sheer number and diversity of
AEMs, however, make it difficult to choose a suitable model that is fit
for purpose (Janssen et al., 2015). An increase in number and diversity
has also been observed for supporting tools (e.g., Wolski et al., 2017)
and data (e.g., LaDeau et al., 2017). Accessing and finding the right
data, tools and models fit for the specific project is essential (Wirtz and
Nowak, 2017) and the development of a roadmap for each of these
would be of great benefit to the aquatic ecosystem modelling commu-
nity.
There has recently been a focus on full documentation of model

code, simulation experiments and publishing of data sets, which are the
cornerstones for reproducibility (Hutton et al., 2016; Nosek et al.,
2015). Nevertheless, this initiative is in its infancy for AEMs and there is
a need for an agreed standard for both documenting code, e.g., through
model repositories and version control, and providing model-relevant
outcomes from simulation experiments (e.g., parameter tables). Scien-
tists and model practitioners need to conduct this exercise jointly to
develop a framework for benchmarking real and virtual experimental
systems to support good model performance. Successful examples of
model benchmarking in related disciplines (e.g., Hunter et al., 2008)
can serve as a base for benchmarking AEMs. This would help to com-
municate uncertainties whilst building trust in the models by a broader
cross-section of stakeholders. Ideally, a community toolkit of resources
and operational procedures could be developed, defining workflows
and including model parameterisation and uncertainty assessment.

7. Model integration

Much uncertainty in model results can stem from model inputs
adopted as boundary conditions. Limitations of field measurements
have led to the practice of integrating AEMs with other environmental
models to interpose sparse input data as well as to examine interactions
across system boundaries or changing boundary conditions. Fluxes of
energy and mass across system boundaries are crucially important for
many biophysical models (Goyette, 2017; Krause et al., 2017; Tranmer
et al., 2018), and address an important management issue of loss of
connectivity within and between systems (Stewart et al., 2018). For
example, catchment nutrient fluxes are primary drivers of lake eco-
systems, so there is a strong case for coupling AEMs with catchment
models. For a recent review on catchment models see Fu et al. (2019).
Coupled catchment-lake models can be used to estimate incoming (non-
point) loads to lake ecosystems and to simulate the effects of land use
change on the lake ecosystem (Bucak et al., 2018; Crossman and Elliott,
2018; Me et al., 2018; Rossel and de la Fuente, 2015). This coupling,
however, is hindered by simplistic load generation algorithms used in
many catchment models and a mismatch in simulated time scales and
model variables (e.g., nutrient speciation, water temperature). Similar
issues exist when considering lake-groundwater exchanges.

Improvements in Earth system modelling, resulting in greater
spatio-temporal resolution, make it feasible to derive comprehensive
input data for AEMs. For example, data from reanalysis (Xue et al.,
2015) and weather forecast models (e.g., Valerio et al., 2017) have been
used to generate wind fields to drive lake hydrodynamic models.
Output from Global Change Models and reanalysis projects can provide
boundary conditions for simulating remote, data-sparse water bodies.
However, it remains a challenge to derive water quality parameters and
obtain validation data for simulations of these systems (Frassl et al.,
2018a).
A major hurdle to integrating models is the interoperability of dif-

ferent models and the lack of standards across environmental domains.
Voinov and Shugart (2013) emphasised that working collaboratively
between disciplines helps to prevent the creation of ‘integronsters’ that
hinder model interoperability. That is, sub-modules that were devel-
oped and validated for one application may not be meaningful anymore
when combined with each other and applied in a different context.
Progress has been made in coupling different types of models, like
agent-based, stochastic or process-based models, e.g. to understand
socio-ecological interactions (Martin and Schlüter, 2015). Technical
factors can still be impediments to achieving interoperability and in-
clude the need to agree on common interfaces (e.g., Buahin and
Horsburgh, 2018), to bridge across different scales, to develop common
standards, and to define model variables consistently. We contend that
insufficient emphasis has been placed on the importance of boundary
conditions in aquatic ecosystem modelling.

8. Data and data repositories

Conducting multi-site or global modelling studies can be a challenge
because of issues related to data accessibility and heterogeneity.
Preserving data for general accessibility can help to address this
challenge, for example by using supplementary information accom-
panying published articles, by publication in data journals
(http://www.forschungsdaten.org/index.php/Data_Journals; Candela
et al., 2015) or by storing the data in specific databases and repositories
(https://www.re3data.org/). The association with a digital object
identifier (doi) makes these data citeable. The use of standardised vo-
cabularies (Cox et al., 2014) also makes them more readily searchable
and discoverable. Model inputs as well as model outputs are increas-
ingly being delivered through data services and repositories. Access to
these data can be facilitated through open software packages (e.g.,
Winslow et al., 2018).
Data-intensive scientific applications require that the data are dis-

coverable, accessible and well-described. A recent study has found that
only 63% of scientists deposit data or make the data available as sup-
plementary material (Stuart et al., 2018). This is counterproductive
because publication of data sets can ‘kick start’ subsequent studies,
reducing the time required for data preparation and quality control, and
facilitating exploratory studies. Best practices for data storage (Hart
et al., 2016) and data management, e.g., through data management
plans (DMPs; Michener, 2015) or by following the FAIR Guiding Prin-
ciples “Findability, Accessibility, Interoperability, and Reusability”
(Wilkinson et al., 2016) will improve data availability and support
comparative modelling studies including changes with different model
versions.
Data delivery via an application programming interface (API) (e.g.,

OpenDAP, https://www.opendap.org/) and servers (e.g., THREDDS,
https://www.unidata.ucar.edu/software/thredds/current/tds/TDS.html)
can provide a stable data set with quality assurance/quality control (QA/
QC) standards and known provenance. Automated or advanced manual
QA/QC procedures (e.g., Campbell et al., 2013; Horsburgh et al., 2015;
McBride and Rose, 2018; ‘B3,’ Read et al., 2016b) linked with data as-
similation techniques (Hipsey et al., 2015) have the potential to greatly
simplify the time consuming process of data preparation.
Data sharing is often associated with building trust (Wolski et al.,
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2017). Therefore, it is crucial in modelling studies to give credit to the
provenance of the data and to work collaboratively with those who
collected the data (e.g., Bruce et al., 2018; Frassl et al., 2018b).
Agreeing on a data management plan (DMP; Michener, 2015) and clear
authorship guidelines (e.g., Brand et al., 2015) are good ways to build
trust and facilitate data sharing. Further sharing of pre- and post-pro-
cessing scripts can result in time savings and greater diversity and
quality of model output interrogation.

9. Advancing transdisciplinary global networks

Many of the above mentioned challenges posed in aquatic eco-
system modelling may be more easily addressed through transdisci-
plinary networks of modellers, scientists and stakeholders. These net-
works are mostly maintained through funding initiatives and can be
fostered through joint workshops (Bloesch et al., 2005), special issues in
scientific journals (Fang et al., 2017), international research programs
across disciplines (Dohmann et al., 2016; Kottmeier et al., 2016) and
team science projects involving the Global Lake Ecological Observatory
Network, GLEON (Read et al., 2016a; Weathers et al., 2013). The per-
sistence of these initiatives is an issue, however, and more robust
funding frameworks are required based on well organised disciplinary
groupings seen in climate modelling (www.wcrp-climate.org).
Past research programs have revealed the value of bringing together

water agencies, consultants and scientists. The “Queensland Water
Modelling Network” (Lawrence and Riches, 2017) is an example of a
new initiative to improve operational water modelling through a co-
ordinated network of model practitioners, models and data sets. The
Aquatic Ecosystem Modelling Network (AEMON), a consortium of AEM
experts, has been very productive in summarizing the current state-of-
the-art of aquatic ecosystem modelling, pointing to gaps in model de-
velopment and providing useful overviews of AEMs (Janssen et al.,
2015; Mooij et al., 2010; Trolle et al., 2012).
AEMON hosts an active user forum which shares knowledge and

modelling resources, and supports early career AEM developers and practiti-
oners (https://groups.google.com/forum/#!forum/aquaticmodelling). The
AEM community may benefit from considering how to best train the next
generation of modellers. Specific training strategies include community-
developed, continuously tested and dynamically updated open teaching mo-
dules (e.g., the EDDIE project https://serc.carleton.edu/eddie/index.html or
https://software-carpentry.org/). Provision of real-world data and easily
operated computing infrastructure can help new modellers to focus on the
science and later engage in the technical detail whilst ensuring best mod-
elling practices are implemented. A further step would be to conduct in-
ternational hands-on workshops that make use of diversity in the environ-
mental modelling community. Possible outcomes could be model ensemble
studies across different lakes and reservoirs, cross-boundary simulations
over entire catchments, or large-scale modelling studies that address global
environmental issues like water scarcity or global climate change (e.g.,
https://www.isimip.org/about/). Currently, regular meetings of the inter-
national aquatic ecosystem modelling community are lacking. A possible
solution is to strive to consistently include specialist modelling sessions at
large aquatic science conferences or to establish regular virtual conferences.

10. The value of modelling

AEMs can inform policy by providing a technical basis for making
informed decisions. They can provide quantitative predictions of how
aquatic ecosystems respond to pressures like land use change
(Bhagowati and Ahamad, 2019; Ménesguen and Lacroix, 2018; Trolle
et al., 2014b; Vinçon-Leite and Casenave, 2019), hydropower plant
operations (Rossel and de la Fuente, 2015), mining (Salmon et al.,
2017) or altered hydrology (Jones et al., 2018; Weber et al., 2017).
More broadly, embedding the modelling process into decision-making
can increase transparency (Merritt et al., 2017), highlight gaps for
further study (Krueger et al., 2012), characterise sources of uncertainty,

generate new knowledge and clearly define risks (Refsgaard et al.,
2007). Development of coupled natural-human systems models poten-
tially supports decision making by capturing links between water
quality and socioeconomic processes such as changes in property values
in lake catchments (Cobourn et al., 2018). Further, AEMs are increas-
ingly being linked to up-to-date forcing data to make near real-time
predictions to guide water management operations (Bertone et al.,
2015; Wang et al., 2016). This can substantially reduce risk (e.g.,
drinking water contamination) and provide economic efficiencies.
Despite these advantages, AEMs are often poorly integrated into the

decision-making process, which can limit their value. Model scenarios
may not accurately encompass the management options available, or
the implications of model results are “lost in translation” between sci-
entists and managers (Delaney and Hastie, 2007). A greater emphasis
needs to be placed on the interactions of the modelling process with the
broader aspects of water management (Refsgaard et al., 2007). Struc-
tured Decision Making (Gregory et al., 2012) or participatory modelling
(Voinov et al., 2016) are examples of concepts that could be used to
embed modelling into decision-making. The collaborative nature of
these concepts, e.g., through transdisciplinary scenario development
(IPBES et al., 2016), can help participants to understand model as-
sumptions, capabilities, uncertainties and the complex relationships in
aquatic ecosystems.
An increasing number of AEMs is used to estimate greenhouse gas

emissions from lakes (e.g., Stepanenko et al., 2016; Tan et al., 2015).
Nevertheless, the potential to support integrated scenario simulations
within the framework of both the Intergovernmental Panel on Climate
Change (IPCC) and the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) remains largely un-
explored. The need to use this potential is reinforced in the necessity for
the aquatic ecosystem modelling community to provide quantitative
predictions for the UN sustainable development goals (UN, 2015),
particularly Goal 6: to ensure availability and sustainable management
of water and sanitation for all.

11. Conclusion

The amount of data, and number of methods and tools used in the
aquatic ecosystem modelling community has continued to increase,
necessitating a greater level of integration and coordination to exploit
the resulting opportunities. Model and equation libraries, processing
tools and parameter databases provide a strong basis for model devel-
opment as well as a focus on the scientific and management implica-
tions of model output. Agreed standards to facilitate inter-operability
and workflows provide for consistency of modelling practice and can be
implemented at early career levels to provide a cohort of skilled prac-
titioners. More than ever, managers require model predictions to sup-
port effective and transparent decision making. For model predictions
that are used to support policy and have important social and economic
implications, reliable and accurate models are critical to avoid com-
pounding error, while at the same time model uncertainties need to be
clearly communicated and documented. Trust in models is achieved
through progressive model development, ongoing support and funding,
as well as identification of data requirements to address parameter
uncertainties. We have shown the considerable scope for the aquatic
ecosystem modelling community to make further advances that im-
prove both AEMs and the modelling processes. By linking shortcomings
with emerging opportunities, this paper provides insight into the cur-
rent state of the field and, more importantly, highlights ways forward to
resolve current issues and address future challenges.
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