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Abstract
1.	 Understanding the relationship between biodiversity and ecosystem functioning 

(BEF) is a central topic in ecology. Multi‐trait–based functional diversity has been 
proposed to improve mechanistic understanding of the BEF relationship; however, 
how trait‐based functional diversity affects ecosystem functioning and processes 
has rarely been addressed in aquatic ecosystems.

2.	 Here, we examined the causal relationships between three phytoplankton func-
tional diversity indices (FAD2, functional diversity based on dendrograms [FDc], 
FRic) and Shannon diversity index versus resource use efficiency for nitrogen 
(RUEN), phosphorus (RUEP) and silicate (RUESi), with monthly long‐term datasets 
from the marine (Western English Channel, 2000–2014) and freshwater (Lake 
Kasumigaura, 1984–2012) ecosystems.

3.	 We employed Convergent Cross Mapping (CCM), a novel method developed for 
identifying causality for nonlinear dynamical systems; this is in contrast to linear 
approaches that cannot distinguish causality from correlation. CCM found that 
FDc is the most robust functional diversity index among the selected functional 
diversity indices (FAD2, FDc, FRic) in predicting phytoplankton resource use ef-
ficiency and exhibited a much stronger causal effect than the Shannon index.

4.	 Furthermore, scenario exploration analysis indicates that most causal effects 
from phytoplankton diversity indices on resource use efficiency (RUEN, RUEP and 
RUESi) are on average positive, and FDc exhibited the most consistent positive 
causal effects on phytoplankton resource efficiency in both marine and freshwa-
ter ecosystems. Thus, increasing FDc can enhance phytoplankton resource use 
efficiency in aquatic ecosystems.

5.	 Synthesis. Our results show significant causal effects of functional diversity on 
phytoplankton resource use efficiency in both marine and freshwater ecosystems. 
Among all selected functional diversity indices, functional diversity based on den-
drogram is the most robust functional diversity index in promoting phytoplankton 
resource efficiency. Our study provides empirical evidences in natural aquatic sys-
tems that trait‐based functional diversity represents better species niche parti-
tioning than the Shannon index and thereafter enhances resource use efficiency. 
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1  | INTRODUC TION

Understanding the relationship between biodiversity and eco-
system functioning (BEF) is a central topic in ecology (Allhoff & 
Drossel, 2016; Brophy et al., 2017; Cardinale et al., 2012; Hooper 
et al., 2005; Tilman, Isbell, & Cowles, 2014). BEF relationships have 
been intensely investigated in the past decades, due to concerns on 
potential impacts of globally increasing species loss on ecosystem 
functioning and services (Cardinale et al., 2012; Tilman et al., 2014). 
A general consensus of BEF is that species diversity is a major deter-
minant of ecosystem productivity, stability, invasibility and nutrient 
dynamics (Tilman et al., 2014).

While traditional BEF research mainly focused on species di-
versity that includes only information of species richness and rel-
ative abundance, increasing number of studies have shown that 
influences of diversity on ecosystem functions depends largely on 
the traits and functional roles of species (Cadotte, Carscadden, & 
Microtchnick, 2011; Diaz & Cabido, 2001; Gagic et al., 2015; Klais, 
Norros, Lehtinen, Tamminen, & Olli, 2017; Petchey & Gaston, 2006). 
Thus, functional diversity, measuring the functional differences 
among species based on their traits, has been proposed to improve 
mechanistic understandings of BEF (Abonyi, Horváth, & Ptacnik, 
2018; Cadotte et al., 2011; Gagic et al., 2015; Petchey & Gaston, 
2006). Indeed, several studies have shown that trait‐based func-
tional diversity predicts ecosystem functioning better than species 
diversity (Abonyi et al., 2018; Gagic et al., 2015; Ye, Chang, García‐
Comas, Gong, & Hsieh, 2013). Therefore, functional diversity has 
been suggested as a principal concept for revealing mechanisms 
linking diversity with ecosystem functioning and processes (Nathan, 
Osem, Shachak, & Meron, 2016).

Another challenge for understanding BEF in natural systems is 
the methodological concern. Existing studies using observational 
long‐term monitoring data to analyse BEF have largely relied on lin-
ear approaches (e.g. correlation, regression and structural equation 
modelling). However, correlation does not always imply causation 
(Sugihara et al., 2012); for instance, significant correlation between 
diversity and ecosystem functioning can be a consequence of shar-
ing determinants (i.e. affected by the same environmental factor) 
instead of causality. Moreover, lack of correlation does not always 
imply lack of causation, either (Sugihara et al., 2012). In fact, cor-
relation may appear to change in magnitude and sign through time 
(known as mirage correlation), even though the causal relationship 
remains unchanged; this is a hallmark of nonlinear dynamical systems 
(Deyle et al., 2013; Ye, Beamish, et al., 2015a). Mirage correlations 

as well as spurious correlations render difficulty to identify causal 
relationship between diversity and ecosystem functioning based 
on linear analyses. To overcome these issues, we employ novel ap-
proaches, convergent cross mapping (CCM; Sugihara et al., 2012) 
and S‐map (Deyle, Maher, Hernandez, Basu, & Sugihara, 2016) that 
are designed for analysing nonlinear dynamical systems, to quantify 
the cause–effect of BEF using time‐series data collected from nat-
ural systems.

Among ecosystem functions, resource use efficiency is a very 
important one, determining nutrient cycling and trophic transfer 
processes (Filstrup, Hillebrand, Heathcote, Harpole, & Downing, 
2014; Funk & Vitousek, 2007; Nathan et al., 2016; Olli, Klais, & 
Tamminen, 2015; Ptacnik et al., 2008). The Niche Diversification 
Hypothesis suggests that ecosystems of higher diversity could take 
greater advantage of the niche opportunities in an environment, and 
this allows a diverse ecosystem to capture a greater proportion of 
resource (Connel, 1978). Following this reasoning, one may expect 
that functional diversity, as measured by the functional traits that 
determine how an organism extracts resources from its environ-
ment, should play an important role in determining resource use 
(McGill, Enquist, Weiher, & Westoby, 2006). Thus, a community with 
higher functional diversity is expected to have a greater resource 
niche partitioning and thus resource use efficiency (García‐Comas 
et al., 2016; Gross et al., 2017; Ye et al., 2013). Here, we hypothesize 
that phytoplankton functional diversity has a stronger effect on re-
source use efficiency than species diversity.

Most of current knowledge on BEF has come from terrestrial 
ecosystems, including grasslands and forests (Forrester, Benneter, 
Bouriaud, & Bauhus, 2017; Hautier et al., 2015; Tilman, Wedin, & 
Knops, 1996). Studies on the BEF relationship in aquatic ecosys-
tems, especially those focusing on how functional diversity affects 
functions of aquatic ecosystems remain understudied. In this study, 
we aim to examine the effects of phytoplankton diversity on re-
source use efficiency in both marine and freshwater ecosystems. 
We focus on phytoplankton because phytoplankton represent the 
base of aquatic ecosystems and consist  ~  50% of global net pri-
mary production (Behrenfeld et al., 2001). Although resource use 
efficiency has previously been shown to increase with phytoplank-
ton species richness (Ptacnik et al., 2008) but decrease with phy-
toplankton evenness (Filstrup et al., 2014) in natural communities, 
the effects of functional diversity on phytoplankton resource effi-
ciency remain unclear in natural aquatic ecosystems. Specifically, 
we test the hypotheses that (a) phytoplankton species diversity 
and functional diversity enhance resource use efficiency in aquatic 

This finding can improve our understanding on trophic transfer and nutrient cy-
cling in aquatic ecosystems.
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ecosystems, and (b) phytoplankton functional diversity has a stron-
ger causal effect on resource use efficiency than species diversity.

2  | MATERIAL S AND METHODS

2.1 | Data

Two long‐term monthly time‐series datasets representing the ma-
rine (Station L4 in the Western English Channel, UK) and fresh-
water (Station ST9 in the Lake Kasumigaura, Japan) ecosystems 
were used to test our hypotheses addressing whether phytoplank-
ton diversity determines resource use efficiency. We chose these 
two datasets because the long‐term monthly records of these 
two sites are long enough for examining coupling of phytoplank-
ton and nutrient dynamics. In addition, both datasets are publicly 
available and well managed which can assure the accuracy of data. 
The Western English Channel data were collected by the Western 
Channel Observatory (www.weste​rncha​nnelo​bserv​atory.org.
uk). For the L4 long‐term dataset (50°15.00′N, 4°13.02′E in the 
Western English Channel), most data were collected weekly. We 
selected only the data from 2000 to 2014 to keep the consist-
ency of phytoplankton and water chemistry data and avoid the 
substantial amount of missing data in the earlier period. The data 
sampled around the middle of each month were chosen to com-
prise a monthly dataset for further analyses. Finally, we used 
monthly observations for phytoplankton taxonomic abundance 
and biomass (used to calculate the functional and Shannon di-
versity), chlorophyll a (Chla), dissolved inorganic nitrogen (DIN as 
sum of nitrite, nitrate and ammonia), dissolved phosphate (PO4P) 
and dissolved silicate (DSi) to calculate phytoplankton diversity 
indices and resource use efficiency. The Lake Kasumigaura data 
were collected by the Japan National Institute for Environmental 
Studies (http://db.cger.nies.go.jp/gem/moni-e/inter/​GEMS/datab​
ase/kasum​i/index.html). Monthly data of station ST9 (36°02.14′N, 
140°24.22′E) from 1984 to 2012, including phytoplankton taxo-
nomic abundance and biomass, the concentration of Chla, DIN and 
PO4P, were used in this study. Note that the DSi was not measured 
in Lake Kasumigaura; therefore, phytoplankton resource use effi-
ciency for dissolved silicate was not calculated. Note that, a small 
amount of missing data still exists in both datasets; these miss-
ing data are ignored in the following analyses. The detail informa-
tion for phytoplankton composition and nutrient dynamics in the 
Western English Channel L4 and Lake Kasumigaura ST9 could be 
found in the aforementioned websites and the literature (Smyth 
et al., 2015; Takamura & Nakagawa, 2012; Widdicombe, Eloire, 
Harbour, Harris, & Somerfield, 2010).

2.2 | Phytoplankton taxonomic and 
functional diversity

The species diversity of phytoplankton is measured as the Shannon 
diversity index (H), which is one of the most widely used species 

diversity indices in ecological researches (Heumann, Hackett, & 
Monfils, 2015; Peet, 1975). We examined three widely used func-
tional diversity indices, which are based on different theoretical 
frameworks: the second generation functional attribute diversity 
(FAD2) (Walker, Kinzig, & Langridge, 1999), the community‐based 
functional diversity based on dendrograms (FDc) (Petchey & Gaston, 
2002,2006) and the multidimensional functional diversity index of 
the functional richness (FRic) (Villeger, Mason, & Mouillot, 2008). 
The theories and equations for calculating these functional diversity 
indices could be found in FDiversity user manual (Casanoves, Pla, 
Rienzo, & Díaz, 2011).

To calculate the functional diversity indices, six functional traits 
associated with the net growth and population performance of phy-
toplankton were selected (Weithoff, 2003), including (a) nitrogen 
fixation, (b) silica demand, (c) capacity for mixotrophy, (4) tendency 
to form chains or colonies, (5) motility, (6) size. These traits are re-
lated to resource acquisition, predator avoidance and reproduction 
of phytoplankton. Specifically, the functional traits i–iv were binary 
variables (0, 1). Motility was classified as: 0, non‐motile; 0.5, buoy-
ancy regulation through gas vacuoles; and 1 (high motility) for flag-
ellated species capable of moving in three‐dimensional space and 
adapting their behaviour according to environmental conditions 
(Weithoff, Rocha, & Gaedke, 2015). Cell size was classified into 10 
different logarithmically scaled categories of size from 0.1 to 1.0 
(Weithoff et al., 2015). With the matrix of phytoplankton functional 
traits, the functional diversity indices were calculated using the 
software of FDiversity (Casanoves et al., 2011). Time‐series varia-
tions of the diversity indices are presented in the Figures S1 and S2 
and the online deposited data (Ye et al., 2019).

2.3 | Phytoplankton resource use efficiency

The natural logarithm of the ratio of phytoplankton biomass (esti-
mated as chlorophyll a) to nutrient concentration was used as the 
proxy for phytoplankton resource use efficiency (Olli et al., 2015; 
Ptacnik et al., 2008). Note that the estimated phytoplankton re-
source use efficiency from water chemical parameters (Chla, DIN, 
PO4P and DSi) is methodologically independent from the phyto-
plankton taxonomical and functional diversity indices. The equations 
for calculating phytoplankton resource use efficiency of dissolved 
inorganic nitrogen (RUEN), dissolved phosphate (RUEP) and dissolved 
silicate (RUESi) follow:

2.4 | Statistical analyses

We used the CCM technique (Chang, Ushio, & Hsieh, 2017; Clark 
et al., 2015; Sugihara et al., 2012) to examine the causal effects 

(1)RUEN=LN
(

Chla:DIN
)

(2)RUEP=LN
(

Chla:PO4P
)

(3)RUESi=LN
(

Chla:DSi
)

http://www.westernchannelobservatory.org.uk
http://www.westernchannelobservatory.org.uk
http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html
http://db.cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html
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of phytoplankton Shannon diversity and functional diversity on re-
source use efficiency (RUEN, RUEP and RUESi). CCM is a recently 
developed analytical method and has been demonstrated as a great 
utility in identifying causal relationships between two time‐se-
ries variables in nonlinear complex ecosystems (Clark et al., 2015; 
Frossard, Rimet, & Perga, 2018; Sugihara et al., 2012). In simple 
terms, CCM is based on Takens’ embedding theorem (Takens, 1981), 
which states that generically the attractor of a dynamical system 
can be reconstructed using time series of a single observational var-
iable of the system through lagged coordinate embedding (Chang 
et al., 2017). CCM tests for causation by measuring the extent, to 
which the historical record of the effect variable can reliably es-
timate states of the cause variable inferred from attractor recon-
struction. CCM is a quite rapidly developing analytical method; 
more theoretical details about CCM could be found in Sugihara et 
al. (2012) and Chang et al. (2017).

We note that spurious results of CCM may occur if there is a 
shared forcing variable (e.g. seasonality) in cause and effect vari-
ables (Deyle et al., 2016). Thus, to account for a possible shared 
seasonality of diversity indices and resource use efficiency vari-
ables in CCM tests, we generated 500 seasonal surrogates for 
both diversity indices and phytoplankton resource use efficiency, 
following Deyle's method (Deyle et al., 2016). That is, causal forc-
ing is deemed significant only when CCM prediction based on ob-
served data is significantly better than that based on the seasonal 
surrogates (Deyle et al., 2016). Furthermore, considering that the 
phytoplankton diversity may exhibit time‐delayed effects on re-
source use efficiency, we carried out 0‐ to 6‐month time‐lagged 
CCM analyses (Ye, Deyle, Gilarranz, & Sugihara, 2015b), consid-
ering the relevant time‐scale in this study. In the main text, we 
focus on the best result (highest ρ) among the 0‐ to 6‐month time‐
lagged CCM analyses, while we report the details in the Supporting 
Information.

Furthermore, we tested whether the causal effects identified by 
CCM are positive or negative by the scenario exploration (Deyle et 
al., 2016). Specifically, for each historical time point (t), we predict 
phytoplankton resource use efficiency at time t + 1 with a small in-
crease (+ΔZ/2) and a small decrease (−ΔZ/2) of the diversity index at 
time t, Z(t). The difference in predicted resource use efficiency is ΔR
UE = RUEt+1[Z = Z(t) + ΔZ/2] − RUEt+1[Z = Z(t) − ΔZ/2], and the ratio 
of ΔRUE/ΔZ indicates the sensitivity of phytoplankton resource 
use efficiency to the driver Z at time t. Specifically, a higher positive 
value of ΔRUE/ΔZ indicates a more sensitive positive causal effect 
of the diversity index on phytoplankton resource use efficiency and 
vice versa. This calculation was done for each time point, and then, 
the averaged value from the whole series was used as indicative of 
system‐level sign of causal effect. Here, following Deyle et al. (2016), 
we use 5% of the standard deviation of the observed values of the 
phytoplankton diversity indices Z(t) as ΔZ.

Scenario forecasts were carried out using S‐map (Sugihara & 
May, 1990). In S‐map, the tuning parameter theta (θ) indicates non-
linearity of the dynamical system, where θ = 0 gives a linear map, 
and increasing values of θ give increasingly nonlinear maps (Tsonis, 

Deyle, Ye, & Sugihara, 2018). When θ = 0, the S‐map is equivalent 
to an autoregressive model (Chang et al., 2017). The best θ was 
searched from 0 to 10 with an increment of 0.1. To compare the 
values of ΔRUE/ΔZ on the same level, the diversity indices and re-
source use efficiency variables were normalized to z‐scores prior to 
analyses.

The appropriate embedding dimension (E) for both CCM and 
S‐map were determined by the false nearest neighbour method 
(Kennel, Brown, & Abarbanel, 1992; Shalizi, 2006). The main idea 
of this method is that if the current embedding dimension k is suf-
ficient to resolve the dynamics, k  +  1 would be too, and the re-
constructed state space will not change much (Shalizi, 2006). The 
detailed processes in determining embedding dimension could be 
found in the Figure S3. Throughout the analyses, we used �  =  1 
(month) for embedding. CCM analyses and S‐map forecasting were 
carried out using the r package of rEDM (Ye, Clark, Deyle, Keyes, 
& Sugihara, 2016). Moreover, the false nearest neighbour analy-
ses were performed using the r package of fractal (Constantine & 
Percival, 2017).

3  | RESULTS

Results of CCMs show significant causal forcing from all selected 
functional diversity indices to phytoplankton resource use efficiency 
(RUEN, RUEP) in the freshwater ecosystem (Figure 1). Furthermore, 
the causal strength from functional diversity FAD2 and FDc on 
RUEN and RUEP is much stronger than FRic and Shannon indices. 
FRic and Shannon indices have a similar causal strength on RUEP, 
whereas the causal strength from FRic on RUEN is much weaker 
than the Shannon index in the freshwater ecosystem (Figure 1). The 
conclusions remain qualitatively the same (Figure S4) when we used 
a shorter time series (subsampling the time‐series length to be the 
same as the length of L4 data). In the marine ecosystem, results of 
CCMs indicate that not all selected functional diversity indices ex-
hibit significant causal effects on phytoplankton resource use effi-
ciency (Figure 2). Specifically, CCMs find that none of the analysed 
functional or taxonomical diversity indices has causal effects on 
RUEN. FRic has a significant causal effect on both RUEP and RUESi 
(p ≤ 0.05). FDc has a significant causal effect on RUEP (p ≤ 0.05) and 
a marginally significant causal effect on RUESi (p = 0.08). Meanwhile, 
FAD2 and Shannon diversity index only exhibit a marginal causal ef-
fect on RUESi (p = 0.06) and RUEP (p = 0.06) respectively.

We further examined the sign of causal effect by testing the 
response of phytoplankton resource use efficiency to a small per-
turbation in the phytoplankton diversity indices (Figures 3 and 4). 
The results of scenario exploration show that most significant causal 
effects from phytoplankton diversity indices on resource use effi-
ciency identified by CCM are on average positive, supporting our 
hypothesis that functional diversity enhances its resource use ef-
ficiency in aquatic ecosystem. Specifically, the causal forcing from 
FDc on RUEN in the Lake Kasumigaura (Figure 3b), with an averaged 
ΔRUEN/ΔZ value of 0.172, was identified as the strongest positive 
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effect from phytoplankton diversity on resource use efficiency in all 
tested cases. In additional, except for RUEP in the Lake Kasumigaura 
where no evident positive forcing was found from all selected di-
versity indices (mean ΔRUEP/ΔZ ≤ 0.03), FDc showed strong aver-
age positive effects (mean ΔRUEP/ΔZ ≥ 0.08) on RUEN, RUEP and 
RUESi in all other cases. Furthermore, the positive effects from FDc 
in these cases were significantly stronger than those from FAD2, 
FRic and Shannon diversity index (paired Mann–Whitney U test, 
p < 0.001). This suggests that FDc is the most strong and reliable di-
versity index among the selected diversity indices (FAD2, FDc, FRic 
and H) in enhancing phytoplankton resource use efficiency.

Through examining the effect of changes in diversity on re-
source use efficiency (ΔRUE/ΔZ), we found that the values of 
ΔRUE/ΔZ varied significantly with the values of diversity indices 
in most cases (Figures 3 and 4). This indicated a nonlinear relation-
ship between the selected diversity indices and phytoplankton 
resource use efficiency. Specifically, FDc have a consistent posi-
tive linear relationship with ΔRUE/ΔZ in all scenarios (Figures 3b, 

3f, 4a, and 4d), indicating that stronger positive causal effects on 
resource use efficiency were usually observed in the phytoplank-
ton community with higher FDc values. Conversely, for FAD2 and 
FRic, stronger positive causal effects on resource use efficiency 
were observed with lower values of FAD2 and FRic, while nega-
tive effects were generally accompanied by higher value of FAD2 

F I G U R E  1   Results of best convergent cross mappings (CCMs) 
selected from 0‐ to 6‐month lagged CCM analyses (Table S1) 
showing significant causal effects of phytoplankton diversity 
on resource use efficiency beyond shared seasonality for 
dissolved inorganic nitrogen (a) and dissolved phosphate (b) in 
the Lake Kasumigaura. Red circles show the cross map skill (ρ) 
for phytoplankton resource use efficiency in observations. Box‐
and‐whisker plots show the null distributions for ρ expected from 
500 seasonal surrogates. Filled circle indicates that the measured 
ρ is significantly better than the null expectation (p ≤ 0.05). The 
meanings of H, FRic, FDc and FAD2 are explained in methods

F I G U R E  2   Results of best convergent cross mappings (CCMs) 
selected from 0‐ to 6‐month lagged CCM analyses (Table S2) 
showing significant causal effects of phytoplankton diversity on 
resource use efficiency beyond shared seasonality for dissolved 
inorganic nitrogen (a), dissolved phosphate (b) and dissolved 
silicate (c) in the Western English Channel. Red circles show the 
cross map skill (ρ) for phytoplankton resource use efficiency in 
observations. Box‐and‐whisker plots show the null distributions 
for ρ expected from 500 seasonal surrogates. Filled circle indicates 
that the measured ρ is significantly better than the null expectation 
(p ≤ 0.05), circle plus indicates that the measured ρ is marginally 
significant better than the null expectation (0.05 < p ≤ 0.10)
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F I G U R E  3   Results of scenario exploration showing the effect of changes in diversity indices (ΔZ) on resource use efficiency (ΔRUE) in 
the Lake Kasumigaura ST9. Panels a‐d show the effect of changes in FAD2, FDc, FRic, and H on RUEN; panels e‐h show the effect of changes 
in FAD2, FDc, FRic, and H on RUEP. Dashed grey line represents the mean value of ΔRUE/ΔZ, and the solid red line indicates a significant 
(p < 0.05) regression. Note that, to compare the magnitude of the effects of changing diversity on RUE, all diversity and RUE variables were 
normalized prior to analysis. Only the diversity indices showing significant causal effects on RUE in convergent cross mapping analyses 
(Figure 1) were selected for scenario exploration analysis
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and FRic (e.g. Figure 4b, 4e and 4f). No significant relationship be-
tween Shannon diversity index and ΔRUE/ΔZ was found in our 
study (Figures 3a, 3h, and 4c), suggesting that changes in Shannon 
diversity index can either have a positive or a negative effect on 
resource use efficiency at the same value of Shannon diversity 
index. Finally, worthy noting that the values of selected best θ in 
the S‐maps are larger than 0 in most cases (Table 1), indicating 
that the relationships between the diversity indices and the phy-
toplankton resource use efficiency are generally nonlinear and dy-
namical in aquatic ecosystems.

4  | DISCUSSION

4.1 | Functional diversity promotes phytoplankton 
resource use efficiency

We find that functional diversity (FDc) is an important causal fac-
tor in enhancing phytoplankton resource use efficiency in both 
marine and freshwater ecosystems (Figures 1 and 2). To the best of 
our knowledge, this is the first field study reporting unambiguous 
causal relationships between multi‐trait–based functional diver-
sity and phytoplankton resource use efficiency in natural aquatic 
ecosystems. We find that FDc has the strongest causal effect on 
phytoplankton resource use efficiency in most cases (Figures 1 and 
2). More importantly, scenario exploration analysis indicated that 
FDc exhibited the strongest and most consistent on average posi-
tive causal effects on phytoplankton resource efficiency in both 
marine and freshwater ecosystems. (Figures 3 and 4). These results 
support our hypothesis that functional diversity can enhance phy-
toplankton resource use efficiency. Among the selected functional 
diversity indices, FDc appears to be the most robust functional 

diversity index in enhancing phytoplankton resource use efficiency. 
In addition, results of S‐map reveal significant nonlinear and dynami-
cal relationships between most of the functional diversity indices 
and phytoplankton resource use efficiency (RUEN, RUEP and RUESi), 
suggesting that nonlinear BEF relationships are common in natural 
aquatic ecosystems.

4.2 | Functional diversity performs better than 
species diversity

Results of CCM indicate that FDc has a much stronger causal 
strength on phytoplankton resource use efficiency than Shannon 
index in either marine or freshwater ecosystem (Figures 1 and 2). 
This finding supported our hypothesis that the functional diversity 
reflects a better niche differentiation in a phytoplankton commu-
nity than species diversity. Along the similar line of investigation, 
previous studies in zooplankton–phytoplankton systems reported 
that single trait‐based functional diversity (size diversity) performs 
better than taxonomic diversity in elucidating a stronger strength 
of zooplankton predation efficiency on phytoplankton through bet-
ter niche partitioning with higher size diversity (García‐Comas et al., 
2016; Ye et al., 2013).

Why does functional diversity perform better than taxonomic 
diversity in analysing BEF? Theoretically, for a given community, 
species may have strong niche overlap, and thus adding or losing 
species with the same functional niche has negligible effect on 
ecological functions (Carmona, Bello, Mason, & Lepš, 2016; Diaz 
& Cabido, 2001). Therefore, trait‐based functional diversity, which 
represents better species niche partitioning or functions (Cadotte 
et al., 2011; Gagic et al., 2015; Gross et al., 2017), can perform bet-
ter. In our case, although FDc and Shannon indices are correlated 
(r = 0.34, p < 0.001), the corresponding values of Shannon index 
for a given value of FDc have a wide range of variation (Figure 5), 
suggesting that Shannon diversity does not encompass the over-
all variability of FDc, likely because of the strong species niche 
overlap. In contrast, trait‐based FDc may represent a better niche 
segregation and thereafter enhances resource use efficiency. Our 
study highlights the importance of functional diversity in mech-
anistic understanding of trophic transfer, and suggests that the 
phytoplankton community with higher functional diversity would 
have a higher biomass yield, due to more effective use of nutrients.

4.3 | Choosing the proper phytoplankton functional 
diversity index

Among different functional diversity indices, we found that FDc is 
the most reliable index in predicting phytoplankton resource use 
efficiency (Figures 1 and 2). This finding is in accordance with an-
other research in the terrestrial ecosystem, which reported that 
FDc provides a better explanation of grass biomass than the func-
tional attribute diversity and functional richness (Petchey, Hector, & 
Gaston, 2004). To explain why FDc performs better than FAD2 and 
FRic, we ought to consider theory and algorithm underlying these 

TA B L E  1   Best theta (θ) selected in the S‐map scenario 
exploration in marine (L4) and freshwater (ST9) ecosystems, where 
θ = 0 indicates a linear map, and increasing values of θ indicates 
increasing nonlinearity in S‐map

Site Cause Effect θ

ST9 FAD2 RUEN 1.3

ST9 FDc RUEN 1.6

ST9 FRic RUEN 1.6

ST9 H RUEN 1.4

ST9 FAD2 RUEP 2.7

ST9 FDc RUEP 2.5

ST9 FRic RUEP 0.0

ST9 H RUEP 2.9

L4 FAD2 RUESi 1.2

L4 FDc RUESi 0.8

L4 FRic RUESi 1.2

L4 FDc RUEP 1.0

L4 FRic RUEP 1.0

L4 H RUEP 0.0
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functional indices. FDc is defined as the extent of complementarity 
among species’ trait values by calculating the total branch length of 
the dendrogram based on the functional traits (Petchey & Gaston, 
2002). Mathematically, FDc is only dependent on trait differences 
among species rather than species richness. Specifically, adding a 
novel species (the traits of the species have some differences from 
the existing species) to a community will increase the value of FDc, 
yet adding a non‐unique species (the traits is identical to one already 
existed) will leave FDc unchanged. This notable property of FDc 
matches well the theoretical expectation of functional diversity; that 
is, a community with higher trait differentiation has a higher value of 
functional diversity (Petchey & Gaston, 2006).

In contrast, both FAD2 and FRic have some limitations, which 
might lead to an unreliable estimation of the functional diversity in 
some cases. Firstly, FAD2 is estimated by the sum of the distances 
between species in trait space (Walker et al., 1999). In brief, FAD2 
is a function of both trait difference among species and the species 
richness. Consequently, FAD2 might misestimate the real value of 
the functional diversity in some situations. For example, when add-
ing a new species whose traits information has no difference from 
the existing species in a community, the estimated value of FAD2 
will decrease although the functional diversity should remain un-
changed (Petchey & Gaston, 2006). Secondly, FRic is defined as 
the convex hull volume filled by a community (Villeger et al., 2008). 
Mathematically, for a community with T functional traits, at least 2T 
species are required to constitute the T‐dimensional hull. This means 
that for communities with T functional traits, the estimated value of 
FRic may be unreliable if the species richness is below 2T (Villeger 
et al., 2008). Thus, in our study, to estimate a reliable value of FRic, 
a minimum requirement of the species number in each sample is 

64 because a total of six functional traits were selected in calcu-
lating functional diversity. However, the species number for each 
phytoplankton sample in the Western English Channel and Lake 
Kasumigaura is far below the minimum species number of 64 (Figure 
S5). This implies that the estimated values of FRic may be unreliable 
because the existing species number is not enough to constitute the 
six‐dimensional hull. As such, FRic is not reliable in predicting phyto-
plankton resource use efficiency in our study.

Furthermore, scenarios exploration suggests that most signifi-
cant causal effects from phytoplankton diversity indices on resource 
use efficiency are on average positive (Figures 3 and 4). Yet, the de-
tail values of ΔRUE/ΔZ exhibit substantial variation, with both pos-
itive and negative values in most cases. This may be because the 
environmental context might affect the BEF relationships (Ratcliffe 
et al., 2017). However, the most consistent effects of FDc on phy-
toplankton resource use efficiency suggest that FDc is more robust 
to the environmental context. This result further reinforces the con-
clusion that FDc is a robust functional diversity index in enhancing 
phytoplankton resource use efficiency in aquatic ecosystem.

Our comparison of different functional diversity indices high-
lights the challenge of selecting the ideal index, considering the 
conceptual complexity of those indices. As shown in our study, the 
causal strength on phytoplankton resource use efficiency by differ-
ent functional diversity indices varied widely (Figures 1 and 2). For 
example, CCM found that FDc and FAD2 have much stronger causal 
strength on RUEN and RUEP than FRic in the freshwater ecosystem. 
However, FAD2 has no causal effects on neither RUEN nor RUEP 
in the marine ecosystem. Undoubtedly, different performances of 
functional diversity indices will cause uncertainty in understanding 
BEF relationships. We are aware of existence of a suite of functional 
diversity indices in the literature (Carmona et al., 2016); however, 
comprehensive exploration of those indices is beyond the scope of 
this study. Developing unified and robust methods for estimating 
functional diversity emerges as an important topic for future func-
tional diversity‐related researches.

Another challenge in estimating functional diversity is to de-
cide which traits should be included in the calculation. Generally, 
the traits related with the function are selected based on experts’ 
knowledge (Petchey & Gaston, 2006). To remove the subjectivity, re-
searchers also try to choose optimal traits by maximizing the explan-
atory power of the interested functions (Petchey et al., 2004). This 
method can select traits quantitatively, especially for the case with 
numerous candidate traits; however, at the same time, some func-
tionally important traits might be missed, and seemingly functional 
less important traits might be selected simply owing to statistical 
reasons (e.g. by chance, the explanatory power is higher).

For phytoplankton, as far as our knowledge, there is still no re-
search addressing the quantitative selection of traits because of the 
limited candidate functional traits. The six functional traits selected 
in our study, reflecting the resource acquisition and growth of phy-
toplankton, are the most widely used traits in phytoplankton func-
tional diversity‐related researches (e.g. Abonyi et al., 2018, Weithoff, 
2003, Weithoff et al., 2015). Nevertheless, we should add a caveat 

F I G U R E  5   Scatter plot illustrating the linear relationship 
between functional diversity FDc and Shannon index in the Lake 
Kasumigaura (ST9) and Western English Channel (L4). The solid line 
represents the best‐fit regression line (p < 0.05) from the pooled 
data
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that we have not examined the optimal phytoplankton traits matrix 
for each functional diversity index, and our finding that FDc is the 
most reliability functional diversity index in predicting phytoplank-
ton resource use efficiency is based on the most widely accepted six 
functional traits.

4.4 | Ecological and management implications

Functional diversity‐driven increase of phytoplankton biomass 
can bring us some deeper considerations on the eutrophication 
management and algal bloom problems in aquatic ecosystems. 
Eutrophication and algal bloom, generally owing to the enrichment 
of nutrients (e.g. nitrogen, phosphorus), present as one of the most 
serious environmental and ecological concerns of aquatic ecosys-
tems worldwide (Conley et al., 2009). Our study found that increas-
ing functional difference stimulates the phytoplankton resource use 
efficiency, leading to a higher level of phytoplankton biomass per 
unit nutrient. This suggests that the community with higher func-
tional diversity can improve the water quality and reduce the eu-
trophication because of the higher resource use efficiency. However, 
at the same time, the consumed nutrients were transformed into the 
algal biomass, which might lead to the problem of algal bloom if the 
transformed algal biomass cannot be transferred to higher trophic 
levels efficiently. However, we found a former study reported that 
single trait‐based phytoplankton functional diversity (size diversity) 
hinders biomass trophic transfer from phytoplankton to zooplank-
ton (García‐Comas et al., 2016). If the findings of García‐Comas et 
al. (2016) are generally applicable in aquatic systems when multi‐
trait–based functional diversity is considered, aquatic ecosystems 
with higher phytoplankton functional diversity might actually bear 
a higher risk of phytoplankton blooms; this is because the enhanced 
phytoplankton biomass cannot be transferred to higher trophic level 
effectively. From this perspective, our study suggests that further 
researches should evaluate the ecological consequence of phyto-
plankton functional diversity on eutrophication and algal blooms 
in aquatic ecosystems and should consider multiple trophic levels 
(García‐Comas et al., 2016; Yang et al., 2018).

5  | CONCLUSIONS

Using long‐term high‐frequency datasets from the Western 
English Channel and Lake Kasumigaura, we found significant 
causal effects of functional diversity on phytoplankton resource 
use efficiency in both marine and freshwater ecosystems. Our re-
sults based on CCM clearly identified causality. Specifically, we 
found that FDc is the most robust functional diversity index in 
predicting phytoplankton resource efficiency, and FDc has a much 
stronger causal strength on phytoplankton resource use efficiency 
than the Shannon index in both marine and freshwater ecosystem. 
Moreover, scenario exploration suggests that FDc has the most 
consistent on average positive causal effects on phytoplankton 
resource efficiency in both marine and freshwater ecosystems. 

These findings support our hypotheses that phytoplankton func-
tional diversity enhances its resource efficiency and has a stronger 
causal effect on resource use efficiency than species diversity in 
aquatic ecosystems. Our study reveals the importance of func-
tional diversity in determining trophic transfer efficiency and nu-
trient cycling in aquatic ecosystems.
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