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Abstract：
Iron is present in all types of wastewater, however besides acid mine drainage, where it is a major 
constituent of concern, it is usually neglected in other types of wastewaters. However, in all 
constructed wetlands iron plays important role in removal of organics, phosphorus and does have an 
impact on transformation of nitrogen and sulphur. The biogeochemistry of iron is well understood in 
natural wetlands but knowledge about iron impact on microbiological and chemical transformations 
during wastewater treatment in constructed wetlands is very limited. So far the sparse research in 
this area provides limited information on observed interactions with several varying parameters 
across the studies, making it difficult to draw fundamental and mechanistic conclusions. A critical 
review of the complex biogeochemical networking of iron in CWs is therefore necessary to fill the gap 
in knowledge on the role of iron and its biogeochemical multi-interactions in wastewater treatment 
processes of CWs. This review is the first with specific focus on iron, discussing its mitigation and 
retention in CWs with different configurations and operational strategies, and presenting both 
seasonal dynamics and the potential remobilization of Fe. It also comprehensively discusses the 
interactions of redox-controlled iron turnover with the biogeochemical processes of other elements, 
e.g. carbon (C), nitrogen (N), phosphorus (P), sulphur (S), and heavy metals. The health response of 
wetland plants to both deficiency and toxicity of Fe in CWs designed with specific treatment targets 
has also been evaluated. Due to the complexity of various wastewater compositions and micro-redox 
gradients in the root rhizosphere in CWs, future research needs have also been identified.

Keywords ： Constructed wetlands; Wastewater treatment, Iron cycling, Multi-interactions; 
Wetland design

Page 2 of 14

ACS Paragon Plus Environment

Environmental Science & Technology



[Table of Contents]

1. Introduction..................................................................................................................................................2
2. Iron biogeochemistry ...................................................................................................................................3
3. Presence of Fe in various wastewaters treated in CWs ...............................................................................5
4. Mitigation and retention of Fe in CWs .........................................................................................................5

3.1 Sedimentation ........................................................................................................................................5
3.2 Wetland plants uptake ...........................................................................................................................7
3.3 Seasonal and diurnal dynamics ..............................................................................................................8
3.4 Remobilization........................................................................................................................................9

4 Response of wetland plants to iron deficiency/toxicity in CWs .....................................................................9
4.1 Response of wetland plants to iron deficiency.......................................................................................9
4.2 Response of wetland plants to iron toxicity .........................................................................................10

5. Interactions of root iron plaque and heavy metals/nutrients sequestration.............................................10
5.1 Interactions of root iron plaque and trace metals ...............................................................................11
5.2 Interactions of root iron plaque and phosphorus ................................................................................11

6. Multi-interactions of Fe-phosphorus-sulfur in CWs ....................................................................................12
7 Interactions of Fe with nitrogen transformations in CWs ............................................................................14
8 Future research perspectives .......................................................................................................................15
Acknowledgments ...........................................................................................................................................15
References .......................................................................................................................................................16

[Captions of Tables and Figures]
Figure 1 Mitigation and retention of Fe in horizontal subsurface flow CWs. 
Figure 2 Content of Fe in different parts of Phragmites australis as a function of distance from the inlet in a 

horizontal subsurface flow CWs treating domestic sewage.
Figure 3 Relationships between the Fe concentrations in the leaves and the relative growth rates of two 

phylogeographic groups of Phragmites australis.
Figure 4 Formation of root iron plaque and sequestration of trace metals and phosphorus in horizontal 

subsurface flow CWs. 
Figure 5 Interactions of Fe with nitrogen transformations in CWs.
Table 1. Performance of Fe removal in different CWs
Table 2 Content of Fe (mg/kg) in sediments of CWs
Table 3 Fe content (g/kg) in different wetland plants receiving different wastewaters
[Supplementary Material]
Figure S1 Publication record in the timespan of 1900-2018 in the Web of Science Core Collection
Figure S2 Field of activity of iron bacteria as defined by thermodynamic analysis of the electrochemical 

equilibria
Table S1. Content of Fe in various wastewaters
Table S2. Use of materials rich in iron as substrate in CWs

Page 3 of 14

ACS Paragon Plus Environment

Environmental Science & Technology

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/relative-growth-rate
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phragmites


[Justification for the need of this review]
(1) The proposed topic is important. The speciation of iron in constructed wetlands for the purpose 

of wastewater treatment is redox-dependent and involves many significant transformations, 
affecting the removal of organics, phosphorus, nitrogen and sulphur. A critical review of the 
complex biogeochemical networking of iron in CWs is therefore important to fill the gap in 
knowledge on the role of iron and its biogeochemical multi-interactions in wastewater treatment 
processes of constructed wetlands.

(2) The proposed topic is new and needed. During 2008-2018, we found 93 review articles in total in 
Web of Science Core Collection. Based on the quality of the review and similarity of the same 
topic, we selected 40 key reviews as listing below. The yellow marked keywords of these 
published reviews indicated a high diversity of topics in field of constructed wetlands. However, 
the knowledge of biogeochemical networking of iron is beyond the state-of-the-art. 

(3) The authors are capable to draft the proposed review. Dr. Shubiao Wu expertises in exploring 
the understand of the microbial transformations and interactions in constructed wetlands. As a 
young scientist, he have published more than 30 impacted peer-review journal articles in this 
field. Prof. Hans Brix is a pioneer of this technology research and development and he was the 
first to discover and document the ubiquitous occurrence of convective throughflow of air inside 
the plants as an important root ventilation mechanism in many wetland plants. Prof. Jan Vymazal 
is a world-famous ecologist and has been working in this field for more than 40 years. He is also 
the editor of journal Ecological Engineering and has a insight understanding of this technology. 
Moreover, the first 17 review articles in the above list were published by the authors of the 
current proposed review. It also indicates the expertise of the authors in this field and their 
capacity to draft this proposed review. 
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[Topical outline]

1. Introduction

Constructed wetlands (CWs) are the decentralized eco-systems that are constructed and operated 
with the purpose of wastewater treatment, by manipulating the simultaneous physical, chemical, and 
biological processes occurring in natural wetlands 1. Because of their cost-effective and eco-friendly 
way of treating wastewater, CWs have been developed as an alternative in the last few decades to 
conventional centralized wastewater treatment systems. From the technical application point of view, 
along with the growing attention to CW technology, the design and construction of CWs has been 
extended from traditional basic models to various new configurations, technical amendments and 
operations to improve the performance for pollution removal.2, 3. From the point of view of exploring 
scientific knowledge, the flourishing publication record of individual experimental research as well as 
review in the Web of Science might be seen as a simple and direct indicator for the increasing 
transparency of the knowledge “black box” in this field. For example, microbial transformations of 
carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) have been extensively investigated and 
reviewed3-8. Moreover, reviews on dynamics of heavy metals 9-11 and emerging organic pollutants, 
e.g. antibiotics and pharmaceutical contaminants 12, 13 in remediating process of CWs, have also been 
performed. All these reviews undoubtedly have enabled the mechanisms of these transformations to 
be more evident in the last few decades. Because iron (Fe) is an essential element, the mitigation and 
mobilization of Fe in CWs not only participates in many physiological processes, e.g. plant 
photosynthesis, but Fe reduction-oxidation turnover also affects the geochemical cycle of other 
elements in CWs 14. Even though the removal performance of iron in some CWs, particularly those 
treating acid mine drainage, has been observed15-17, the comprehensive knowledge on the dynamic 
mitigation of iron and retention in various emerged wetland configurations and intensive operations 
has not been well understood. How iron cycling interacts with the microbial transformations of the 
above mentioned four basic elements and emerging pollutants in CWs also needs to be more clearly 
explained. So far the sparse research in this area provides limited information on observed 
interactions with several varying parameters across the studies, making it difficult to draw 
fundamental and mechanistic conclusions. 

In this review, the biogeochemistry of Fe in natural wetland systems will be firstly described, in order 
to give an overall knowledge background before getting into the comprehensive discussion later. The 
presence of Fe in various wastewater treated in CWs and its basic redox-controlled turnover in CWs 
with different configurations and operational strategies will then be summarized. Subsequently the 
interactions of iron cycling with geochemical processes of other elements (C, N, P, S) will be 
comprehensively discussed. The health response of wetland plants to both deficiency and toxicity of 
Fe in CWs designed with specific treatment targets will be evaluated. The role of iron plaque in 
sequestration and translocation of various trace metals will also be discussed. Finally, future research 
perspectives associated with Fe in CWs will be pointed out. 
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2. Iron biogeochemistry

Iron, making up at least 5% of the earth’s crust, is one of the earth’s most plentiful resources. Iron is 
a transition element and exist in a wide range of oxidation states varying between -2 to +6, although 
+2 (Fe2+ in soluble form) and +3 (Fe3+ in insoluble form) are the most common oxidation states 
encountered. This section will mainly introduce the basic iron biogeochemistry in treatment wetlands 
related environments, such as (1) oxidation of ferrous iron to ferric iron and subsequent hydrolysis to 
ferric hydroxide, Fe(OH)3 or oxy-hydroxide; (2) characteristic reaction of the few chemoautotrophic 
bacteria that deposit hydroxides and oxides; (3) ferric sulfate, the product of the oxidation, reacts 
with water to form ferric hydroxide and sulfuric acid; (4) nitrate-dependent Fe(II) oxidation18; (5) 
Feammox38, 40; (6) reduction of ferric oxide proceed chemically by the involvement of sulfide19, 20. 

3. Presence of Fe in various wastewaters treated in CWs

The presence of Fe in CWs for wastewater treatment comes from two main sources: influent 
wastewater and wetland matrix. Because of the unavoidable contact of water with underlying 
geologic formations, iron becomes a common constituent in many wastewaters, e.g., domestic and 
municipal sewage, landfill, or acid mine drainage. The content of Fe in various wastewaters will be 
summarized and discussed in this section. 

4. Mitigation and retention of Fe in CWs

The process of mitigation and retention of Fe in CWs mainly involves sedimentation of Fe3+ 

precipitates and plant uptake. The sedimentation process includes several abiotic and biotic sub-
processes which depend on the flow path of water along the length of wetland as well as the depth. 
The Fe uptake performance of wetland plants and immobility in roots will be discussed in this section, 
but the role of plants in driving dynamic Fe transformations in CWs by mediating redox potential in 
the rhizosphere with the release of oxygen and various other exudates will be discussed in later 
sections. Seasonal and diurnal changes of Fe reduction and oxidation in the wetland bed, as well as 
how heavy rain influences remobilization are also included in this section to enrich our understanding 
the dynamic mitigation and retention of Fe in CWs. 

5. Response of wetland plants to iron deficiency/toxicity in CWs

The health status of wetland plants in CWs is one of the important issues that needs to be considered 
for long-term operation 1, 21. Iron is a well- known essential element for plant growth 22. Either high 
concentrations of Fe in the reduced form (Fe2+) or deficient bioavailability of Fe can cause serious 
health symptom of wetland plants and subsequently influence the function of CWs on wastewater 
treatment. This section will focus on discussing the effect of Fe deficiency or toxicity to wetland plants 
in different cases, regarding types of CWs, operational strategies and configurations. 

6. Interactions of root iron plaque and heavy metals/nutrients sequestration

Formation of iron plaque on the root surface of plants which occurs commonly in CWs for treatment 
of various wastewaters can account for up to 10% of the total root weight and extend up to 15–17 μ
m into the rhizosphere 23. The protons and exuded matter excreted from plant roots acidify the root 
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surrounding micro-environment and dissolve the Fe from the wetland filling materials. When the 
dissolved Fe is diffused from anaerobic zones to oxygen-rich zones in the rhizosphere iron plaque 
formation occurs. So the formation of iron plaque is a result of the oxidation of Fe (II) to Fe (III) from 
the oxygen released from the root and the subsequent precipitation of iron oxide on the root surface. 
Root iron plaque present in natural systems is generally of highly specific surface area, due to its 
particular Fe phase and degree of crystallinity, and possession of hydroxyl (-OH) functional groups 24. 
These characteristics enable iron plaque to be capable of reacting with various trace metals and 
nutrients, e.g. phosphorus, thereby affecting their cycles. Up to date, there have been extensive 
efforts made towards understanding the role of iron plaque in trace metals sequestration and 
nutrient (e.g. P) uptake 25-27. Research from paddy soils and natural wetlands was also 
comprehensively reviewed by Tripathi et al. (2014) and Khan et al. (2016). Therefore from the point 
of view of using CWs for treating wastewater, the potential role of iron plaque on trace metal 
sequestration and interaction with phosphorus uptake is presented and discussed in this section.

6. Multi-interactions of Fe-phosphorus-sulfur in CWs

Phosphorus control is always one of the most important monitoring strategies in the wastewater 
treatment process to decrease the eutrophication risk. The adsorption of P to substrate in CWs plays 
a primary role. Strong affinity of phosphorus ions to iron oxides drives a preferred selection of iron-
rich materials as substrate in CWs. Particularly, the selection of specific industrial wastes containing 
Fe as substrates to enhance P retention in the wetland bed is becoming an important design and 
construction strategy (Table S2). Besides, in the well-rooted zones of a wetland bed there exist 
numerous spatial and temporal micro-scale redox gradients due to the release of oxygen from plant 
roots 28, 29. These redox gradients in the root zones can simultaneously enable complex interactions 
to occur between different processes, e.g. Fe-P sequestration and -P release, Fe reduction and/or 
sulphate reduction 30, 31. The presence of sulphate may not be very problematic in CWs. However, the 
synergistic biogeochemical cycling of iron and sulphur due to redox dynamics has been shown to 
affect both the availability and mobility of P in CWs 7. This section will mainly discuss the multi-
interactions of Fe-phosphorus-sulfur in CWs. 

7. Interactions of Fe with nitrogen transformations in CWs

The cycling of iron only involves turnover of two main chemical valences, but has great significance 
in the biogeochemical cycle of nitrogen32, 33. The oxidation and reduction of Fe were often coupled 
with different nitrogen transformations. Particularly under conditions of sparse organic carbon 
sources, the role of Fe cycling might be more significant. In this section, the process of denitrification 
based on nitrate-dependent Fe(II) oxidation and the process of ammonium oxidation coupled to 
dissimilatory reduction of iron oxides under anaerobic conditions (Feammox) will be mainly discussed. 

8 Future research perspectives

Due to the complexity of various wastewater compositions and micro-redox gradients in the root 
rhizosphere in CWs, future research and development on the cycling of iron and its multi-interactions 
will be presented here. 

Page 11 of 14

ACS Paragon Plus Environment

Environmental Science & Technology

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biogeochemical-cycle


Key References

1. Wu, S.; Lyu, T.; Zhao, Y.; Vymazal, J.; Arias, C. A.; Brix, H., Rethinking Intensification of Constructed 
Wetlands as a Green Eco-Technology for Wastewater Treatment. Environmental Science & Technology 2018, 
52, (4), 1693-1694.
2. Wu, S. B.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. J., Development of constructed wetlands in 
performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. 
Water Research 2014, 57, 40-55.
3. Vymazal, J., The use of hybrid constructed wetlands for wastewater treatment with special attention to 
nitrogen removal: a review of a recent development. Water Research 2013, 47, (14), 4795-4811.
4. Vymazal, J., Removal of nutrients in various types of constructed wetlands. Science of the Total 
Environment 2007, 380, (1-3), 48-65.
5. Vohla, C.; Kõiv, M.; Bavor, H. J.; Chazarenc, F.; Mander, Ü., Filter materials for phosphorus removal from 
wastewater in treatment wetlands: A review. Ecol. Eng. 2011, 37, (1), 70-89.
6. Vymazal, J.; Kröpfelová, L., Removal of organics in constructed wetlands with horizontal sub-surface flow: 
A review of the field experience. Science of the Total Environment 2009, 407, (13), 3911-3922.
7. Wu, S.; Kuschk, P.; Wiessner, A.; Müller, J.; Saad, R. A.; Dong, R., Sulphur transformations in constructed 
wetlands for wastewater treatment: A review. Ecol. Eng. 2013, 52, 278-289.
8. Faulwetter, J. L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M. D.; Brisson, J.; Camper, A. K.; Stein, O. 
R., Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, (6), 
987-1004.
9. Sheoran, A.; Sheoran, V., Heavy metal removal mechanism of acid mine drainage in wetlands: A critical 
review. Minerals Engineering 2006, 19, (2), 105-116.
10.Matagi, S.; Swai, D.; Mugabe, R., A review of heavy metal removal mechanisms in wetlands. Afr. J. Trop. 
Hydrobiol. Fish. 1998, 8, (1), 13-25.
11.Marchand, L.; Mench, M.; Jacob, D.; Otte, M., Metal and metalloid removal in constructed wetlands, with 
emphasis on the importance of plants and standardized measurements: A review. Environmental Pollution 
2010, 158, (12), 3447-3461.
12.Li, Y.; Zhu, G.; Ng, W. J.; Tan, S. K., A review on removing pharmaceutical contaminants from wastewater 
by constructed wetlands: design, performance and mechanism. Science of the Total Environment 2014, 468, 
908-932.
13.Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H. H., Monitoring and assessing processes of organic 
chemicals removal in constructed wetlands. Chemosphere 2009, 74, (3), 349-362.
14.Zou, Y.-c.; Lu, X.-g.; Yu, X.-f.; Jiang, M.; Guo, Y., Migration and retention of dissolved iron in three 
mesocosm wetlands. Ecol. Eng. 2011, 37, (11), 1630-1637.
15.Ye, Z.; Whiting, S.; Lin, Z.-Q.; Lytle, C.; Qian, J.; Terry, N., Removal and distribution of iron, manganese, 
cobalt, and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. 
Journal of Environmental Quality 2001, 30, (4), 1464-1473.
16.Gikas, P.; Ranieri, E.; Tchobanoglous, G., Removal of iron, chromium and lead from waste water by 
horizontal subsurface flow constructed wetlands. Journal of Chemical Technology and Biotechnology 2013, 
88, (10), 1906-1912.
17.Vymazal, J.; Svehla, J., Iron and manganese in sediments of constructed wetlands with horizontal 
subsurface flow treating municipal sewage. Ecol. Eng. 2013, 50, 69-75.

Page 12 of 14

ACS Paragon Plus Environment

Environmental Science & Technology



18.Straub, K. L.; Benz, M.; Schink, B.; Widdel, F., Anaerobic, nitrate-dependent microbial oxidation of ferrous 
iron. Applied and Environmental Microbiology 1996, 62, (4), 1458-1460.
19.Laanbroek, H., Bacterial cycling of minerals that affect plant growth in waterlogged soils: A review. 
Aquatic Botany 1990, 38, (1), 109-125.
20.Wiessner, A.; Kuschk, P.; Buddhawong, S.; Stottmeister, U.; Mattusch, J.; Kästner, M., Effectiveness of 
Various Small‐Scale Constructed Wetland Designs for the Removal of Iron and Zinc from Acid Mine Drainage 
under Field Conditions. Engineering in Life Sciences 2006, 6, (6), 584-592.
21.Brix, H., Functions of macrophytes in constructed wetlands. Water Science and Technology 1994, 29, (4), 
71-78.
22.Ren, L.; Eller, F.; Lambertini, C.; Guo, W.-Y.; Sorrell, B. K.; Brix, H., Minimum Fe requirement and toxic 
tissue concentration of Fe in Phragmites australis: A tool for alleviating Fe-deficiency in constructed 
wetlands. Ecol. Eng. 2018, 118, 152-160.
23.Taylor, G. J.; Crowder, A.; Rodden, R., Formation and morphology of an iron plaque on the roots of Typha 
latifolia L. grown in solution culture. American Journal of Botany 1984, 71, (5), 666-675.
24.Hansel, C. M.; Fendorf, S.; Sutton, S.; Newville, M., Characterization of Fe Plaque and Associated Metals 
on the Roots of Mine-Waste Impacted Aquatic Plants. Environmental Science & Technology 2001, 35, (19), 
3863-3868.
25.Christensen, K. K.; Sand-Jensen, K., Precipitated iron and manganese plaques restrict root uptake of 
phosphorus in Lobelia dortmanna. Canadian Journal of Botany 1998, 76, (12), 2158-2163.
26.Christensen, K. K.; Jensen, H. S.; Andersen, F. Ø.; Holmer, M.; Wigand, C., Interferences between root 
plaque formation and phosphorus availability for isoetids in sediments of oligotrophic lakes. Biogeochemistry 
1998, 43, (2), 107-128.
27.Batty, L.; Baker, A.; Wheeler, B.; Curtis, C., The effect of pH and plaque on the uptake of Cu and Mn in 
Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany 2000, 86, (3), 647-653.
28.Bezbaruah, A. N.; Zhang, T. C., pH, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus 
validus) in a constructed wetland treating municipal wastewater. Biotechnology and Bioengineering 2004, 88, 
(1), 60-70.
29.Colmer, T., Long distance transport of gases in plants: a perspective on internal aeration and radial oxygen 
loss from roots. Plant, Cell & Environment 2003, 26, (1), 17-36.
30.Holmer, M.; Storkholm, P., Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater 
Biology 2001, 46, (4), 431-451.
31.Wiessner, A.; Kappelmeyer, U.; Kuschk, P.; Kastner, M., Sulphate reduction and the removal of carbon and 
ammonia in a laboratory-scale constructed wetland. Water Research 2005, 39, (19), 4643-4650.
32.Roden, E. E.; Wetzel, R. G., Kinetics of microbial Fe (III) oxide reduction in freshwater wetland sediments. 
Limnology and Oceanography 2002, 47, (1), 198-211.
33.Song, X.; Wang, S.; Wang, Y.; Zhao, Z.; Yan, D., Addition of Fe2+ increase nitrate removal in vertical 
subsurface flow constructed wetlands. Ecol. Eng. 2016, 91, 487-494.

Page 13 of 14

ACS Paragon Plus Environment

Environmental Science & Technology



Page 14 of 14

ACS Paragon Plus Environment

Environmental Science & Technology


