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A B S T R A C T

Bottom reflectance is often the main cause of high uncertainty in Colored Dissolved Organic Matter (CDOM)
estimation for optically shallow waters. This study presents a Landsat-8 based Shallow Water Bio-optical
Properties (SBOP) algorithm to overcome bottom effects so as to successfully observe spatial and temporal
CDOM dynamics in inland waters. We evaluated the algorithm via 58 images and a large set of field mea-
surements collected across seasons of multiple years in the Saginaw Bay, Lake Huron. Results showed that the
SBOP algorithm reduced estimation errors by as much as 4 times (RMSE=0.17 and R2=0.87 in the Saginaw
Bay) when compared to the QAA-CDOM algorithm that did not take into account bottom reflectance. These
improvements in CDOM estimation are consistent and robust across broad range CDOM absorption. Our analysis
revealed: 1) the proposed remote sensing algorithm resulted in significant improvements in tracing spatial-
temporal CDOM inputs from terrestrial environments to lakes, 2) CDOM distribution captured with high re-
solution land-viewing satellite is useful in revealing the impacts of terrestrial ecosystems on the aquatic en-
vironment, and 3) Landsat-8 OLI, with its 16 days revisit time, provides valuable time series data for studying
CDOM seasonal variations at land-water interface and has the potential to reveal its relationship to adjacent
terrestrial biogeography and hydrology. The study presents a shallow water algorithm for studying freshwater or
coastal ecology, as well as carbon cycling science.

1. Introduction

The assessment of Colored Dissolved Organic Matter (CDOM) in
lake waters help the scientific community better understand both
global/regional carbon cycling and aquatic ecosystem biogeochemistry.
CDOM can be used as a surrogate for terrestrially derived dissolved
organic carbon (DOC) assessment (Kutser et al., 2015). The export of
terrestrial DOC to lakes and oceans represents a significant carbon ex-
change at the land-water interface (Roulet and Moore, 2006; Tian et al.,
2013). This carbon flux is a key pathway leading to widespread CO2

supersaturation in aquatic environments (Butman et al., 2016; Jonsson
et al., 2003; Raymond et al., 2013). Inland waters also play a significant
role in the sequestration, transport and mineralization of terrestrially
sourced organic carbon (Bastviken et al., 2011; Battin et al., 2009;
Tranvik et al., 2009). In addition, soil carbon loss to rivers and lakes has
an important impact on net terrestrial carbon budgets (Davidson et al.,
2010). CDOM in inland waters also influences the aquatic ecosystem in

a variety of ways (Williamson et al., 1999). CDOM in inland water
absorbs short wavelength incoming light, and this absorption will fur-
ther affect the growth of plankton communities (Diehl, 2002;
Williamson et al., 1996). Moreover, terrestrial DOC transportation to
inland waters represents a very important nutrient exportation pathway
from land to water (Cole et al., 2007). These terrestrial carbon inputs
will ultimately impact the food webs within the lake environment
(Brezonik et al., 2015; Cole et al., 2006).

Remotely sensed satellite imagery provides an efficient solution for
monitoring CDOM dynamics (Keith et al., 2016). The remote sensing
estimation of water biogeochemistry is based on observation of water
bio-optical components, including CDOM, which influence the under-
water light field (Hoge and Lyon, 1996; Yu et al., 2010), and therefore
lead to changes in water leaving radiance received by the satellite
sensor (Zhu et al., 2011). Previous research on inland and coastal water
CDOM estimation by high-resolution satellite data often relied on em-
pirical band ratios algorithms, in which model coefficients are specific
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to site and satellite sensors. It often requires additional tuning when
applied to other waterbodies (Kutser et al., 2005; Mannino et al., 2008).
Sensor-independent semi-analytical algorithms based on bio-optical
water radiative transfer models have been developed to improve the
retrieval of water biogeochemistry, particularly chlorophyll absorption
(Carder et al., 1999; Kahru and Mitchell, 2001; Le et al., 2013; Lee
et al., 2002). In addition, the need to better estimate carbon amounts in
coastal regions resulted in the development of several semi-analytical
algorithms designed to retrieve CDOM absorption in optically deep
waters (Matsuoka et al., 2013; Shanmugam, 2011; Zhu and Yu, 2013).
Unfortunately, these semi-analytical CDOM algorithms are not applic-
able to optically shallow waters, which limit using remote sensing
techniques for assessing carbon dynamics at the land-water interface.
An algorithm specific to the estimation of CDOM in inland, optically
shallow waters is needed.

Growing interest in inland water CDOM observation via remote
sensing requires suitable satellite images with both the proper spectral
wavelengths and finer spatial resolution (Brezonik et al., 2015; Palmer
et al., 2015). The semi-analytical algorithms take advantage of better
atmospheric correction and water properties estimation (e.g. chlor-
ophyll) aids by an “ultra-blue” band (e.g. from 435 nm to 450 nm) to
build the bio-optical model in the coastal region or temperate lake (Lee
et al., 2007a; Lee et al., 2002). Consequently, the studies using semi-
analytical algorithms are mainly based on the ocean-viewing satellites

(MODIS, SeaWiFS) or hyperspectral satellite sensor (EO-1 Hyperion)
that record data in this wavelength range (Cuthbert and Del Giorgio,
1992; Kutser et al., 2005; Miller and McKee, 2004; O'Reilly et al.,
1998;). However, these images are not applicable to studies involving
smaller inland lakes and rivers because of coarse spatial resolutions
(e.g., MODIS) or narrow coverage (e.g., Hyperion). Rivers, that are
important pathways for transporting terrestrial CDOM, typically have a
width narrower than two kilometers (Allen and Pavelsky, 2015). The
spatial resolution or pixel size of most ocean-viewing sensors such as
MODIS are far too coarse to observe inland waters, and much un-
certainty is introduced when these images contain land-water mixed
pixels (Zhu et al., 2013a). In contrast, the recently decommissioned
high resolution hyperspectral sensor Hyperion had provided the spatial
resolutions needed for inland waters, but its utility was very limited
with respect to terrestrial CDOM estimation due to its narrow coverage
and limited acquisition (Zhu and Yu, 2013). In recent years, several
multispectral land-viewing satellite sensors have offered new promise
for the retrieval of inland water bio-optical properties with the addition
of an ultra-blue band, such as Landsat-8 and Sentinel-2 (Roy et al.,
2014). In this study, we selected Landsat-8 to derive the CDOM ab-
sorption in lake waters. With its relatively high spatial resolution,
Landsat 8 is able to effectively capture images of the lower reaches and
plumes of rivers, thereby increasing its potential for observing inland
water biogeochemistry (Pahlevan et al., 2014). Several empirical

Fig. 1. The study area of Saginaw Bay, Lake Huron. The surrounding area contains varied landcover types, including wetlands, agricultural cropland, and forest. Red
stars marked the filed samplings locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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algorithms have been applied to Landsat-8 images for observing CDOM
absorption based on band-ratio methodologies in optically deep waters
as mentioned above (Chen et al., 2017; Kutser et al., 2016; Olmanson
et al., 2016).

This study investigates the efficacy of the SBOP algorithm (Li et al.,
2017), a semi-analytical CDOM algorithm originally developed with in
situ spectral data, on satellite image for shallow waters. To our
knowledge, our research represents the first attempt to explore a semi-
analytical CDOM retrieval algorithm for Landsat-8 multispectral ima-
gery in shallow waters. SBOP was initially developed based on in situ
spectroradiometer data. This study investigates its application to
Landsat-8 OLI images and evaluates the effectiveness of the multi-
spectral land-viewing images on the retrieval of CDOM absorption at a
large number of lakes with significant variations in biogeochemical
properties. Our approach strives to address the challenges of employing
appropriate atmospheric correction, determining the influence of
bottom reflectance, and refining a semi-analytical algorithm for bio-
optical properties retrieval in optically shallow waters. Finally, 58 sa-
tellite images were processed and analyzed in Saginaw Bay, Lake Huron
to better understand CDOM spatio-temporal dynamics and its asso-
ciated driving factors.

2. Method

2.1. Study site

Saginaw Bay, Lake Huron was selected as our principal study site to
develop our Landsat-8 methodologies (Fig. 1). A total of four data
collection cruises were conducted in Saginaw Bay and vicinity to con-
duct in situ sampling focused on CDOM spatial variations. The field
data generated from two of these collection cruises were used as al-
gorithm validation data because their collection dates corresponded
nicely to the overpass dates of select Landsat-8 satellite images. For-
tunately, Saginaw Bay and the Saginaw River near their interface ex-
hibit a wide range of CDOM absorption (440 nm), dynamically chan-
ging throughout the seasons. To compare with the satellite results,
CDOM absorptions at 440 nm were from 0.5 m−1 to 7.0m−1 with the
mean values of 2.7 m−1 according to our field recording. This varia-
bility makes this location perfect for testing if indeed satellite images
can adequately capture CDOM seasonal dynamics in optically shallow
waters. Generally, the major bottom sediments in Saginaw Bay were
sand with the intermittent spot of aquatic plants and benthic algae.
Moreover, the different landcover types surrounding Saginaw Bay also
provide an opportunity to study the impact of various terrestrial CDOM
export pathways into an aquatic ecosystem. For example, east coast of
Saginaw Bay is dominated by agricultural cropland, while west coast of
Saginaw Bay is dominated by a mixture of agriculture and forest. In
addition, two major coastal wetland areas border Saginaw Bay and the
Saginaw River, Wigwam Bay State Wildlife Area and Shiawassee Na-
tional Wildlife Refuge. Saginaw River represents the largest river dis-
charging into Saginaw Bay and has an overall length of 36 km and a
watershed area of 22,260 sq. km2. Also, there are several major agri-
cultural drainage channels that discharge into Saginaw Bay.

2.2. Field data collection and laboratory measurements

Field data were acquired to verify image-based CDOM estimation
results in Saginaw Bay and the Saginaw River. Sampling cruises were
conducted on May 7, 2013, and May 7, 2015, in order to take water
samples for CDOM absorption at 440 nm assessment and record asso-
ciated water depths. A total of 24 water samples were collected in the
Saginaw River and Saginaw Bay regions with amber Nalgene bottles.
The samples were taken along four transects to ensure varied water
depths and CDOM levels. Duplicate water samples were collected at
four locations in order to conduct an uncertainty analysis. All water
samples were immediately placed on ice to impede the degradation of

CDOM levels within the samples. A Satlantic HyperSAS hyperspectral
radiometer was also used to measure water spectral data at each sam-
pling location. Three sensors, including the downwelling irradiance
sensor, sky radiance sensor, and total upwelling radiance sensor, were
deployed to measure the remote sensing reflectance of water. These in
situ spectral data were needed to aid in the examination of the atmo-
spheric correction results of the satellite images. In addition, a hand-
held Vexilar® depth sonar was used to measure the water bathymetry at
14 sampling locations during the May 7, 2015 sampling cruise. The
bathymetry data of the other dates/locations were generated from the
online public bathymetry contours and relative lake levels at the time
the samples were taken (Michigan Geographic Data Library). The
sampling depth ranges from 0.7 m to 4.0m with a mean value of 1.8 m.

Water samples were processed in the laboratory within 6 h of their
arrival to measure CDOM absorption. The first step was to filter the
water sample with glass microfiber (GF/F) filters. These filtered sam-
ples were then pipetted into 1 cm diameter cuvettes and placed in a
Cary® 60 UV–Vis Spectrophotometer to quantify CDOM absorption.
Milli-Q water was used as a blank. The Cary® 60 generates absorbance
A(λ) for wavelengths between 250 and 800 nm. Then an absorption
coefficient aCDOM(λ) was calculated via Eq. (1):

= ×a λ
L

A λ( ) ln(10) ( )CDOM (1)

where L represents the cuvette size used in the measurement. Following
Miller and McKee (2004) the CDOM absorption coefficient at 440 nm
(aCDOM(440)) will hereafter represent CDOM levels.

2.3. Shallow water bio-optical properties (SBOP) algorithm

Shallow Water Bio-optical Properties (SBOP) algorithm was devel-
oped to retrieve CDOM absorption for both optically shallow and op-
tically deep waters from in situ spectral data (Li et al., 2017). In this
study, the SBOP algorithm was applied to Landsat-8 OLI images to es-
timate CDOM spatial and temporal dynamics in inland waters. In SBOP,
Remote sensing reflectance (Rrs(λ)) derived from images was used to
derive the below-surface remote sensing reflectance rrs as shown in Eq.
(2) (Lee et al., 1998):

=
+

r λ R λ
R λ

( ) ( )
0.52 1.7 ( )rs

rs

rs (2)

The rrs(λ) associated with all four wavelengths were utilized by
SBOP algorithm to estimate CDOM absorption. Then rrs is separated into
two components, the water column contribution (rrsc) and bottom re-
flectance contribution (rrsb) as (rrs= rrsc+ rrsb). This separation is
needed in order to address uncertainties associated with bottom effect.
rrsc and rrsb can be expressed separately as shown in Eqs. (3) and (4) as:

= − − +r r e(1 )rs
c

rs
dp D a b H( )c t b (3)

= − +r
π

ρe1
rs
b D a b H( )b t b

(4)

H is the unknown factor for representing water depth. Db and Dc are
the empirical factors related to the sub-water surface photon path
elongation (Lee et al., 1999). The rrsdp is the below surface remote
sensing reflectance when the water depth is infinite which can be cal-
culated as (Lee et al., 2013):

⎜ ⎟= ⎛
⎝

+
+

⎞
⎠ +

r b
a b

b
a b

0.089 0.125rs
dp b

t b

b

t b (5)

at and bb represent total absorption and backscattering of the water
column at select wavelengths respectively. The total absorption at is
separated into three absorption components; pure water aw(λ), parti-
culates ap(λ) and CDOM aCDOM(λ),

= + +a a a a(λ) (λ) (λ) (λ)t w p CDOM (6)
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The backscattering coefficient bb(λ) can be expressed as the sum of
particle backscattering bbp(λ) and water backscattering bbw(λ):

= +b b b(λ) (λ) (λ)b bw bp (7)

where bbp(λ) could be applied to represent ap(λ) as (Zhu et al., 2013b):

=a b(λ) 0.75 (λ)p bp (8)

ρ is the bottom reflectance which can be expressed as:

=ρ λ Bρ λ( ) ( )bottom (9)

The ρbottom(λ) is the spectrum of the dominant bottom type (sand in
our study sites) which is normalized by the signals at 555 nm (Lee et al.,
2007b). B is the unknow factor which is the bottom reflectance at
555 nm. The B will be calculated as minimum in optically deep waters.
The parameters in SBOP algorithm were selected as the global mean
values. Utilizing these outlined parameters, the SBOP algorithm builds
the modeled subsurface remote sensing reflectance (rrs) by character-
izing both the water column reflectance and bottom reflectance (Li
et al., 2017).

The rrs has four unknown variables: depth (H), bottom reflectance
(B), particle backscattering (P) and CDOM absorption (CDOM). When
applying SBOP algorithm to the multi-spectral images (e.g. Landsat-8),
one dominant bottom type needs to be declared. The SBOP algorithm
determines these four unknown variables through spectral optimization
between the modeled below-surface remote sensing reflectance rrs and
satellite image derived below-surface remote sensing reflectance rrs.
Trust-Region method based on Taylor Approximation for nonlinear
systems found in MATLAB was used to derive the unknown variables by
minimizing the error expressed in Eq. (10) (Matlab, 2012; Powell,
1968):

=
∑ −

∑

=
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(10)

In this error calculation, a minimum number of four separate wa-
velengths (rrs) must be used.

2.4. Landsat-8 image processing and validation method

Landsat-8 satellite was launched in February 2013, with the addi-
tion of a new coastal blue band (443 nm). Its worldwide spatial cov-
erage and high spatial resolution show promise for inland water CDOM
monitoring. First, in Saginaw Bay, 84 images (path 20–21, row 29–30)
since the launch of Landsat-8 until Feb 2016 were processed, excluding
high ice or cloud cover (> 20%) during winter months. Most of the
images were acquired between March and November in all four years.
Of these, 26 processed images didn't have positive output from atmo-
spheric correction due to high atmosphere aerosol scattering.
Eventually, two images (May 1, 2013 and May 7, 2015) are closed to
our field sampling dates and were used for validating against our field
measurements. In addition, CDOM derived from 56 images were used to
discuss the CDOM spatial-temporal dynamics.

The Level-1 images were further processed to retrieve the water-
leaving remote sensing reflectance. ACOLITE software was used to
perform an atmospheric correction and to extract water leaving ra-
diance from TOA (top of atmospheric) radiance (Vanhellemont and
Ruddick, 2014, 2015). The SWIR (Short-Wave Infrared) atmospheric
correction method under Aerosol Correction options of the ACOLITE
software was utilized due to the turbid inland water in our study sites
(Vanhellemont and Ruddick, 2015). Other atmospheric correction
parameters, including Rayleigh scale factor, atmospheric pressure and
site elevation were set according to the weather and graphical location
of study site. The cloud masking threshold values were set according to
the cloud coverage condition in the images (0.0215 for normal day,
0.015 for the non-cloud day). After these correction efforts were com-
pleted, Rrs of land regions were masked out via the ACOLITE software

using normalized water index. Finally, the derived water Rrs is validated
by our in situ Rrs measured by HyperSAS.

The SBOP algorithm used Rrs(λ) values at 440 nm, 490 nm, 555 nm,
and 640 nm, which is consistent with other semi-analytical algorithms
(e.g. QAA-CDOM) (Zhu et al., 2014). The band centers of the four
Landsat-8 bands used were coastal blue (443 nm), blue (482 nm), green
(561 nm) and red (654 nm). Note that these band centers do not directly
match the Rrs(λ) wavelengths needed within the SBOP algorithm.
Therefore, we interpolated Rrs(λ) at the required wavelengths from
Landsat-8 spectral data based on relative spectral response method
(Barsi et al., 2014).

The CDOM estimation values were validated by comparing these
image derived values to water sample lab measurements values. The
image derived values were from a single pixel identified by the GPS
location of field sampling. The comparison was made via the following
statistical metrics: Root Mean Squared Error in log space (RMSE), R2

(Type II-Regression), Mean Normalized Bias and Absolute Mean Error
(AME). The calculation functions are following:
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where aiest is the image derived CDOM value and the aiobs is the la-
boratory-based CDOM value.

3. Results

3.1. Atmospheric correction validation

Image derived remote sensing reflectance (Rrs) after the atmospheric
correction was validated by the HyperSAS measured field spectra. Two
satellite images on May 7, 2013, and May 7, 2015 were time-syn-
chronized with our two cruises in the Saginaw Bay, Lake Huron. In
Fig. 2, full spectrum of field measured Rrs and four bands of image
derived Rrs were compared. Rrs in three typical regions of Saginaw Bay,
including Kawkawlin river plume region, near shore region, and inner
bay region, were selected for the comparison. These three regions had
descending different CDOM levels which are reflected by the different
shapes of the spectrum curves. We found in all the three regions, image
derived Rrs had comparable spectral shape and magnitude to corre-
sponding in situ Rrs.

Image Rrs was statistically compared to in situ Rrs at four band
center wavelengths from 25 field spectra (Table 1). The overall RMSE
for all four wavelengths is 0.25. RMSE decreases towards longer wa-
velength and exhibits a slight overcorrection at shorter wavelength. For
instance, the RMSE is 0.48 in 443 nm and 0.16 in 655 nm. Meanwhile,
the atmospheric correction works better in the inner bay and Kaw-
kawlin River region which had low bottom reflectance (Fig. 2). The
bottom reflectance contributed in SWIR band may affect the atmo-
spheric correction. All the image derived Rrs had slightly lower values
than the field measured ones according to the AME values. Overall, the
comparison results showed the ACOLITE software can be effectively
applied in the turbid inland waters (Table 1).

3.2. CDOM estimation validation: Saginaw Bay

The CDOM absorption values derived from the Landsat-8 OLI
images were validated with the laboratory measurement of CDOM in
water samples. The results showed the SBOP algorithm can be
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effectively applied to optically shallow waters and improve the accu-
racy of CDOM estimation (Table 2). A representative optically deep
water semi-analytically algorithm (i.e. QAA-CDOM) was chosen to
compare with the SBOP algorithm in the Saginaw Bay area (Zhu et al.,
2014). Both SBOP and QAA-CDOM are semi-analytical algorithm with
the same strategy for partitioning the absorption coefficient. The SBOP
remarkably outperformed QAA-CDOM with respect to all four error
metrics. The SBOP algorithm achieved a R2 of 0.87, much higher than
that of the QAA-CDOM algorithm (R2= 0.33). The substantially larger
bias (MNB) and error (AME) of QAA-CDOM (MNB=1.65 and
AME=1.82) showed that it overestimates CDOM levels dramatically.

To examine how errors change across sampling locations,
aCDOM(440) derived from satellite images vs. field measured
aCDOM(440) from field water samples were plotted in Fig. 3. These
samples are located at a range of depth between 0.6 and 4m, including
both optically shallow and optically deep waters. The samples were
categorized as shallow (depth < 1m), medium (1m < depth < 2m)
and deep waters (depth > 2m) to evaluate algorithm performances in
respect to bottom contribution. Generally, in Saginaw Bay, the shallow
(depth < 1m) and medium (1m < depth < 2m) sites had the
bottom reflectance > 10% to the total water leaving radiance. In the
shallow near shore regions with similar range of CDOM level, SBOP
produced much better results than QAA-CDOM algorithm. In contrast,
the largest errors of the QAA-CDOM algorithm resulted in these shallow
areas. In optically shallow water sites, the underwater light reflected by

bottom sediments significantly contributes to water-leaving radiance,
some of which is received by the satellite sensor. QAA-CDOM essen-
tially does not consider bottom reflectance and includes it as a com-
ponent of water column reflectance, which leads to the overestimation
of CDOM absorptions. The higher the proportion of bottom reflectance
included in the total water leaving reflectance, the higher the un-
certainties resulting from QAA-CDOM. QAA-CDOM could produce a
few accurate results in medium and deep depth waters. Almost half of
the field sample locations in southern Saginaw Bay regions were clas-
sified as optically shallow water according to field measured depth
(< 1.5 m). Our results show QAA-CDOM is not directly applicable to
these shallow waters. On the contrary, the SBOP algorithm considers
bottom reflectance in the water radiative transfer model and treats rrs as
a sum of both water column and bottom sediment reflectance. More-
over, bottom reflectance also involved in the total water leaving ra-
diance in deep and clean waters (Li et al., 2017). So SBOP demonstrated
a marked advantage over QAA-CDOM for estimating CDOM in a broad
range of inland waters.

SBOP algorithm can be effectively applied to multi-spectral Landsat-
8 images of inland waters. Moreover, Landsat-8 OLI imagery, particu-
larly the four bands (443 nm, 482 nm, 561 nm, and 654 nm), provide
sufficient spectral information to retrieve inland water CDOM levels.
The spectral, radiometric and spatial resolutions of Landsat-8 OLI
imagery are capable of achieving large-scale lake/estuary CDOM
monitoring if a proper algorithm like SBOP is used. Two limitations of
SBOP should be considered when implementing SBOP. First, the algo-
rithm execution is computation-intensive because the spectral optimi-
zation method is used to derive the unknown radiative transfer vari-
ables in the CDOM retrieval. We are working on a fast SBOP algorithm
to potentially reduce the computation. Second, SBOP algorithm per-
forms better with the relatively homogenous bottom sediment type on
individual Landsat-8 image for one algorithm execution. Because mul-
tiple spectral bands (4 bands) can only allow one endmember of bottom
type in the model. Alternatively, the image can be divided into smaller
tiles of similar bottom type and processed separately when the bottom
type significantly varies within one image.

3.3. CDOM spatial gradient along the path from watershed to lake: Saginaw
Bay vicinity

CDOM spatial distribution from the Saginaw River into Saginaw Bay
in July 2013 and September 2015 is illustrated in Fig. 4. The lake water
CDOM levels in Saginaw Bay displayed distinct spatial heterogeneity.
The CDOM level significantly decreased from shallow near shore

Fig. 2. The full spectrum of HyperSAS measured Rrs and image derived 4 bands Rrs in different regions of Saginaw Bay.

Table 1
The performances of atmospheric correction.

Method RMSE MNB AME

Total 0.25 0.34 −0.33
443 nm 0.38 0.48 −0.45
483 nm 0.21 0.34 −0.32
561 nm 0.17 0.28 −0.28
655 nm 0.16 0.25 −0.24

Table 2
The performance of SBOP and QAA-CDOM algorithms via comparisons of both
measured and image-derived aCDOM(440) in Saginaw Bay with 26 samples.

Method RMSE MNB AME R2

SBOP 0.17 −0.12 0.22 0.87
QAA-CDOM 0.48 1.65 1.83 0.33
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regions to the deeper inner bay. CDOM was highest around the near
shore regions where rivers and agricultural channels discharged into
Saginaw Bay. CDOM levels in Saginaw River and channels were almost
two times higher than that of Saginaw Bay. Specifically, Saginaw River
had much higher CDOM levels than the other regions of Saginaw Bay
for three non-winter seasons. Scenes in Fig. 4 strongly suggested that
large amounts of CDOM were transported by this river system to the
lake waters.

In order to more closely examine CDOM spatial distribution from
the river into Saginaw Bay, CDOM absorption at 440 nm for five non-
consecutive months across three years was plotted (Fig. 5a) along
transect 3 shown in Fig. 1. The point locations along transect 3 were
evenly distributed from the Saginaw River mouth out into the inner Bay
at an interval of 1 km. Fig. 5a shows that CDOM absorption decreased
almost by a factor of four in 10 km moving towards the inner bay. Si-
milar data generated from September 2015 imagery for two additional
transects (transect 1 & transect 2) is shown in Fig. 5b. Both transects are
oriented from east to west, roughly perpendicular to transect 3.
Transect 1 is located near the Saginaw River plume region while
transect 2 is located in the inner Bay region. The CDOM levels along the
near shore transect (transect 1) were generally two times higher than

CDOM levels within the deeper inner bay (transect 2).

3.4. CDOM spatial gradient and surrounding terrestrial environment

Clearly CDOM levels within aquatic ecosystems are significantly
affected by the terrestrial sources of organic matter. To further analyze
how terrestrial CDOM migrates to Saginaw Bay waters, we compared
water CDOM levels in areas influenced by different landcover types. In
Fig. 6, one high CDOM level area was found along the north coast of
Saginaw Bay, this was also visible in Fig. 4a-4b. This area of elevated
CDOM was associated with the Wigwam Bay State Wildlife Area, which
is dominated by coastal marsh plant species (Burton et al., 2002;
Uzarski et al., 2004). Fig. 6 shows how significantly carbon associated
with these coastal wetlands influences CDOM in the near shore en-
vironment. The average CDOM absorption in the wetland influenced
areas was 1.70m−1 while the average of waters bordered by mixed
agri-forest regions was 0.85m−1. Moreover, the results in Figs. 4 and 6
showed the east coast of Saginaw Bay had relatively higher CDOM le-
vels than the west coast. The east Bay shore had a higher percentage of
agricultural farmland. However, the west Bay shore was dominated by
mixed agriculture and forest. Another large wetland area along the

Fig. 3. Image derived vs measured aCDOM(440) from both SBOP and QAA-CDOM algorithms in Saginaw Bay. The larger symbol size indicated the higher error of the
algorithm. Water samples were separated by the depths of field sampling sites.

Fig. 4. Spatial distribution of aCDOM(440) across two different seasons in Saginaw Bay.
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Fig. 5. (a) Decreasing aCDOM(440) across five non-consecutive months from the Saginaw River to the inner bay along transect 3 (see Fig. 1). (b) A comparison of
varied aCDOM(440) along transects 1 & 2 derived from September 2015 image.

Fig. 6. aCDOM(440) spatial patterns in six different months in the north coast of Saginaw Bay. aCDOM(440) is higher for waters adjacent to the wetland than water near
agriculture.
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shoreline of the Saginaw River is the Shiawassee National Wildlife
Refuge (Fig. 7). Similar to Saginaw Bay, river CDOM levels near the
Shiawassee wetland region were significantly higher than surrounding
regions.

To further explore how biogeography influences CDOM in aquatic
ecosystems, mean CDOM levels along the east coast (predominantly
agriculture), west coast (agri-forest mixed), Wigman Bay (wetland),
Shiawassee wetlands (upstream Saginaw River) and Saginaw River
plume regions were plotted (Fig. 8). As outlined above, waters asso-
ciated with coastal wetlands had the highest CDOM levels compared to
that found in the agriculture and mixed agri-forest regions. The Shia-
wassee region had higher CDOM levels than that of Wigwam Bay, as
might be expected due to the much larger size of the Shiawassee wet-
land area (Wigman=3.64 km2, Shiawassee= 40 km2) and dilution of
CDOM levels by Lake Huron. Lakes in the agricultural cropland regions
had higher CDOM levels compare to the lakes in the mixed agri-forest
regions. The highest CDOM levels were again associated with the Sa-
ginaw River plume which receives contributions from a wide variety of

landcover types including wetlands and agricultural croplands.

3.5. Aggregated CDOM statistics based on seasonal phenology in Saginaw
Bay

The path/row designation and associated dates for all processed
Landsat-8 images of the Saginaw Bay (< 20% cloud coverage) were
plotted in Fig. 9a. These images spread well over time to monitor CDOM
from March to the November. As discussed above, high levels of cloud
coverage and ice coverage limit the derivation of CDOM in late fall
through winter. The CDOM levels in the Saginaw Bay derived from
satellite images showed clearly seasonal dynamics. For instance, the
CDOM values were illustrated in five different months had different
CDOM levels (Fig. 7). Fig. 9b provides boxplot diagrams showing the
75th, median and 25th percentile of mean CDOM levels associated with
different seasons. These mean CDOM values were derived in three
different regions of Saginaw Bay through the ArcGIS zonal statistics for
all the available CDOM results. Peak CDOM levels occurred in the

Fig. 7. Comparison of aCDOM(440) associated with adjacent landcover types and seasonality in the Saginaw River region. Spring had higher aCDOM(440) than the
other seasons.

Fig. 8. Boxplot diagrams show the 75th, median and 25th percentile of mean aCDOM(440) associated with 5 different landcover types regions.
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spring associated with snow melt and associated spring runoff (e.g.
April 2015), and were two times higher than that of the other three
seasons. This product coincides with the recently reported riverine
CDOM dynamics in Michigan, particularly high spring CDOM fluxes,
due to decomposition of agricultural residues and transport processes
driven by snow melting (Qiao et al., 2017). A secondary peak of CDOM
level is evident in early fall and is associated with litterfall and the
availability of crop residues on the landscape (e.g. September 2015,
October 2013). The summer generally had the lower CDOM levels
compared to the spring and fall (e.g. July 2013). Meanwhile, the winter
months generally displayed the lowest CDOM values of the year. CDOM
seasonal dynamics is clearly related to the terrestrial CDOM supplies
linked to seasonal changes to landcover and agricultural phenological
cycles.

4. Discussions

4.1. Terrestrial CDOM inputted to lake waters via river systems

The CDOM spatial patterns derived from satellite images clearly
suggested that CDOM in the lake waters is significantly affected by
terrestrial CDOM input via the Saginaw River. As the elevated CDOM
levels associated with the discharge plume of the Saginaw River in-
dicate, allochthonous CDOM from terrestrial sources is an important
CDOM source for lakes (Kelly et al., 2014; Kritzberg et al., 2004). Often,
the major allochthonous CDOM source originates from watershed soil
carbon leaching and its subsequent transport to the aquatic environ-
ment (Kalbitz et al., 2000; Kindler et al., 2011; Major et al., 2010).
Inland river systems provide the network for this transport of terrestrial
CDOM to lakes and coastal ocean waters (Findlay et al., 2001). Similar
as in Saginaw Bay, terrigenous CDOM was observed to be one or two

magnitudes higher than the autochthonous carbon sources in the Che-
sapeake Bay and Lake Tuscaloosa (Rochelle-Newall and Fisher, 2002;
Vähätalo and Wetzel, 2004). It is concurred in our study that the al-
lochthonous CDOM in the Saginaw River was almost two times higher
than the CDOM in inner Bay region. The successful monitoring of
CDOM spatial distribution using high spatial resolution remote sensing
is significant in that it helps understand the degradation and dilution
under mixing process at land-water interface and assess the bio-optical
impact of terrestrially derived CDOM on lake ecosystem (Palmer et al.,
2015; Toming et al., 2016).

4.2. Lake CDOM spatial distributions affected by terrestrial biogeography

Our results indicate the Landsat-8 images are indeed applicable to
the examination of the influence of biogeography on CDOM spatial
variations. Previous studies confirmed the surrounding carbon sources
from processes like plant material decay and soil carbon leaching
contribute greatly to CDOM levels in river and lake environments
(Boyle et al., 2009; Williams et al., 2010). Different landcover types
play an important role in determining CDOM transportation from land
to water (Butman and Raymond, 2011). The CDOM levels in our studies
showed that the lake areas influenced by wetlands had the highest level
compared to the agricultural and mixed agri-forest regions across all
seasons. The organic matter directly leached from persistent senescent
wetland plant biomass to water was observed as an important CDOM
source in the lake water in a previous study (Maie et al., 2006).

However, in the water regions receiving carbon from inland agri-
culture and forest, CDOM generally is routed through longer paths and
often CDOM levels are reduced via degradation and dilution. In the
Saginaw Bay regions, our results showed that CDOM level exported
from agriculture dominant regions were slightly higher in from mixed

Fig. 9. (a) The path/row designation and associated dates for all available Landsat-8 images of Saginaw Bay study area with low ice and cloud coverage (< 20%)
from 2013 to 2016. (b) Boxplot draws the 75th, median and 25th percentile of aCDOM(440) across three seasons.
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agri-forest regions. This is likely attributed to the fact that crop residues
remaining in agricultural fields after harvest supply more abundant
biomass in the topsoil than that of forest in the Saginaw Bay regions
(Boyer and Groffman, 1996; Laudon et al., 2011). In all, CDOM spatial
distribution is modulated by both landcover type and human land use
practices, such as farming. The CDOM monitored via Landsat 8 could
provide insightful information that helps improve our understanding of
the effects of land use practices and land management on the terrestrial
carbon export to the lakes and rivers (Yallop and Clutterbuck, 2009).

4.3. Lake CDOM seasonal dynamics were affected by hydrological activities

In order to further explore CDOM dynamics associated with the
Saginaw River, CDOM levels in Saginaw River mouth were compared
with its discharge (Fig. 10). The comparison aims to investigate the
hydrology effect to further explain the seasonal dynamics of terrestrial
CDOM export to Saginaw Bay. Large amounts of CDOM were exported
from the land (allochthonous) to the river as the channel gathered
runoff from watershed during periods of high discharge (Fig. 10). The
highest riverine CDOM level shown in Fig. 10 occurred in April 2013,
synchronized with the highest discharge across the four-year period
under study. Similarly, it was commonly reported that elevated CDOM
level is associated with the periods of high discharge (Battin et al.,
2008; Evans et al., 2005; Hornberger et al., 1994). This phenomenon
was often observed when the soil has stored abundant decomposed
materials (e.g. long dry period/snow cover) before the rainfall. In the
early spring, large amounts of soil carbon are mobilized and are finally
exported to the aquatic ecosystem carried by the snowmelt water and
rainfall water (Ågren et al., 2010; Haei et al., 2010; Qiao et al., 2017).
All these contribute to the highest water CDOM in the spring. During
the fall, breakdown of fresh litterfall would cause relatively high soil
carbon levels (Kalbitz and Kaiser, 2008). It is also worth to notice that
the low CDOM during the summer time may be caused by the seasonal
dynamics of the photobleaching and microbial loop (Hart et al., 2000;
Del Vecchio and Blough, 2004).

Interestingly, an anomaly occurred during the winter of 2015, for its
CDOM levels were elevated compared to other winters shown. This
pattern was likely caused by historically warm winter temperatures in
2015, leading to both the Saginaw River and Saginaw Bay being ice free
for an abnormally long period. We assume that an unfrozen river and
watershed acts as a better conduit for CDOM (Jan, 2016) than what is
typically expected during winter months. The river systems could more
effectively transport the terrestrial CDOM to Saginaw Bay. Our CDOM
absorption derived from the satellite images illustrates that land-water
carbon exchange was significantly affected by the hydrology.

5. Conclusions

This study presented an application of a new semi-analytical algo-
rithm SBOP, previously validated with field spectroradiometer data, to

Landsat-8 OLI imagery for improving CDOM retrieval in optically
shallow inland waters. The investigation was supported by 58 satellite
images and in-situ field measurements collected over varying seasons
across multiple years. Our research concludes the following:

1) The SBOP algorithm performance on CDOM estimation was robust
and consistent across a broad range of CDOM absorption, high-
lighting the transferability and scalability of our methodology.
Separating bottom reflectance from other radiance pathways in the
SBOP algorithm remarkably improved the estimation accuracy of
CDOM for inland optically shallow waters. The RMSE was reduced
to one third of a semi-analytical deep-water CDOM algorithm.

2) Landsat-8 OLI imagery provides sufficient spatial (30m), spectral
(i.e. 443 nm, 482 nm, 561 nm, and 654 nm) and radiometric re-
solution required for retrieving CDOM levels for both optically
shallow and deep inland waters. It enables high spatial resolution
mapping of CDOM gradient from lower reaches of a river, shoreline,
to open water, which is strongly connected to the ambient en-
vironment. Meanwhile, the temporal frequency of the CDOM mon-
itoring could be further improved by adding other satellite sensors,
such as Sentinel-2. Consequently, monitoring the allochthonous
CDOM transportation from terrestrial to aquatic ecosystems will
improve our understanding of land-water carbon cycles.

3) CDOM seasonal variation assessment was benefited by the high
spatial and temporal resolution monitoring. Detailed CDOM spatial
pattern at the land-water interface contributed to the understanding
of the magnitude that terrestrial CDOM loading couples with the
type and abundance of the terrestrial plant sources in adjacent
ecosystems. In Saginaw Bay, CDOM level released from landscape
exhibits a descending order from wetland, agriculture, to agri-
culture-forest mixed landcover. Moreover, a complete Landsat-8
time series of CDOM over three-year demonstrated a good syn-
chronization to the river discharge and reveals the spatial pattern of
pronounced CDOM peaks during snowmelt. These findings suggest
potential for quantitative estimation of CDOM loading from land to
water at large scale.
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