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• Water temperature is more important
predictor of daily chlorophyll a than nu-
trient.

• Nutrients are a more important predic-
tor than water temperature at a
monthly scale.

• The drivers of phytoplankton fluctua-
tions vary at different timescales.

• Timescales have an influence on the rel-
ative role of N and P limitation in lakes.
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Assessing the key drivers of eutrophication in lakes and reservoirs has long been a challenge, and many studies
have developed empirical models for predicting the relative importance of these drivers. However, the relative
roles of various parameters might differ not only spatially (between regions or localities) but also at a temporal
scale. In this study, the relative roles of total phosphorus, total nitrogen, ammonia,wind speed andwater temper-
ature were selected as potential drivers of phytoplankton biomass by using chlorophyll a as a proxy for biomass.
A generalized additivemodel (GAM) and a random forestmodel (RF)were developed to assess the predictability
of chlorophyll a and the relative importance of various predictors driving algal blooms at different timescales in a
freshwater lake. The results showed that the daily datasets yielded better predictability than the monthly
datasets. In addition, at a daily scale, water temperature was a more important predictor of chlorophyll a than
nutrients, and the importance of phosphorus was comparable to that of nitrogen. In contrast, at a monthly
scale, nutrients are more important predictors than water temperature and phosphorus is a better predictor
than nitrogen. This study indicates that the drivers of phytoplankton fluctuations vary at different timescales
and that timescale has an influence on the relative roles of nitrogen and phosphorus limitation in lakes, which
suggests that the temporal scale should be considered when explaining phytoplankton fluctuations. Moreover,
this study provides a reference for the monitoring of phytoplankton fluctuations and for understanding the
mechanisms underlying phytoplankton fluctuations at different timescales.
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1. Introduction
Algal blooms are amajor problem in freshwater ecosystems through-
out the world (Paerl and Huisman, 2008; Page et al., 2018). Predictive
models can be useful for developing strategies to reduce bloom fre-
quency and severity and for guiding actions to reduce bloom impacts
(Cha et al., 2014). Identifying algal bloomdrivers is essential for develop-
ing predictive models. Over the past five decades, studies have
attempted to identify the drivers of undesirable or harmful algal blooms
(HABs) (Cha et al., 2017). Although an excess of nutrients is always a key
determinant of blooms, the relative roles of phosphorus (P) and nitrogen
(N) in bloom dynamics remains hotly debated (Carpenter et al., 2016;
Conley et al., 2009; Elser et al., 2009; Schindler, 1977; Schindler, 2014).
Moreover, the impacts of temperature on blooms has received much at-
tention in the past decade (Trolle et al., 2015), and these impacts will in-
crease at an alarmingly fast rate in the future (O'Reilly et al., 2015). Some
studies have found that global warming plays an important role in the
global spread of phytoplankton blooms (Ma et al., 2016). The formation
of HABs has been attributed, in part, to extra potential meteorological
conditions (Scavia et al., 2016). For example, climate change will affect
not only thermal regimes in lakes but also precipitation and thus runoff.
Catchment-related fluxes in nutrients and water residence time might
also have strong impacts on algal blooms and lake productivity, and
changes inwind speed and thusmixing and turbulencewill also contrib-
ute to these impacts. Thus, nutrients, temperature and meteorological
conditions are likely to play significant roles in driving algal blooms
(Rigosi et al., 2014; Scavia et al., 2016).

The relative importance of environmental drivers might be site-
specific (Rigosi et al., 2014). For example, the results of a linear regres-
sion model tested on N1000 U.S. lakes indicated that nutrient levels
are more important predictors of algal blooms than temperature
(Rigosi et al., 2014). In contrast, a study employing a Bayesian network
model suggested that phytoplankton fluctuations are more sensitive to
changes in water temperature than to changes in the concentration of
total P in 20 globally distributed lakes (Rigosi et al., 2015). The relative
roles of nutrients, temperature, mixing, hydrology, solar radiation and
other drivers depend on both spatial and temporal resolutions (Blauw
et al., 2018). At an inter-lake level or for intra-lake development over
years, the nutrient levels are expected to override other drivers,
whereas at the intra-lake level, both temperature and wind speed
(and thus turbulence and nutrient mixing) could be important. Most
studies on phytoplankton dynamics in both freshwater and marine
sites have addressed drivers of phytoplankton responses at monthly
or inter-annual scales.

The drivers of phytoplankton fluctuations can also differ among dif-
ferent temporal scales (Blauw et al., 2018). In marine waters, phyto-
plankton fluctuations at inter-annual and decadal scales are often
impacted by climatic variation or changes in the eutrophication status
(McQuatters-Gollop and Vermaat, 2011; Ottersen et al., 2001;
Richardson and Schoeman, 2004), whereas at a seasonal scale, nutri-
ents, temperature, solar irradiance, thermal stratification, and grazing
are the major drivers of phytoplankton fluctuations and succession
(Sharples et al., 2006; Sommer et al., 2012; Winder and Cloern, 2010).
At even shorter timescales (e.g.,monthly and daily), fluctuations in phy-
toplankton are largely affected by physical drivers, such as wind and
turbulentmixing, which affect the spatial distribution of phytoplankton
(Peter, 2005). For accurate predictions, it is important to separate the
different impacts of various drivers at different temporal scales.
Winder and Cloern (2010) conducted a comparative time series analy-
sis of lakes and open oceans and found consistent differences in the rel-
ative importance of drivers between seasonal and inter-annual scales.
Most studies that have investigated such temporal responses were
based on marine environments (Cloern and Jassby, 2010). However,
the roles of drivers at shorter timescales, i.e., monthly and daily scales,
as determinants of algal biomass in freshwater lakes remain poorly
understood.
Thedetermination of a propermodel structure is critical for develop-
ing a predictive model. The core of any forecasting model that used by
management authorities or the community is to predict events at a rel-
evant timescale. Many studies have focused on potential predictors of
HABs without considering time-lag effects (Hollister et al., 2016;
Segura et al., 2017), which results in the need for extra predictions for
predictors. For example, explanatory variables (predictors) must be de-
termined before the developed predictive model can be used to predict
phytoplankton responses. Predictive models with a time lag between
the drivers and responses can address this issuewell because responses
can be predicted without determining the predictors. There will always
be some time lag between drivers and responses, and this time lag is re-
lated to either physical factors (e.g., turbulence and the spatial distribu-
tion of algal masses) or biological factors related to growth rate and
population responses. Several studies have attempted to explore the de-
velopment of forecastingmodels based on the time-lag effect of predic-
tors (Kehoe et al., 2015; Xiao et al., 2017; Zhang et al., 2015b). For
example, Zhang et al. (2015b) used an artificial neural network model
to predict the water quality of the Yuqiao Reservoir (YQR) and found
that this model is potentially useful for predicting eutrophication up
to 2 weeks in advance.

The aim of the current study was to evaluate the predictability of
phytoplankton fluctuations and the relative importance of selected
key drivers amongdifferent timescales in a freshwater lakewith five po-
tential predictors (total P, total N, ammonia N, water temperature and
wind speed) as drivers and chlorophyll a concentrations to represent
the biomass of phytoplankton.Using these five predictors, we (1) devel-
oped a generalized additive model (GAM) and a random forest (RF)
model based on two datasets (monthly and daily) to assess the predict-
ability of phytoplankton fluctuations at these two timescales,
(2) assessed their importance using the GAM and RF and (3) compared
the differences of the relative importance at monthly and daily scales.
Although these studies were performed in a single lake, we believe
the insights are relevant to other comparable freshwater bodies.

2. Materials and methods

2.1. Study area and data description

The YQR (117°34′ E and 40°02′ N) is located in the north of Tianjin
City in China (Fig. 1) and serves as the largest drinking water source
in Tianjin (with a population of N16 million). Two rivers (Guohe River
and Linhe River) enter into the YQR. The YQR receiveswater fromanup-
stream reservoir (Daheiting Reservoir) via the Guohe River, and the
Linhe River is a minor contributor and often runs dry. The reservoir
has a watershed area of 2060 km2, a storage capacity of
1.559 billion m3 and a surface area of 86.8 km2. The YQR is considered
a shallow lake with a maximum depth of 12 m and an average depth
of 4.7m. The annual precipitation in theYQRBasin over the studyperiod
was approximately 750 mm/m2. The detailed properties of the YQR are
shown in Table 1.

Because the YQR is the drinking water source in Tianjin, a project
aiming to protect the watershed was implemented in 2002 to reduce
or eliminate the point sources of nutrients to YQR (Zhang et al.,
2015a). However, the reservoir has been mesotrophic due to increased
pollution in the watershed, notably from cage aquaculture in the up-
stream reservoir. The water quality of YQR has gradually decreased. In
fact, the YQR has experienced several HABs over the past two decades.

We used the concentration of chlorophyll a (Chl-a, μg/L) as a proxy
for phytoplankton biomass. There certainly are variations in Chl-a to
carbon ratios (Jakobsen and Markager, 2016), but one should be
aware that also cell specific C may vary with species and growth condi-
tions. When comparing direct, volume-based estimates on phytoplank-
ton with Chl-a, there is no doubt that the Chl-a's response to light is
biomass-specific, but this variation does not override the positive asso-
ciation between Chl-a and biomass. For example, a very strong



Fig. 1.Map of the Yuqiao Reservoir. The sampling sites are denoted as R1.
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correlation between Chl-a and algal biomass (microscopic estimates)
was found from 400 lakes with highly differing productivity, phyto-
plankton composition and light attenuation (Hessen et al., 2006). The
Chl-a in YQR ranged from 2.6 μg/L to 36.4 μg/L and exhibited pro-
nounced variability. The monthly and daily fluctuations in the Chl-a
are shown in Fig. 2. Five variables were used as potential environmental
factors driving phytoplankton fluctuations: total P (TP, mg/L), total N
(TN, mg/L), ammonia N (NH4

+-N, mg/L), wind speed (wind, m/s) and
water temperature (T, °C). Temperature and nutrients are often consid-
ered the most significant determinants of phytoplankton biomass (Cha
et al., 2017; Rigosi et al., 2014). Clearly, the factors analyzed in this study
do not represent an exhaustive list of potential determinants of phyto-
plankton development, but for obvious reasons, grazing and other
losses in biomass cannot be automatically monitored at short time-
scales. In addition, P was represented by the total P (not orthophos-
phate). N was represented by both total N and NH4

+, and NO3
− was not

analyzed separately. In our study, ammonia was poorly correlated
with total N at daily andmonthly timescales (daily: p=0.23; monthly:
p = 0.48, Appendix S1). Therefore, both TN and NH4

+ were selected as
potential explanatory variables. Although other variables might impact
Table 1
Key properties of the Yuqiao Reservoir.

Range Mean Median Coefficient of
variation

Monthly dataset of total
phosphorus (2003–2017): mg/L

0.01–0.019 0.04 0.03 0.71

Monthly dataset of total nitrogen
(2003–2017): mg/L

0.15–4.81 1.76 1.59 0.61

Monthly dataset of ammonia
nitrogen (2003–2017): mg/L

0.01–0.71 0.14 0.11 0.87

Monthly dataset of water
temperature (2003–2017): °C

1.1–31.4 14.42 14.20 0.69

Average depth: m 4.47
Area: km2 86.8
Longitude: E 117° 34′
Latitude: N 40° 02′
Nutrient level lightly eutrophic
algal biomass, those included in our survey cover the main potential
drivers, i.e., nutrients (N and P), temperature and meteorology.

From January 2003 to November 2017, the concentrations of TP, TN,
and NH4

+-N, and T were sampled monthly at the center of the reservoir
(site R1, Fig. 1). Beginning in January 1, 2017, a buoy was also
established at site R1 to monitor the in situ parameters online. The
buoy had multiple probes for detecting TP, TN, NH4

+-N, and water tem-
perature. The monitoring data from the buoy were transferred to the
data center every 4 h. The depth of the sampling for both the monthly
monitoring and the buoy data were the same (0.5 m), and the dataset
from the buoy was corrected with the monthly monitoring data to
maintain consistency between the two datasets. A detailed description
of the buoy is provided in Appendix S2. The wind speed datasets were
obtained from the China Meteorological Data Service Center (http://
data.cma.cn/). The meteorological station is adjacent to the YQR, and
as a result, its datasets represented the meteorological conditions of
the reservoir monitoring site well.

2.2. Candidate models

In this study, two candidate models (GAM and RF) were selected to
analyze the predictability of Chl-a and assess the relative importance of
various factors in driving phytoplankton fluctuations at different time-
scales in the YQR. Considering the complexity of the relationships be-
tween environmental drivers and phytoplankton biomass and that the
causality and dynamics of phytoplankton are not well understood, the
RFmethodologywas selected to quantify the relationship between phy-
toplankton fluctuations and drivers, assess the Chl-a predictability and
analyze the relative importance of the drivers. RF use an ensemble ma-
chine learning method that develops nonlinear functions based on the
mean response of an ensemble of simpler decision tree models
(Breiman, 2001), and this approach is increasingly utilized to model
and understand environmental systems (Kehoe et al., 2012). The RF
technique represents an application of bagging to decisions trees, and
bagging is an ensemble modeling method designed to avoid the over-
fitting of models (Breiman, 1996). A large number of simple models
are constructed with random subsamples of a dataset and are then ag-
gregated in some way, usually by averaging in the case of regression

http://data.cma.cn/
http://data.cma.cn/
Image of Fig. 1
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Fig. 2. Time series of chlorophyll a concentration (mg/mL) in the Yuqiao Reservoir at (a) monthly and (b) daily resolutions.
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and bymode in the case of decisionmaking (Kehoe et al., 2015). Bagging
can be applied to any model type, such as linear regression models, and
is denoted as a random forest when applied to decision trees (Breiman,
2001). The construction of a RF proceeds as follows: first, a random sub-
set of the whole dataset is selected, and a decision tree is constructed.
This model construction process is then repeated until an ensemble of
decision trees is obtained. Each member of the RF ensemble is a simple
decision tree biased toward predicting their own particular training
data. When the mean prediction of a large number of these randomly
constructed simple decisions trees (forest) is calculated, they produce
low variance and unbiased predictions (Breiman, 2001).

RF were developed in this study using the “Party” package (Strobl
et al., 2009) in R 3.1.1. Briefly, 500 trees were constructed for each en-
semble, and leave-one-out cross-validation (CV) was conducted to
test the prediction power of the RF. The model performance for the cal-
ibration and validation stageswas quantified using the coefficient of de-
termination (R2).

R2 ¼ 1−
∑n

i¼1 yi− f ið Þ2
∑n

i¼1 yi−yð Þ2
ð1Þ

Given thepotential pitfalls of any predictivemodel,we also applied a
GAM for the comparison and validation of the RF predictions. GAMs are
widely used in environmental studies (Beale et al., 2010; Bininda-
Emonds and Purvis, 2012; Sun et al., 2018). In brief, a GAM is a general-
ized linearmodel inwhich the linear predictor is specified as the sum of
the smooth functions of some or all of the covariates (N. Wood, 2006).

The general formula of a GAM is

g μ ið Þ ¼ β þ∑n
j¼1 f j Xið Þ þ εi ð2Þ

where g(μi) is amonotonous link function relating the response variable
to the given explanatory variables, β is any strictly parametric compo-
nent in the model, such as the intercept, fj(Xi) is the variable explained
by the nonparametric smoothing function, and εi is identically and inde-
pendently distributed as a normal randomvariable (Wood, 2004;Wood
and Augustin, 2002).

As stated previously, Chl-a was the response variable, and TP, TN,
NH4

+-N, wind speed (Wind) and T were the independent variables,
which yielded the following:

g Chl að Þ ¼ β þ f 1 TPð Þ þ f 2 TNð Þ þ f 3 NHþ
4

� �þ f 4 Tð Þ þ f 5 Windð Þ þ εi ð3Þ

In this study, the GAMwas fitted using the ‘mgcv’ package in R 3.1.1.
Additionally, leave-one-out CV was performed to test the predictive
power of the GAM. For each fitting and CV, the R2 was calculated as an
indicator of goodness-of-fit and CV.

2.3. Predictability of Chl-a

We compared the predictive performances of models with different
time lags atmonthly and daily scales. For daily predictions, we tested 60
different forecasting time lags ranging from 0 to 60 days. The monthly
predictive models were calibrated for three different forecasting time
lags (1, 2, 3 months in advance). More formally, both the RF and GAM
were calibrated to predict the concentration of Chl-a (yt) for the predic-
tor variables xt−n,

yt ¼ M xt−nð Þ ð4Þ

whereM is the specific model (RF or GAM), and n is a range of different
time lags (daily scale: n = 0,1,2…26, monthly scale: n = 0,1,2,3).

2.4. Relative importance of drivers

To assess the relative importance of the five selected parameters in
driving phytoplankton biomass, we analyzed the loss of predictive
power by excluding drivers from the model. For the RF, this was calcu-
lated as themean reduction in themean square error (MSE), and for the
GAM, this was calculated as the reduction in R2. Many studies have im-
plemented thesemethods to assess the relative importance of variables
(Hu et al., 2017; Zhang et al., 2017b). We analyzed the variable impor-
tance with no lag between the five drivers and Chl-a. Besides, we quan-
tified the relative importance of five potential environmental factors
with the time-lag effects in driving phytoplankton fluctuations.

3. Results

The results of the assessment of the predictability of Chl-a at a
monthly scale for the calibration and CV of the RF for time lags ranging
from1 to 3months are shown in Fig. 3a. Higher R2 valueswere obtained
for calibration and CV of the RF when there was no time lag, but R2

values were still high for the calibration of the RF (R2 values ranging
from 88% to 76%) with the time lag of 1 to 3 months However, the R2

values for the CV decreased with increases in the time lag (R2 from
60% to 17%) and reflected poor performance (R2 b 20%) with a time
lag of 3 months. The results of the assessment of the predictability of
Chl-a at a monthly scale using the GAM for time lags ranging from 1
to 3 months are shown in Fig. 3b. Similar to the RF results, the R2 values
for both the validation and CV of the GAMwere higher when there was
no time lag. However, unsatisfactory values of R2 were obtained for the

Image of Fig. 2
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Fig. 3. Predictability of the monthly chlorophyll a concentration by (a) a generalized additive model and (b) a random forest model.
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calibration and CV of the GAM (calibration: R2 values ranging from 69%
to 21%; and CV: R2 values ranging from 55% to 9%) with increases in the
time lag and reflected poor performance (R2 b 10%) with a time lag of
3 months. In general, the GAM performed more poorly than the RF,
and these findings were obtained for both the calibration and CV
(Fig. 3a–b).

The calibration and CV of the RF model for daily predictions involv-
ing time lags ranging from 1 to 3 months are shown in Fig. 4a. The RF
showed satisfactory performance, irrespective of the different time
lags. As shown in Fig. 4a, the R2 values for the CV fluctuated between
60% and 80% with different time lags, suggesting that daily datasets
have high predictive power for the prediction of algal blooms. In gen-
eral, the results showed that the daily predictor datasets demonstrated
better predictability than themonthly predictor datasets (Figs. 3 and 4).
The GAM performance was worse than that of the RF, and this finding
was obtained for both the calibration and CV (Fig. 4a–b). A decreasing
trend was obtained for increase in the time lag from 0 to 8 days, and
the R2 values for the CV fluctuated between approximately 40% and
60% as the time lag increased from 10 to 60 days in the GAM. Further-
more, a comparison between the observations and the modeled values
Fig. 4. Predictability of the daily chlorophyll a concentration by (a) a generalized additive mode
red lines represent the R2 of the cross-validation.
obtainedwith the calibration and CV is shown in Fig. 5 for time lag of 30
and 60 days. Both the RF and GAM showed better performance at daily
than at monthly timescales, but irrespective of the timescale, the RF
generally performed better than the GAM (Fig. 5a–d and e–h).

To reveal themechanistic causes for the predictions, we assessed the
relative importance of the five selected drivers. Based on both the RF
and GAM predictions at a monthly scale, TP was identified as the most
important driver, followed by T and NH4

+-N (Fig. 6). The results of the
GAM and RF indicated that TP and T are the twomost important predic-
tors. The GAM indicated that NH4

+-N and T had nearly identical impor-
tance, whereas the RF showed that the wind speed was the third most
important driver. The results of the GAM showed that TN and wind
had the lowest importance of all the predictors, whereas the RF results
showed that TN and NH4

+-N exhibited the lowest importance of all the
predictors.

For daily predictions, both models indicated that temperature was
the most important predictor driving phytoplankton fluctuations
when there was no time lag (Fig. 7). The relative importance of the
other drivers corresponded to the above-described results: NH4

+-N
was the second most important driver, and wind had the least
l and (b) a random forest model. The blue lines represent the R2 of the calibration, and the
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Image of Fig. 4
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importance.With different time lags, bothmodels showed that temper-
aturewas themajor predictor (Fig. 7). However, the relative importance
of the other predictors for different time lags differed between the two
models but remained consistent for all tested time lags among the
models (Fig. 7). For example, in the twomodels, the importance of tem-
perature showed a decreasing trend, whereas that of wind showed an
increasing trend. Furthermore, we found that the mean decrease in
the MSE of TP was comparable to those of TN and NH4

+-N.
Fig. 6. Predicted relative importance of the five selected variables at a mon
The relative importance of the five drivers at a monthly scale and
daily scale identified temperature as the most important predictor in
driving the daily phytoplankton fluctuations and TP as the most impor-
tant predictor in driving the monthly phytoplankton fluctuations
(Figs. 6 and 7).

We also generated a weekly dataset from the daily dataset (Appen-
dix S3). The R2 of the CV were all unsatisfactory (when lag N 1 week, all
R2 b 40%, Appendix S4) for both the RF and GAM. In addition,
thly resolution by the random forest and generalized additive models.

Image of Fig. 5
Image of Fig. 6


Daily Variable Importance Measure: Random Forest Model
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Daily Variable Importance Measure: Generalized Additive Model
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Fig. 7. Predicted relative importance of thefive selected variables at a daily resolution by the random forest and generalized additivemodels. The variable importance results measured for
a forecasting lag time ranging from 0 to 60 days are also shown.
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temperature was identified the best predictor of weekly phytoplankton
fluctuations and exceeded the impact of nutrients (Appendix S5).

4. Discussion

The difficulty associatedwith theuse of daily data is access to contin-
uous in situ data provided by a buoy. Although such buoys and contin-
uous recordings are becoming more sophisticated and accurate and
cover an increasing number of parameters, they are still far from having
the ability to include all relevant parameters. In addition, themodels in-
vestigated in this study performed well, even potential determinants of
phytoplankton development, such as solar radiation, orthophosphate
and grazing were not included in this study. This finding indicates that
the five selected drivers can satisfactorily explain phytoplankton fluctu-
ations and other potential factorsmight not be themain drivers. In gen-
eral, daily data performed better than monthly data, and this finding
was obtained for both the RF and GAM. The R2 of the CV had peaks at
14, 32, 45 and 57 lag days (Fig. 4a), suggesting that time-lag models
have the potential to provide reliable predictions, even over a 2-
month period. To some extent, this finding could indicate that daily
weather is not completely random, i.e., that there are periods of high
and low temperatures (Appendix S6-e). These results might also sug-
gest that phytoplankton growth in a given period is better reflected by
the internal stores of P than the daily nutrient inputs. Another possibil-
ity is simply that nutrients are found at excess concentrations during
most of the growing season (Appendix S6) due to strong external inputs
or turbulentmixing from the sediments, whereas the air temperature is
more variable. Moreover, light and photoperiods combined with water
temperature might explain the time lag between phytoplankton and
water temperature fluctuation. For example, temperature is suitable
for phytoplankton growth, whereas photoperiods cannot support the
phytoplankton growth.When both temperature and light are favorable
for phytoplankton growth, the phytoplankton will grow rapidly, which
causes a time lag between the phytoplankton and temperature fluctua-
tions. Furthermore, the temperature profiles in lakes depend on solar
radiation, air temperature and wind mixing, and although the phyto-
plankton growth rates may exceed 1 d−1, there will always be a time
lag between temperature changes and biomass responses. Changes in
phytoplankton growth also depend on temperature, and although in-
creases in the low or intermediate temperatures promote cell division
and biomass development (provided there are sufficient nutrients), in-
creases in temperature above a maximum threshold might reduce bio-
mass if the respiratory losses exceed the C-fixation rates. Furthermore,
temperature is always considered a proxy for a longer photoperiod,
solar radiation, high atmospheric pressure, and low hydrodynamic for
phytoplankton growth.

The RF model is a black box model that cannot separate positive or
negative effects and simply provides thenet impact of temperature. Fur-
thermore, although water temperatures reflect air temperatures, these
dampen the temporal variations (Piccolroaz et al., 2013), as observed
in this study (Appendix S6-e).

At both monthly and daily scales, the RF had a higher R2 than the
GAM, and this findingwas obtained for both the CV and the calibration.
This finding suggests that the RF showed increased predictive power
than the GAM in a freshwater environment. At amonthly scale, the per-
formance of the CV decreased with increases in the time lag and per-
formed poorly with a time lag of 3 month. This result contrasts with
those obtained in coastal research (Blauw et al., 2018), which could be
due to differences between marine and freshwater sites, the inclusion
of the effects of predictor time lag in our study and site-specific
properties.

Monthly monitoring programs prevail in many countries and have
been implemented as routine elements of environmental monitoring.
These programs are helpful to reveal long-term trends of eutrophication
and phytoplankton fluctuations. With monthly datasets, we can study
the impact of global changes on phytoplankton fluctuations because

Image of Fig. 7
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the timescale enables the removal of environmental noise. However, ac-
cording to the findings of this study, monthly monitoring programs are
insufficient for predicting an algal bloom in advance. Therefore, the fluc-
tuation of drivers at a short scale should not be dismissed as environ-
mental noise, and a daily or shorter than daily monitoring program is
necessary for forecasting and managing algal blooms.

The comparison of the relative importance of five drivers at a
monthly scale with that at a daily scale revealed that temperature was
the most important predictor of phytoplankton fluctuations at a daily
scale and that TP was the key predictor of phytoplankton fluctuations
at a monthly scale. These findings are in agreement with previous stud-
ies (Rigosi et al., 2014). Although nutrients are undoubtedly the ulti-
mate drivers of algal biomass and thus determine seasonal biomass
(e.g., spring blooms) and inter-lake differences, the temperature has
twomajor roles in determining biomass. On the onehand, at a given nu-
trient level, increases in temperature promote the metabolic rate and
cell division of phytoplankton and boost productivity, but these effects
are only observed when the temperatures are below an optimal level
for phytoplankton growth. Air temperatures might show substantial
fluctuations at a daily timescale, but thewater temperature fluctuations
are dampened. Thus, a few days of high temperatures will result in the
accumulation of heat in the upper water layers and might thereby pro-
mote phytoplankton growth and biomass build-up over extended pe-
riods. On the other hand, the temperature might be influenced by
light or photoperiods. Light impacts the thermal balance and thus indi-
rectly influences the temperature, and the resulting temperature deter-
mines the phytoplankton fluctuation. Elevated temperatures could also
affect long-term phytoplankton development by promoting a stronger
thermocline and thus reducing the vertical mixing of nutrients (Jacob,
2002). Notably, the peak Chl-a on 1st July was followed by amarked in-
crease in TP and a decline in NH4

+-N (Fig. 2b and Appendix S6b-c). This
might be explained by the input of nonpoint source N and P into the
YQR in summer (Chun et al., 2017) and the absorption of P onto parti-
cles, which would result in a lack of bioavailable P (Zhang et al.,
2017a). Moreover, the second peak of Chl-a on 1st September was
followed by a marked increase in TN (Fig. 2b Appendix S6a), which
might be explained by the fact that water transfer was the largest TN
source in autumn in the YQR (Chun et al., 2017): TN was introduced
through upstream water transfer into the YQR in autumn, and these
water-transferred TN stimulated the growth of phytoplankton.

Although the full mechanistic underpinnings for the predictive
strength of daily observations remains to be settled, the predictions
from the two independentmodels established in this study are fairly ro-
bust and suggest a strong importance of temperature in the predictions
of phytoplankton (with nutrients remaining the ultimate long-term de-
terminants of actual phytoplankton levels). Thus, predictions should
pay more attention to temperature when studying short-term fluctua-
tions in phytoplankton levels, whereas nutrients are more important
in regulating phytoplankton fluctuations at longer timescales
(e.g., monthly).

We also analyzed a weekly dataset (Appendix S3), but the weekly
results need to be interpreted with caution because the data size at
the weekly scale was less than that at a daily scale (daily scale: n =
245, weekly scale: n = 35). As shown in Appendix S4, the weekly
dataset resulted in poor predictability, regardless of the model used,
which was similar to the findings obtained at the monthly scale. These
results indicate that short-term fluctuations facilitate the prediction of
phytoplankton fluctuations that cannot be captured by the weekly fluc-
tuations of drivers. In both the RF and GAM, temperature is a more im-
portant predictor in driving weekly phytoplankton fluctuations than
nutrients (Appendix S5), and this result is consistentwith that obtained
at the daily scale.

Another outcome of this study is that in the YQR, TPwas found to be
a stronger predictor than TN and NH4

+-N (Fig. 6) at a monthly scale.
However, at a daily scale, the importance of TP was generally compara-
ble to that of N, which indicates that the temporal scale might impact
the relative roles of P and N. Although the roles of N and P limitation
in autotroph growth have been continuously debated (Conley et al.,
2009; Elser et al., 2009; Gardner et al., 2017; Schindler, 2012;
Schindler et al., 2016; Schindler et al., 2017), previous studies have
omitted the impact of temporal scales on the relative roles of P and N.
The findings from this study could also reflect different uptake and cel-
lular turnover rates for N and P, but because we only have TP data, the
mechanistic causality of this temporal effect remains speculative.

Although ourfindings are based on a specific reservoir and the appli-
cability of these results for other freshwaters should be judged with
some caution, we believe that our findings have general relevance for
large, shallow and nutrient-rich water bodies.
5. Conclusion

Using the RF and GAMmethods, this study assessed the predictabil-
ity of phytoplankton fluctuations and compared the relative importance
of five drivers atmonthly and daily scales. The results revealed that both
the RF and GAM demonstrated better phytoplankton predictability at a
daily scale than at a monthly scale. Moreover, at both the monthly and
daily scales, the RF exhibited a higher R2 for both the CV and calibration
than the GAM. The relative importance assessment results indicated
that water temperature was a more important predictor than nutrients
of daily phytoplankton fluctuations, and this finding was obtained with
both the RF and GAM. However, at a monthly scale, nutrients (TP) were
identified as amore important predictor thanwater temperature in reg-
ulating phytoplankton fluctuations. In addition, at a monthly scale, P
was found to be a more important predictor than N, but at a daily
scale, the importance of P and that of N were comparable in the fresh-
water reservoir. These results provide a reference for the monitoring
of phytoplankton fluctuations and for understanding the mechanisms
underlying phytoplankton fluctuations at different timescales.
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