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Abstract
Many	of	 the	world’s	 fisheries	are	unassessed,	with	 little	 information	about	population	
status	or	risk	of	overfishing.	Unassessed	fisheries	are	particularly	predominant	in	develop-
ing	countries	and	 in	 small-	scale	 fisheries,	where	 they	are	 important	 for	 food	security.	
Several	catch-	only	methods	based	on	time	series	of	fishery	catch	and	commonly	available	
life-	history	traits	have	been	developed	to	estimate	stock	status	(defined	as	biomass	rela-
tive	to	biomass	at	maximum	sustainable	yield:	B/BMSY).	While	their	stock	status	perfor-
mance	has	been	extensively	studied,	performance	of	catch-	only	models	as	a	management	
tool	is	unknown.	We	evaluated	the	extent	to	which	a	superensemble	of	three	prominent	
catch-	only	 models	 can	 provide	 a	 reliable	 basis	 for	 fisheries	 management	 and	 how	
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1  | INTRODUC TION

Determining	 population	 status	 is	 a	 key	 step	 in	 managing	 fish	
stocks	 effectively.	 Approximately	 53%	of	 global	 reported	 catch	
is	accounted	for	in	the	RAM	Legacy	Stock	Assessment	Database	
(Costello	 et	al.,	 2016;	 RAM	Legacy	 Stock	Assessment	Database	
2017;	 Ricard,	 Minto,	 Jensen,	 &	 Baum,	 2012).	 A	 quarter	 of	 the	
remaining	 global	 reported	 catch	 has	 undergone	 some	 form	 of	
data-	limited	 stock	 assessment	 (FAO	 2016),	 while	 22%	 remains	
unassessed,	 with	 little	 information	 about	 population	 status	 or	
risk	of	overfishing.	This	 is	a	conservative	estimate,	not	account-
ing	 for	 unreported	 stocks.	 These	 data-	limited	 stocks	 make	 up	
an	 increasing	 proportion	 of	 global	 reported	 catch	 over	 time,	
from	20%	to	47%	in	the	last	60	years	(Vasconcellos	&	Cochrane,	
2005),	 contributing	 to	 a	 significant	 proportion	 of	 food	 produc-
tion,	 particularly	 in	 developing	 countries.	 However,	 manage-
ment	 of	 data-	limited	 stocks	 also	 poses	 a	 problem	 in	 developed	
regions	 of	 the	 world.	 In	 the	 United	 States,	 70%	 of	 stocks	 are	
managed	 using	 “data-	limited	 methods”	 (Newman,	 Berkson,	 &	
Suatoni,	2015),	and	 in	 the	European	context,	165	of	262	stocks	
for	which	the	International	Council	for	the	Exploration	of	the	Sea	
(ICES)	 provides	 advice	 are	 considered	 data-	limited,	 precluding	
absolute	 estimates	of	 stock	 status	 in	 their	 existing	MSY	 frame-
work	 (ICES	Advisory	Committee	2017).	Furthermore,	 legislative	
requirements	 in	 the	 United	 States,	 Australia	 and	 the	 European	
Union	 require	 catch	 limits	 or	 other	 harvest	 strategies	 to	 be	 set	
for	 many	 of	 these	 data-	limited	 stocks,	 which	 has	 spurred	 the	
development	 of	 assessment	methods	 and	 harvest	 control	 rules	
(HCRs)	to	meet	this	mandate	(Chrysafi	&	Kuparinen,	2015;	 ICES	
Advisory	Committee	2012;	Newman	et	al.,	 2015).	While	 a	 typi-
cal	“data-	rich”	stock	assessment	includes	life-	history	information,	
catch	time	series,	abundance	indices,	and	age	or	size	composition,	

performance	compares	across	management	strategies	that	control	catch	or	fishing	effort.	
We	used	a	management	strategy	evaluation	framework	to	determine	whether	a	super-
ensemble	of	catch-	only	models	can	reliably	inform	harvest	control	rules	(HCRs).	Across	
five	simulated	fish	life	histories	and	two	harvest-	dynamic	types,	catch-	only	models	and	
HCR	combinations	reduced	the	risk	of	overfishing	and	increased	the	proportion	of	stocks	
above	 BMSY	 compared	 to	 business	 as	 usual,	 though	 often	 resulted	 in	 poor	 yields.	
Precautionary	HCRs	based	on	fishing	effort	were	robust	and	insensitive	to	error	in	catch-	
only	models,	while	catch-	based	HCRs	caused	high	probabilities	of	overfishing	and	more	
overfished	populations.	Catch-	only	methods	tended	to	overestimate	B/BMSY	for	our	simu-
lated	data	sets.	The	catch-	only	superensemble	combined	with	precautionary	effort-	based	
HCRs	could	be	part	of	a	stepping	stone	approach	for	managing	some	data-	limited	stocks	
while	working	towards	more	data-	moderate	assessment	methods.

K E Y W O R D S

catch-only	model,	data-limited,	data-poor,	harvest	control	rule,	management	strategy	
evaluation,	superensemble



     |  3WALSH et AL.

data-	limited	assessment	and	HCR	approaches	vary	 in	 their	data	
requirements	 and	 are	 typically	 based	 on	 only	 one	 or	 two	 of	
these	data	streams	(e.g.,	see	Carruthers	et	al.,	2014;	Geromont	&	
Butterworth,	2015).	Here	we	focus	on	the	application	of	catch-
based	approaches.	Data-limited,	catch-based	methods	for	assess-
ment	and	management	differ	in	terms	of	their	data	requirements,	
assumptions,	and	outputs	(Table	1).	

Many	data-	limited	stocks	are	managed	with	“empirical”	harvest	
strategies,	which	use	indicators	to	inform	managers	of	whether	and	
how	they	should	adjust	catch	or	effort,	without	ever	directly	estimat-
ing	stock	status.	Static	versions	of	empirical	HCRs	do	not	consider	
population	 processes	 estimated	 from	 stock	 assessment	models	 or	
auxiliary	data	types	but	scale	the	catch	(or	effort)	limit	based	on	em-
pirical	observations	and	prespecified	scalar	adjustments	(Carruthers	
et	al.,	2014).

Some	“empirical”	catch-	based	approaches	rely	directly	on	catch	
histories	and	may	include	auxiliary	data	types	such	as	expert	judg-
ment,	life-	history	information	or	fishery-	dependent	indicators	such	
as	changes	 in	effort,	 size	composition,	species	composition	or	dis-
tribution	(Dowling	et	al.,	2015;	Newman	et	al.,	2015).	In	the	United	
States,	52%	of	managed	stocks	used	only	catch	data	to	calculate	the	
legislated	allowable	catch	limits	(Berkson	&	Thorson,	2014),	such	as	
setting	a	catch	limit	based	on	the	median	catch	over	the	past	10	years	
of	fishing.	However,	these	static	catch-	based	HCRs	can	result	in	high	
probabilities	of	overfishing,	and	subsequent	low	B/BMSY or low yield 
across	most	simulated	life-	history	traits	(Carruthers	et	al.,	2014).

Empirical	catch-	only	HCRs	can	be	extended	to	combine	the	
catch	 time	 series	 with	 expert	 knowledge	 on	 categorical	 stock	
status	to	 inform	catch	 limits,	 including	the	Only	Reliable	Catch	
Series	 (ORCS;	 Berkson,	 Barbieri,	 Cadrin,	 &	 Trianni,	 2011),	 the	
Restrepo	 method	 (Restrepo	 et	al.,	 1998)	 and	 the	 depletion-	
adjusted	 catch	 scalar	 method	 (DACS;	 Berkson	 et	al.,	 2011;	
Carruthers	 et	al.,	 2014)	 (Table	1).	 These	 methods	 can	 be	 con-
sidered	dynamic	if	they	scale	the	catch	limits	according	to	rules	
based	on	a	categorical	estimate	of	biomass	status	(overexploited,	
fully	 exploited	 or	 underexploited)	 from	 expert	 knowledge	 or	
survey	 questions,	 and	 can	 be	 updated	 as	 new	 information	 is	
collected.	 In	 past	 simulated	 management	 strategy	 evaluations	
(MSEs),	DACS	had	an	intermediate	level	of	performance,	but	was	
not	able	to	avoid	overfishing	(Carruthers	et	al.,	2014),	while	the	
ORCS	 and	 Restrepo	methods	were	 conservative,	 but	 had	 high	
probabilities	 of	 overfishing	 if	 the	 stock	was	 incorrectly	 classi-
fied	 due	 to	 overly	 optimistic	 status	 estimates	 (Wiedenmann,	
Wilberg,	&	Miller,	2013).	A	revised	version	of	the	ORCS	method	
shows	improved	status	estimation	accuracy	using	boosted	clas-
sification	trees	and	the	historical	catch	statistics	and	scalars	that	
performed	best	when	compared	to	data-	rich	assessments	(Free,	
Jensen,	Wiedenmann,	&	Deroba,	2017),	but	the	method	has	not	
yet	been	evaluated	through	an	MSE.

Other	 methods	 for	 assessment	 and	 setting	 catch	 limits,	 in-
cluding	 depletion-	based	 stock	 reduction	 analysis	 (DB-	SRA;	Dick	
&	MacCall,	2011)	and	depletion-	corrected	average	catch	 (DCAC;	
MacCall,	 2009),	 appear	 to	 provide	 more	 reliable	 estimates	 of	

sustainable	 catch	 and	 result	 in	 more	 effective	 management	
than	 the	 latter	 empirical	 HCRs	 (Carruthers	 et	al.,	 2014).	 These	
depletion-	based	methods	estimate	sustainable	catch	using	under-
lying	population	models	(e.g.,	production	models,	stock	reduction	
analysis)	that	require	information	on	fishing	mortality	at	maximum	
sustainable	yield	 (FMSY)	and	estimates	of	current	depletion,	mak-
ing	 their	 data	 requirements	 prohibitive	 for	 many	 stocks.	 While	
estimates	of	current	depletion	may	come	 from	expert	elicitation	
(Chrysafi,	Cope,	&	Kuparinen,	2017),	if	this	information	is	unavail-
able,	unreliable	or	too	uncertain	to	be	meaningful,	the	ORCS	and	
Restrepo	 methods	 have	 been	 recommended	 for	 use	 (Berkson	
et	al.,	2011;	Wiedenmann	et	al.,	2013).	However,	despite	dynamic	
adjustments,	these	empirical	catch-	based	HCRs	can	result	in	high	
probability	of	overfishing,	 low	biomass	or	 low	yields	 (Carruthers	
et	al.,	2014).	 In	short,	 it	 is	difficult	to	provide	robust	and	reliable	
management	 advice	 for	 data-	limited	 stocks,	 despite	 a	 diverse	
array	of	catch-	only	methods	to	choose	from	(Table	1).

A	group	of	data-	limited	methods,	referred	to	here	as	“catch-	only	
models,”	are	model-	based	dynamic	methods	that	assess	stock	sta-
tus	based	primarily	on	catch	data	(Table	1).	These	catch-	only	models	
produce	estimates	of	stock	status,	for	example,	total	population	bio-
mass	relative	to	biomass	at	maximum	sustainable	yield,	B/BMSY and 
some	 relevant	biological	 and	 fishing	 reference	points	 for	manage-
ment	 (e.g.,	MSY).	Catch-	only	models	require	a	time	series	of	catch	
data	 (i.e.,	 landings	 plus	 discards)	 and	 basic	 life-	history	 parameters	
and	can	be	applied	when	estimates	of	current	depletion,	fishing	ef-
fort,	biological	survey	data	or	length	or	age	composition	of	the	catch	
are	not	available.	Rosenberg	et	al.	(2014)	tested	the	performance	of	
four	catch-	only	models	on	a	simulated	stock	data	set	 including:	 (a)	
“Catch	MSY”	 (CMSY)	developed	by	Martell	and	Froese	 (2013)	and	
slightly	modified	 in	Rosenberg	et	al.	 (2014),	 (b)	a	catch-	only	model	
using	 sampling	 importance	 resampling	 (COMSIR:	 Vasconcellos	 &	
Cochrane,	 2005),	 (c)	 a	modified	 panel	 regression	model	 fit	 to	 the	
RAM	 Legacy	 stock	 assessment	 database	 (mPRM:	 Costello	 et	al.,	
2012),	 and	 (d)	 a	 state-	space	 catch-	only	 model	 (SSCOM:	 Thorson	
et	al.,	2013).	The	authors	found	that	the	models	often	provided	bi-
ased	and	conflicting	estimates	of	stock	status,	and	none	of	the	 in-
dividual	methods	consistently	performed	best	across	all	simulation	
scenarios	tested	(Rosenberg	et	al.,	2014).

Ensembles	and	superensembles	can	account	for	the	uncertain-
ties	and,	 in	part,	 the	biases	associated	with	each	 individual	model	
(Anderson	et	al.,	2017).	Ensemble	models	calculate	the	mean	of	in-
dividual	model	estimates.	Superensembles,	however,	use	the	status	
estimates	from	individual	catch-	only	models	as	data	in	an	additional	
statistical	model	(e.g.,	a	linear	model	or	a	machine-	learning	model)	fit-
ted	to	an	independent	data	set	(Anderson	et	al.,	2017;	Krishnamurti,	
1999).	 Using	 a	 training	 data	 set	 of	 stocks	with	 known	 population	
status,	the	superensemble	“learns”	when	the	underlying	models	per-
form	well	and	incorporates	this	information	when	estimating	status	
of	an	unassessed	stock	of	interest.	Anderson	et	al.	(2017)	combined	
the	output	(B/BMSY	estimates)	from	the	four	catch-	only	methods	in	
four	superensemble	models	and	found	that	the	random	forest	supe-
rensemble	 led	 to	 the	greatest	 increase	 in	accuracy	of	stock	status	
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estimates	 (Anderson	et	al.,	2017).	The	use	of	multiple	data-	limited	
models	 to	 inform	 fishery	 management	 is	 not	 unusual;	 for	 exam-
ple,	catch	limits	for	black	sea	bass	in	the	mid-	Atlantic	region	of	the	
United	States	were	set	based	on	an	average	of	estimates	obtained	
through	the	DLMtool	(Carruthers	&	Hordyk,	2017;	McNamee,	Fay,	&	
Cadrin,	2016).	However,	superensembles	can	perform	better	than	a	
simple	model	average	(Anderson	et	al.,	2017),	making	them	a	poten-
tially	useful	new	tool	for	managing	data-	limited	stocks.

While	 the	 performance	 of	 this	 suite	 of	 catch-	only	models	 and	
their	 superensembles	 for	 estimating	 stock	 status	 has	 been	 exten-
sively	 evaluated	 (Anderson	 et	al.,	 2017;	 Rosenberg	 et	al.,	 2014,	
2017),	these	studies	did	not	test	whether	these	individual	methods	
or	the	superensemble	were	suitable	for	guiding	management.	This	
study	 aims	 to	 advance	 understanding	 of	 the	 utility	 of	 catch-	only	
models	by	examining	 the	ability	of	a	 superensemble	of	 catch-	only	
methods	to	effectively	inform	HCRs	and	provide	the	basis	for	man-
agement	 advice.	 Specifically,	 we	 use	 the	 B/BMSY	 status	 estimates	
from	 a	 random	 forest	 superensemble	 of	 three	 catch-	only	 models	
(CMSY,	 COMSIR	 and	 mPRM)	 to	 inform	 a	 set	 of	 HCRs	 (Gabriel	 &	
Mace,	1999)	that	control	either	(a)	input	(i.e.,	fishing	effort)	or	(b)	out-
put	(i.e.,	catches)	of	the	fishery.	We	evaluate	how	well	these	model-	
based	catch-	only	management	strategies	maintain	or	recover	stocks	
towards	 target	 biomass	 levels	 (BMSY)	 and	 avoid	 severe	 population	
declines	or	overfishing	while	sustaining	high	yields.	In	doing	so,	we	
seek	to	identify	whether	and	when	they	are	reliable,	or	whether	they	
should	be	avoided	in	practice.

2  | METHODS

Our	 analysis	 follows	 the	 simulation	 component	 of	 an	MSE	 frame-
work	(Kell	et	al.,	2007;	Punt,	Butterworth,	de	Moor,	De	Oliveira,	&	
Haddon,	2014)	consisting	of	five	steps	(Figure	1):	(a)	develop	a	simu-
lated	operating	model	representing	the	population	dynamics	of	five	
fish	stocks,	(b)	use	a	superensemble	of	catch-	only	models	to	assess	
population	 status	 and	 estimate	 fishery	 reference	 points	 of	 these	
simulated	 stocks,	 (c)	 apply	 catch	 or	 effort	 limits	 for	 management	
using	four	HCRs	and	a	business	as	usual	scenario,	based	on	the	su-
perensemble	status	estimates,	(d)	project	the	effect	of	HCRs	on	the	
simulated	stocks	for	5-		and	for	20-	year	scenarios	and	(e)	evaluate	the	
performance	of	the	catch-	only	models	under	different	HCRs,	based	
on	biologically	sustainable	fishery	objectives.

2.1 | Step 1: Develop operating models to 
simulate stocks

We	 simulated	 stocks	 based	 on	 life-	history	 characteristics	 of	 five	
marine	fish	species	from	two	different	geographical	regions	of	the	
east	 Pacific	 Ocean	 (Supporting	 Information	 Table	 S1).	 We	 mod-
elled	three	species	occurring	on	the	west	coast	of	the	United	States	
and	 Canada:	 bocaccio	 rockfish	 (Sebastes paucispinis,	 Sebastidae),	
Pacific	sardine	(Sardinops sagax caerulea,	Clupeidae)	and	petrale	sole	
(Eopsetta jordani,	Pleuronectidae);	and	two	species	occurring	in	the	

Eastern	 Tropical	 Pacific	 Seascape	 (ETPS;	 the	 exclusive	 economic	
zones	of	Panama,	Costa	Rica,	Colombia	and	Ecuador):	corvina	reina	
(Cynoscion albus,	Sciaenidae)	and	skipjack	tuna	(Katsuwonus pelamis,	
Scombrinae).	These	species	were	selected	because	they	are	of	eco-
nomic	importance	in	their	respective	regions	and	represent	a	variety	
of	life-	history	traits	with	which	to	test	the	catch-	only	superensemble	
methods.

Fishing	mortality	was	simulated	using	two	scenarios	of	effort	
dynamics	in	the	operating	model	(Figure	1),	for	example,	the	“one-	
way	 trip”	 and	 “bioeconomic	 coupling.”	 In	 the	one-	way	 trip	 (OW)	
scenario,	the	harvest	rate	continually	increased	over	time,	so	that	
it	would	reach	80%	of	Fcrash	(i.e.,	the	lowest	fishing	mortality	rate	
that	drives	spawning	stock	biomass	to	0	in	an	equilibrium	model)	at	
the	end	of	the	80-	year	simulation	period	(i.e.,	60	years	preassess-
ment	 and	 20	years	 of	 postassessment	 management).	 The	 effort	
dynamics	with	bioeconomic	coupling	(ED03)	scenario	represented	
an	open-	access	single-	species	fishery,	where	the	fishing	mortality	
was	 determined	 by	 the	 biomass	 and	 effort	 in	 the	 previous	 year	
(Rosenberg	 et	al.,	 2014;	 Thorson	 et	al.,	 2013).	We	 used	 the	 fol-
lowing	equation	for	effort:	Et+1=Et

(

Bt

aBMSY

)x

,	where	Et	is	the	fishing	
mortality	(harvest	rate)	at	time	t,	B	is	total	stock	biomass,	a	is	the	
proportion	of	BMSY	at	which	bioeconomic	equilibrium	occurs	(set	
at	a = 0.5),	and	x	 is	an	exponent	 that	determines	 the	strength	of	
coupling	between	effort	 and	 changes	 in	biomass	 (set	 at	x = 0.3).	
We	 use	 both	OW	 and	 ED03	 scenarios	 because	 effort	 dynamics	
have	been	documented	in	only	41%	of	assessed	stocks	in	the	RAM	
Legacy	 database	 (Szuwalski	 &	 Thorson,	 2017),	 yet	 can	 strongly	
influence	 the	performance	of	 the	 catch-	only	models	 (Rosenberg	
et	al.,	 2014:	 Mosqueira	 I.	 et	al.	 unpublished	 data).	 Here,	 we	 as-
sumed	 harvest	 rate	 is	 proportional	 to	 fishing	 effort,	 given	 fixed	
catchability	and	instantaneous	fishing.

Each	of	the	10	simulated	scenarios	(across	five	species	and	two	
effort	dynamics)	had	a	fishing	history	of	60	years	and	was	replicated	
600	 times	 (Figure	1).	 Variation	 across	 iterations	 within	 a	 scenario	
was	generated	by	simulating	annual	recruitment	variability,	as	well	
as	variation	in	fishing	mortality	and	implementation	error.	Additional	
description	 of	 these	 methods	 is	 included	 in	 the	 Supporting	
Information.

We	extracted	the	catch	data	required	for	the	catch-	only	models	
(described	in	the	following	step)	by	adding	observation	error	to	the	
simulated	time	series	of	catch.	We	assumed	only	the	 last	20	years	
of	fishing	had	been	recorded,	even	though	fishing	had	occurred	for	
40	years	prior	to	data	collection.	This	was	to	mimic	a	realistic	catch	
time	series	and	length	of	fishing	history	currently	available	for	sev-
eral	 unassessed	 stocks	 (although	 this	may	 be	 optimistic	 for	many	
fisheries	 in	 developing	 countries).	 Different	 levels	 of	 observation	
error	were	added	to	the	catch	data	to	reflect	possible	differences	in	
resources	and	capacity	available	for	recording	landings	and	estimat-
ing	discards	 in	each	geographic	 region:	US/Canadian	 fisheries	had	
log-	normal	errors	where	σC =	0.2,	and	ETPS	fisheries	had	log-	normal	
errors	where	σC =	0.5	(Agnew	et	al.,	2009).	We	also	tested	a	scenario	
that	included	bias	in	the	catch	data	to	account	for	illegal,	unreported	
and	unregulated	fishing	(IUU).	In	the	underreporting	scenario	(UR),	
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US/Canadian	stocks	had	20%	negative	bias	in	the	catch	data	consis-
tent	across	all	years	 (i.e.,	80%	of	true	catch),	and	ETPS	stocks	had	
50%	negative	bias,	constantly	applied	across	all	years.

2.2 | Step 2: Stock assessment using a catch- only 
superensemble

We	 estimated	 the	 status	 (B/BMSY)	 for	 each	 simulation	 replicate	
(600	 iterations	 for	 each	 of	 10	 scenarios)	 using	 a	 superensemble	
model	of	three	catch-	only	methods,	previously	selected	and	tested	
in	 Rosenberg	 et	al.	 (2014)—Catch	 MSY	 (CMSY;	 Martell	 &	 Froese,	
2013),	the	catch-	only	model	using	sampling	importance	resampling	
(COMSIR;	Vasconcellos	&	Cochrane,	2005)	and	a	modified	panel	re-
gression	model	(mPRM;	Costello	et	al.,	2012).	Descriptions	of	each	
model	are	provided	in	Rosenberg	et	al.	(2014,	2017)	and	Anderson	
et	al.	 (2017).	 A	 state-	space	 catch-	only	 model	 (SSCOM:	 Thorson	
et	al.,	2013)	is	another	candidate	catch-	only	method	that	estimates	
B/BMSY	that	was	included	in	Rosenberg	et	al.	(2014),	but	its	relatively	
long	computational	run-	time	prohibited	its	inclusion	in	this	analysis.	
The	inputs	 into	the	individual	catch-	only	models	were	the	20-	year	
catch	time	series	(extracted	from	the	operating	model	with	observa-
tion	error,	with	or	without	bias)	and	basic	life-	history	traits,	such	as	
resilience	of	the	species	 (Musick,	1999)	and	broad	species	catego-
ries	(e.g.,	tuna,	sardine).	The	priors	used	for	CMSY	and	COMSIR	are	

described	 in	 the	Supporting	 Information.	The	CMSY	and	COMSIR	
catch-	only	models	produce	posterior	distributions,	and	we	used	the	
medians	of	these	posterior	distributions	as	“estimates	of	status”	 in	
the	ensemble	model.	The	default	model	settings	were	used	 for	all	
priors,	 parameters	 and	 sample	 sizes,	 described	 in	Rosenberg	et	al.	
(2014)	 and	 implemented	 using	 the	 “datalimited”	 package	 (https://
github.com/datalimited/datalimited)	 in	 R	 (R	 Development	 Core	
Team	2005).

The	 estimates	 of	 B/BMSY	 status	 from	 each	 catch-	only	 model	
were	then	used	as	inputs	to	a	random	forest	superensemble	model.	
Although	there	are	a	variety	of	methods	that	can	be	used	to	develop	
a	 superensemble,	 we	 chose	 the	 random	 forest	 machine-	learning	
model	 because	 it	was	 one	 of	 the	 top	 performing	 superensembles	
(lowest	bias	and	highest	accuracy)	among	the	options	tested	against	
a	simulated	data	set	and	a	global	compilation	of	stock	assessments	
in	the	RAM	Legacy	database	(Anderson	et	al.,	2017).	The	superen-
semble	model	contained	five	covariates:	the	average	stock	status	of	
the	 last	5	years	

(

t∈
{

56,… ,60
})

	 estimated	 from	each	of	 the	 three	
individual	 catch-	only	models	 and	 two	 variables	 that	 characterized	
the	spectral	densities	of	the	catch	time	series	at	5-		and	20-	year	cy-
cles	 (i.e.,	 frequencies	of	0.20	and	0.05).	Superensembles	 require	a	
training	data	set	with	known	(or	true)	values	of	status.	In	this	case,	
we	 trained	 the	 superensemble	with	 the	 full	 factorial	 data	 set	 (i.e.,	
with	 all	 combinations	 of	 different	 life-	history,	 data-	quality	 and	

F IGURE  1 Flow	diagram	of	the	
management	strategy	evaluation	
framework	used	to	evaluate	the	
performance	of	catch-	only	harvest	
strategies	and	description	of	simulated	
and	management	scenarios	tested

https://github.com/datalimited/datalimited
https://github.com/datalimited/datalimited
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harvest-	dynamic	characteristics	considered	in	the	simulation	set-	up)	
that	was	simulated	independently	(Anderson	et	al.,	2017;	Rosenberg	
et	al.,	2014)	and	is	not	otherwise	used	in	this	study.	We	applied	the	
random	 forest	 models	 using	 the	 “randomForest”	 R	 package,	 with	
1000	trees	per	run	(Breiman,	2001).

2.3 | Step 3: Fine- tune and apply harvest 
control rules

We	used	status	estimates	from	the	catch-	only	superensemble	and	
five	 HCR	 scenarios	 (Figure	2)	 to	 set	 future	 catch	 or	 effort	 limits.	
These	 catch	or	 effort	 limits	were	 determined	using	 the	 estimated	
stock	 status	 (B/BMSY)	averaged	over	 the	 last	 five	years	before	 the	
assessment	from	the	superensemble.	The	first	two	HCRs	were	de-
signed	to	achieve	a	target	fishing	mortality	(FMSY)	by	controlling	fish-
ing	effort,	 using	either	 (a)	 a	modified	40-	10	 rule	or	 (b)	 a	 step	 rule	
(description	below,	Figure	2,	Supporting	Information	Tables	S2	and	
S3).	Two	other	HCRs	were	designed	to	achieve	a	target	catch	(MSY)	
by	controlling	for	catches,	using	either	(a)	a	modified	40-	10	rule	or	
(b)	a	step	rule.	We	compared	these	four	HCRs	with	a	“business	as	
usual”	 (BAU)	 scenario,	 which	 simulated	 a	 situation	where	 no	 new	
management	would	take	place	after	the	assessment,	 following	the	
underlying	effort	dynamics	of	the	operating	model	(either	a	one-	way	
trip	or	a	system	with	bioeconomic	coupling).	In	practice,	catch-	based	
HCRs	 are	 often	 implemented	 through	 quotas,	 for	 example,	 while	
controls	on	fishing	effort	can	be	implemented	through	approaches	
such	as	limiting	the	number	of	boats	or	days-	at-	sea	(often	referred	
to	as	managed	access	or	input	control)	or	required	changes	in	fish-
ing	mortality	can	be	converted	to	advised	catches.	We	added	a	pre-
cautionary	buffer	to	all	HCR	maximum	target	values,	determined	by	
scenarios	using	perfect	(true)	information	from	the	operating	model,	
described	in	the	sections	below.

2.3.1 | Effort- based 40- 10 HCR

The	effort-	based	40-	10	rule	specifies	that	(a)	when		B/BMSY	is	at	or	
above	a	threshold	point	(40%	unfished	biomass	(B0)	or	carrying	ca-
pacity	 (K)),	 the	 target	 is	 set	 to	 the	 instantaneous	 fishing	mortality	
rate	at	maximum	sustainable	yield	with	an	appropriate	buffer	(FMSY 
×	buffer),	and	(b)	when	stock	biomass	is	below	10%	carrying	capac-
ity,	fishing	stops.	For	stocks	with	biomass	between	10	and	40%	of	
unfished	biomass,	 their	 target	 fishing	mortality	 (F)	 is	 set	based	on	
the	 linear	 trajectory	drawn	between	10%	B0,	 0	 and	40%	B0,	 FMSY 
×	buffer	 (Figure	2,	Supporting	 Information	Table	S2,	Appendix	S1).	
The	target	fishing	mortality	rate	was	then	made	relative	to	the	cur-
rent	 fishing	 harvest	 ratio	 (discrete	 fishing	 mortality)	 (Supporting	
Information	Appendix	S1,	Table	S3).	This	relative	effort-	based	HCR	
was	 designed	 to	 reflect	 a	 data-	limited	 situation,	where	 stocks	 are	
managed	by	changing	the	effort	fishing	(F)	relative	to	current	effort,	
as	 it	 is	more	 difficult	 to	 control	 and	monitor	 for	 a	 specific	 fishing	
mortality.	 The	 40-	10	 HCRs	 were	 inspired	 by	 similar	 management	
strategies	and	buffer	zones	currently	used	to	set	catch	and	fishing	
limits	in	several	US	regions	(Punt	&	Ralston,	2007).

2.3.2 | Effort- based step HCR

The	effort-	based	 step	HCR	 followed	a	 step	 function	 that	 reduced	
the	fishing	mortality	rates	as	biomass	declined.	The	biomass	thresh-
old	 (trigger)	 and	 limit	 points	were	 set	 at	 110%	 and	60%	BMSY,	 re-
spectively	(Figure	2,	Supporting	Information	Table	S2).	Above	110%	
BMSY,	fishing	was	set	at	FMSY	×	an	appropriate	buffer.	Between	60%	
and	 110%	BMSY,	 the	 target	 fishing	mortality	was	½	 FMSY	 ×	 buffer,	
and	 below	 60%,	 BMSY	 no	 fishing	 was	 allowed.	 This	 target	 fishing	
mortality	rate	was	then	made	relative	to	the	current	fishing	harvest	
ratio,	as	in	the	effort	40-	10	rule.	This	rule	was	designed	to	be	more	

F IGURE  2 Schematics	of	the	40-	10	
and	step	harvest	control	rules	(HCRs)	
controlling	for	fishing	effort	(top	panels)	
or	catch	(bottom	panels).	The	vertical	
dashed	lines	show	the	trigger	and	limit	
points	for	the	40-	10	HCRs	(40%	and	10%	
of	unfished	biomass	or	carrying	capacity,	
K),	and	for	the	step	HCRs	(110%	and	
60%	of	BMSY).	The	vertical	dotted	line	
shows	the	buffers	used	for	each	HCR;	for	
example,	for	the	effort-	based	40-	10	rule,	
the	buffer	was	50%	FMSY
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precautionary	than	the	40-	10	rule	to	account	for	the	uncertainty	and	
possible	 inaccuracy	 in	 the	catch-	only	superensemble	assessments.	
The	 threshold	 and	 limit	points	 are	 arbitrary,	 and	 future	 studies	or	
management	could	be	set	based	on	known	bias	of	the	assessment	
model	or	sensitivity	analyses	to	maximize	objectives,	as	we	do	here.

2.3.3 | Catch- based 40- 10 and step HCRs

The	 catch-	based	 40-	10	 rule	 and	 catch-	based	 step	 rule	 follow	 the	
same	threshold	and	limit	points	as	the	effort-	based	rules,	but	set	a	
target	yield	based	on	MSY,	 rather	 than	fishing	mortality	 (i.e.,	MSY	
×	buffer	rather	than	FMSY	×	buffer,	Figure	2).	Many	jurisdictions,	in-
cluding	the	European	Union	and	the	United	States,	set	catch-	based	
total	allowable	catches	(TACs)	with	F-	based	HCRs	and	a	short-	term	
forecast.	While	using	MSY	on	the	y-	axis	of	the	HCR	is	not	typical,	
this	approach	is	potentially	suited	to	data-	limited	methods	that	pro-
duce	catch	advice,	and	its	performance	is	therefore	worth	testing.

2.3.4 | Setting precautionary buffers for HCRs

To	determine	the	buffer	size	required	for	each	HCR,	we	projected	
the	 simulated	 stocks	based	on	 the	HCRs	 set	using	perfect	 knowl-
edge	of	B/BMSY,	MSY	and	FMSY,	with	eight	buffers	ranging	from	30%	
to	100%	in	10%	increments.	These	“true”	values	were	taken	directly	
from	the	operating	model,	rather	than	using	the	estimates	from	the	
catch-	only	superensemble	(skipping	Step	2:	the	stock	status	assess-
ment;	Figure	1).	We	selected	the	appropriate	buffer	 for	each	HCR	
that	maximized	total	catch	over	the	management	period,	while	en-
suring	the	lower	10th	percentile	of	B/BMSY	estimates	over	the	final	
three	years	of	a	20-	year	management	period	was	above	0.25	(aver-
aged	across	iterations	and	harvest	dynamics	per	species).	The	buff-
ers	that	satisfied	these	criteria	for	all	species	were	as	follows:	50%	
of	FMSY	for	the	effort-	based	40-	10	and	step	rules,	50%	of	MSY	for	
catch-	based	40-	10	rule	and	70%	of	MSY	for	catch-	based	step	rule.	
These	HCR–buffer	combinations	will	be	referred	to	throughout	this	
study	 as	 the	 calibrated	 HCRs.	 Standardizing	 the	 relative	 risk	 and	
yield	for	the	HCRs	using	these	fine-	tuned	buffers	based	on	perfect	
information	allowed	us	to	articulate	the	effect	that	estimates	of	sta-
tus	and	reference	points	from	the	catch-	only	models	had	on	the	per-
formance	of	the	HCRs.

2.4 | Step 4: Simulate the implementation of harvest 
control rules

We	applied	the	HCRs	to	the	simulated	stocks	and	projected	the	
populations	 forward	 for	 5-		 and	 20-	year	 management	 periods	
for	 each	 scenario	 under	 the	 effort	 or	 catch	 limits	 generated	 by	
each	HCR	 (e.g.,	 Figure	3).	 All	 projections	were	 set	 to	 reach	 the	
target	 values	 of	 the	 catch	 or	 fishing	mortality	 on	 the	 first	 year	
of	management	 and	 then	 held	 constant	 across	 the	 full	manage-
ment	 period,	 without	 further	 reassessment,	 simulating	 a	 simple	
best-	case	scenario	for	comparative	purposes.	We	recognize	that	
a	more	 realistic	 approach	would	be	 to	 gradually	 build	 up	 to	 the	

target	fishing	levels.	However,	we	leave	this	for	consideration	in	
future	MSEs	for	specific	stocks.	Unlike	other	closed	loop	simula-
tions,	where	stock	assessments	are	conducted	every	few	years	to	
adjust	the	target	fishing	values,	we	removed	the	feedback	control	
between	the	management	and	operating	models.	This	is	because	
once	catch	or	fisheries	effort	has	been	regulated,	the	catch	time	
series	 provides	 little	 new	 information	 to	 these	 catch-	only	mod-
els,	 that	 tend	 to	be	used	once	prior	 to	management;	 indeed,	 an	
open	 system	 (lack	of	management)	 is	 an	 assumption	of	 some	of	
these	 methods	 (Vasconcellos	 &	 Cochrane,	 2005).	We	 acknowl-
edge	 that	 the	 removal	 of	 reassessment	 feedback	 is	 problematic	
as	 it	 assumes	management	at	 constant	 levels	of	 catch	or	effort,	
which	could	lead	to	under-		or	overfishing	in	the	face	of	changes	in	
biomass	due	to	external	 factors	 (e.g.,	environmental	conditions).	
In	reality,	if	there	was	a	source	of	information	separate	from	the	
catch	 data	 (e.g.,	 length	 frequencies	 or	 fishery-	independent	 sur-
vey	data),	these	could	be	used	to	reassess	and	tune	the	HCRs.	In	
the	 current	MSE	without	 feedback	 control,	 the	 initial	 tuning	 of	
the	HCRs	to	perfect	 information	 is	a	critical	step	that	allows	for	
the	evaluation	of	the	performance	of	the	HCR	over	a	short	time	
horizon	 (e.g.,	 5	years)	 that	 is	 sensible.	The	20-	year	management	
projections	 were	 a	 theoretical	 exercise	 to	 observe	 longer-	term	
effects,	 and	we	would	 not	 recommend	 continuing	management	
based	on	initial	HCR	targets	for	20	years	without	frequent	reas-
sessment	and	feedback	control	via	other	external	inputs	as	noted	
above.

To	simulate	the	annual	variability	in	implementation	success	and	
enforcement	of	the	HCRs,	we	added	log-	normal	errors	 (σi	=	0.1)	to	
the	target	catch	levels	and	fishing	mortality	rates	with	bias	correc-
tion	 on	 the	mean:	 εt = N(0−0.12/2,	 0.12),	 corresponding	 to	 a	 coef-
ficient	 of	 variation	 (CV)	 of	 approximately	 10%.	 Stocks	 under	 the	
“business	as	usual”	(BAU)	scenario	were	projected	forward	with	the	
same	harvest	dynamics	used	in	the	simulations	(also	with	implemen-
tation	error	of	σi	=	0.1),	either	an	increasing	harvest	rate	(OW)	or	a	
bioeconomic	coupled	model	(ED03).	The	code	for	the	MSE	is	avail-
able	here:	https://github.com/datalimited/DLM-MSE.

We	also	ran	the	scenarios	with	the	catch-	based	superensem-
ble	across	the	range	of	buffers	(30%–100%	in	10%	increments)	to	
determine	 the	 level	 of	 buffers	with	 the	 less	 accurate	 stock	 sta-
tus	estimates	that	would	be	required	to	satisfy	the	risk	and	yield	
targets,	 for	example,	10%	percentile	of	B/BMSY	after	20	years	of	
management	>25%	BMSY,	while	maximizing	yield	across	the	man-
agement	period.

2.5 | Step 5: Evaluate performance

We	 tested	 the	 performance	 of	 the	 five	HCRs	 across	 40	 different	
management	scenarios:	five	species,	two	underlying	harvest	dynam-
ics,	and	two	management	periods,	with	and	without	bias	in	the	catch	
data,	 each	 with	 600	 iterations	 (Figure	1).	 This	 was	 to	 determine	
whether	a	superensemble	of	catch-	only	models	would	allow	manag-
ers	to	implement	a	harvest	strategy	reliably	given	the	uncertainties	
in	the	estimates	of	B/BMSY	status.

https://github.com/datalimited/DLM-MSE
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We	 used	 the	 following	 objectives	 to	 evaluate	 performance	 of	
different	HCRs:

1. Maintain	sustainable	stock	biomass	at	or	above	BMSY	(proportion	
of	 stocks	 at	 the	 end	 of	 management	 period	 at	 or	 above	 B/
BMSY	 and	 lower	 10th	 percentile	 of	 B/BMSY	 at	 the	 end	 of	 the	
management	 period),

2. Avoid	heavily	overfished	stocks	or	fishery	collapse	(proportion	of	
years	during	management	that	had	B	>	25%	BMSY,	averaged	across	
stocks),

3. Reach	and	maintain	sustainable	fishing	mortality	rates	at	or	below	
FMSY,	 (median	F/FMSY	over	 the	 final	 three	years	of	 the	manage-
ment	period),

4. Avoid	overfishing	during	management	(proportion	of	years	where	
overfishing	was	not	occurring	(F	<	FMSY)	median	across	stocks),

5. Maximize	 yield	 during	 management	 period	 (mean	 annual	 catch	
over	the	management	period	relative	to	yield	if	fished	at	FMSY),	and

6. Reduce	variability	in	annual	catch	(median	standard	deviation	of	
catches	over	management	period).

We	identified	trade-	offs	between	management	objectives	across	
the	different	HCRs	for	each	scenario,	using	radar	plots.	To	understand	
the	behaviour	of	the	catch-	only	harvest	strategies,	we	calculated	the	
proportional	error	of	the	HCR	target	values	based	on	the	catch-	only	
superensemble	model	compared	to	the	HCR	target	values	based	on	
true	values	of	B/BMSY	generated	from	the	operating	model,	assuming	
perfect	knowledge.	The	proportional	error	is	calculated	as	the	differ-
ence	between	the	estimated	and	true	values,	divided	by	the	true	value.	
We	also	calculated	the	proportional	errors	produced	by	the	superen-
semble	for	estimates	of	B/BMSY,	MSY,	FMSY	and	harvest	ratio	prior	to	
management.

3  | RESULTS

3.1 | Reaching maximum sustainable yield and 
avoiding overfished stocks

Before	 applying	 the	 catch-	only	 harvest	 strategies,	 the	majority	 of	
simulated	 stocks	 were	 overfished	 (median	 B/BMSY	=	0.57)	 with	
16.9%	 of	 stocks	 above	 BMSY	 (Supporting	 Information	 Figure	 S1a).	
The	catch-	only	superensemble	generally	overestimated	stock	status	
(median	proportional	error	in	OW	scenario:	0.44;	in	ED03	scenario:	
0.97,	Supporting	Information	Figure	S1b,c).

After	5	years	of	management,	the	HCRs	based	on	the	catch-	only	
superensemble	with	 calibrated	buffers	 resulted	 in	 a	higher	proba-
bility	 of	 stocks	 being	 above	BMSY	 than	BAU	 (objective	 1,	 Table	2).	
Even	so,	most	stocks	remained	overfished	(stock	status	<	BMSY)	after	
5	years	of	management,	across	all	species,	underlying	effort	dynam-
ics,	and	HCRs	(Figure	4).	The	lower	10th	percentiles	of	B/BMSY,	which	
is	a	measure	of	biological	 risk,	were	above	25%	BMSY	 for	all	HCRs	
under	the	one-	way	trip	harvest	dynamics	after	5	years	(Table	2).	In	
the	bioeconomic	coupled	harvest-	dynamic	scenario,	only	the	stocks	
with	effort-	based	HCRs	were	above	this	limit	reference	point	after	
5	years	(Table	2).	The	short-	lived	species	(sardine	and	skipjack	tuna)	
responded	more	quickly	to	the	management	strategies,	but	also	had	
higher	uncertainty	in	their	stock	status	after	5	years	(Figure	4).	Over	
the	5-	year	management	period,	the	median	proportion	of	years	that	
biomass	fell	below	0.25	BMSY	(objective	2)	was	low	across	all	HCRs,	
species	and	effort	dynamics,	although	the	catch-	based	HCRs	had	a	
higher	probability	of	stocks	at	risk	of	collapse	over	time	than	BAU	
(Table	2).

After	 20	years	 of	 management	 without	 reassessment,	 the	
catch-	based	40-	10	and	step	HCRs	performed	consistently	worse	

F IGURE  3 An	example	time	series	of	population	status	(B/BMSY)	of	corvina	reina	before	and	after	the	catch-	only	assessment	(dotted	
line: t60).	This	example	is	from	the	scenario	that	was	simulated	with	one-	way	trip	effort	dynamics	(black	line).	The	catch-	only	assessment	
was	conducted	in	year	60,	assuming	only	20	years	of	catch	data	were	available,	using	three	catch-	only	models	(dark	shading	=	25th	and	
75th		percentiles,	light	shading	=	2.5th	and	97.5th	percentiles)	and	a	random	forest	superensemble	to	estimate	B/BMSY.	In	this	case,	the	
superensemble	and	COMSIR	overestimated	stock	status,	while	CMSY	and	mPRM	were	more	accurate.	Projections	based	on	the	catch-	only	
assessment	show	the	predicted	outcomes	from	each	harvest	control	rule	(HCR)	over	a	5-	year	(dash-	dot	line,	t65)	and	20-	year	management	
period:	effort-	based	40-	10	HCR,	an	effort-	based	HCR	set	using	a	step	function,	a	catch-	based	40-	10	HCR,	a	catch-	based	step	HCR,	and	a	
business	as	usual	scenario	(BAU).	In	this	case,	the	effort-	based	step	HCR	was	the	only	strategy	that	recovered	the	stock	after	20	years
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than	BAU,	with	a	high	risk	of	collapse	(10th	percentiles	of	B/BMSY 
were	below	10%	of	BMSY;	Figure	4,	Table	2).	In	contrast,	the	effort-	
based	40-	10	and	step	HCRs	resulted	in	lower	probabilities	of	col-
lapse,	for	example,	10th	percentiles	>25%	BMSY	(Figure	4,	Table	2).	
All	HCRs	resulted	in	much	higher	proportions	of	stocks	above	BMSY 
than	BAU	 (Table	2),	but	also	had	higher	variation	of	 final	B/BMSY 
values	(across	iterations	per	species)	than	BAU	(Figure	4).

3.2 | Avoiding overfishing and maximizing yield

The	 third	 and	 fourth	 management	 objectives	 we	 tested	 were	 to	
reduce	the	likelihood	of	overfishing	(defined	as	F/FMSY	>	1)	after	5	
or	20	years	and	over	the	course	of	management.	The	effort-	based	
HCRs	achieved	higher	proportions	of	stocks	with	fishing	mortality	
at	or	below	FMSY	at	the	end	of	the	management	period	compared	to	

catch-	based	HCRs	and	BAU	(Supporting	Information	Figure	S2).	This	
was	the	case	across	all	species,	underlying	effort	dynamics	and	man-
agement	periods,	except	the	effort-	based	40-	10	HCR	under	the	one-	
way	trip	scenario	for	rockfish,	sole	and	tuna	(Supporting	Information	
Figure	S2).	In	particular,	the	effort-	based	step	HCR	performed	best,	
with	80.9%	of	stocks	having	a	final	fishing	mortality	lower	than	FMSY,	
pooled	 across	 species,	 effort	 dynamics	 and	 management	 period	
(compared	to	effort-	based	40-	10:	65.9%,	catch-	based	40-	10:	59.5%,	
catch-	based	step:	67.6%,	BAU:	23.1%).	The	effort-	based	step	HCR	
also	had	 the	 lowest	 frequency	of	overfishing	 that	occurred	during	
the	management	period	(Table	2).

The	 catch-	based	 HCRs	 resulted	 in	 extreme	 and	 highly	 variable	
fishing	mortalities	 (Supporting	Information	Figure	S2).	This	outcome	
was	consistent	for	both	the	step	and	40-	10	HCRs,	both	harvest	dy-
namics	(one-	way	trip	and	bioeconomic	coupling),	and	5-		and	20-	year	

TABLE  2 Summary	results	of	performance	metrics	for	the	harvest	control	rules	(HCRs)	with	the	precautionary	buffers	(in	parentheses)	
across	two	harvest	dynamics	and	two	management	periods,	showing	the	average	lower	10th	percentile	of	B/BMSY	(averaged	over	the	last	
3	years	of	management),	the	proportion	of	iterations	above	BMSY	at	the	end	of	management	period	(B/BMSY	averaged	over	last	3	years	
greater	or	equal	to	1),	average	proportion	of	years	during	management	period	within	an	iteration	that	were	not	heavily	overfished	and	at	risk	
of	collapse	(B/BMSY	>	0.25),	average	proportion	of	years	during	the	management	period	within	an	iteration	where	overfishing	was	not	
occurring	(F/FMSY	<	1),	and	the	mean	catch	per	year	in	management	period,	relative	to	fishing	at	FMSY.	All	results	are	averaged	across	species	
and	iterations.	Shaded	results	show	when	the	HCRs	perform	better	than	business	as	usual	(BAU)	for	that	scenario

Scenario HCR (buffer)
10th percentile 
B/BMSY

Prop. iterations 
above BMSY

Prop. years not 
heavily overfished

Prop. years not 
overfishing

Mean catch 
relative to FMSY

ED03	5yr Effort	40-	10	
(0.5)

0.27 0.26 0.86 1 0.68

ED03	5yr Effort	step	(0.5) 0.31 0.32 0.87 1 0.43

ED03	5yr Catch	40-	10	
(0.5)

0.12 0.28 0.77 0.6 0.92

ED03	5yr Catch	step	(0.7) 0.15 0.3 0.79 1 0.58

ED03	5yr BAU 0.2 0.15 0.81 0.48 0.95

ED03	20yr Effort	40-	10	
(0.5)

0.36 0.53 0.91 1 0.8

ED03	20yr Effort	step	(0.5) 0.49 0.66 0.93 1 0.57

ED03	20yr Catch	40-	10	
(0.5)

0.06 0.52 0.73 0.81 0.64

ED03	20yr Catch	step	(0.7) 0.07 0.62 0.78 0.99 0.48

ED03	20yr BAU 0.25 0.22 0.85 0.49 0.9

OW	5yr Effort	40-	10	
(0.5)

0.38 0.25 0.96 0.64 0.95

OW	5yr Effort	step	(0.5) 0.44 0.33 0.97 1 0.69

OW	5yr Catch	40-	10	
(0.5)

0.27 0.28 0.92 0.56 0.95

OW	5yr Catch	step	(0.7) 0.27 0.31 0.92 0.88 0.8

OW	5yr BAU 0.31 0.13 0.93 0 1.26

OW	20yr Effort	40-	10	
(0.5)

0.39 0.4 0.96 0.66 0.97

OW	20yr Effort	step	(0.5) 0.51 0.59 0.98 1 0.81

OW	20yr Catch	40-	10	
(0.5)

0.06 0.51 0.81 0.75 0.72

OW	20yr Catch	step	(0.7) 0.07 0.56 0.82 0.92 0.61

OW	20yr BAU 0.22 0.07 0.88 0 1.02
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management	periods	(Supporting	Information	Figure	S2).	The	high	and	
variable	F/FMSY	values	attributed	to	the	catch-	based	HCRs	were	be-
cause	the	annual	catch	target	remained	constant	even	 if	 total	stock	
biomass	declined	over	time.	Catch-	based	HCR	target	values	also	had	
greater	proportional	error	than	the	estimated	effort-	based	HCR	target	
values	(Supporting	Information	Figure	S3).	CMSY	and	COMSIR	often	
overestimated	MSY	 (Supporting	 Information	Figure	 S4a),	 leading	 to	
subsequently	higher	catch-	based	HCR	quotas.	In	contrast,	the	effort-	
based	HCRs	are	driven	by	FMSY	(derived	from	population	growth	rate	
(r)	values	from	the	catch-	only	models),	which	are	much	more	accurate	
than	the	MSY	estimates	(Supporting	Information	Figure	S4b).

The	HCRs	with	calibrated	buffers	produced	mean	annual	yields	
lower	than	BAU	in	most	scenarios	and	were	consistently	below	the	
potential	yield	if	stocks	were	fished	at	FMSY	(objective	5,	Supporting	
Information	Figure	S5).	The	mean	annual	yields	produced	across	iter-
ations	within	a	scenario	were	highly	variable	during	the	first	5	years	
of	management,	 particularly	 for	 long-	lived	 stocks	 in	 the	 one-	way	
trip	scenario,	but	this	variation	stabilized	over	20	years	(Supporting	
Information	 Figure	 S5).	 Another	measure	 of	 yield	 is	 the	 variation	
(standard	deviation)	across	years	within	an	iteration	(objective	6).	All	
HCRs	had,	on	average,	lower	interannual	variation	in	yield	than	BAU	
consistently	across	all	scenarios	(i.e.,	better	performance),	although	
the	effort-	based	HCRs	did	result	in	high	variation	in	some	iterations	
for	sardine	and	tuna	(Supporting	Information	Figure	S6).

3.3 | Trade- offs between objectives

No	HCR	 performed	 the	 best	 across	 all	 management	 objectives,	
resulting	 in	 trade-	offs	 between	 yield,	 sustainable	 harvest	 rates	
and	biological	status.	The	performance	of	HCRs	was	very	similar	
across	species	except	skipjack	tuna,	so	we	present	trade-	off	plots	
for	 bocaccio	 rockfish	 as	 representative	 for	 all	 species	 (Figure	5)	
and	tuna	separately	(Figure	6).	For	most	species,	the	effort-	based	
step	HCR	performed	best	at	reducing	the	risk	of	being	overfished	
(with	 higher	 values	 of	 10th	 percentile	 BMSY),	 while	 maintaining	
the	highest	 proportion	of	 stocks	 above	BMSY	 at	 the	 end	of	 both	
management	 periods	 (Figure	5).	 However,	 the	 effort-	based	 step	
HCR	 resulted	 in	 the	 lowest	 yields	 across	 all	 scenarios	 (Figure	5).	
The	effort-	based	40-	10	rule	had	slightly	lower	performance	than	
the	effort-	based	step	rule	for	overfished	and	overfishing	metrics	
but	yielded	higher	catches	(Figure	5),	although	in	the	one-	way	trip	
scenarios,	it	resulted	in	slightly	higher	levels	of	overfishing.	After	
20	years,	the	catch-	based	HCRs	caused	at	least	10%	of	stocks	of	
all	species	except	tuna	to	collapse	to	zero	 (Figure	5).	 In	contrast,	
the	catch-	based	HCRs	did	not	cause	tuna	stocks	to	collapse	after	
20	years	 (Figure	6).	 Across	 all	 species,	 the	 effort-	based	 HCRs	
were	 generally	more	 risk	 averse	 and	 performed	 better	 than	 the	
BAU	scenario	for	the	biological	status	metrics,	though	as	a	conse-
quence	resulted	in	poor	yields	(Figure	5).

F IGURE  4 Bean	plots	of	fisheries	status	(B/BMSY)	after	5	and	20	years	of	management	using	each	harvest	control	rule	for	the	one-	way	
trip	(OW)	and	bioeconomic	coupling	(ED)	effort	dynamic	scenarios	(600	iterations	per	species).	Solid	line	shows	BMSY	and	stocks	below	the	
dotted	line	are	heavily	overfished	(B/BMSY	<0.25)
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3.4 | Performance compared to management 
assuming perfect information

The	 five-	year	management	 projections	 based	 on	 true	B/BMSY and 
true	 biological	 references	 (i.e.,	 the	 perfect	 information	 scenarios)	
demonstrated	that	most	HCRs	(except	the	effort-	based	40-	10	HCR)	
can	recover	short-	lived	species	after	5	years	and	long-	lived	species	
after	20	years	of	management	(i.e.,	median	status	equal	to	or	greater	
than	BMSY,	Supporting	Information	Figure	S7).	After	20	years,	when	
the	calibrated	HCRs	were	 implemented	using	perfect	 information,	
the	 catch-	based	 step	HCR	 performed	 better	 than	 any	 other	HCR	
consistently	 across	 species	 and	 most	 management	 objectives	 ex-
cept	yield,	but	lack	of	reassessment	during	this	period	caused	high	
variation	in	stock	status	(Supporting	Information	Figure	S8).	This	is	
in	contrast	to	the	scenarios	when	management	was	based	on	esti-
mates	from	the	catch-	only	superensemble,	where	the	effort-	based	
step	HCRs	performed	best	across	most	objectives	(Figure	5).

The	overall	performance	of	 the	HCRs	using	 the	catch-	only	su-
perensemble	was	very	poor	 in	comparison	with	management	pro-
jections	based	on	perfect	 information	across	most	metrics,	except	
yield	 (Supporting	 Information	 Table	 S4).	 Over	 5	years	 of	manage-
ment,	the	catch-	only	superensemble	resulted	in	10th	percentiles	of	
B/BMSY	that	were	7%	to	94%	lower	than	when	perfect	information	
was	 used	 (Supporting	 Information	 Table	 S4).	 Catch-	based	 HCRs	
based	on	catch-	only	superensembles	performed	particularly	poorly	

in	comparison	with	perfect	information	in	the	percentile	of	biomass	
and	 the	 proportion	 above	 BMSY	 metrics	 (Supporting	 Information	
Table	S4).

How	large	should	the	buffers	be	to	maximize	catch	while	ensur-
ing	the	lower	10th	percentile	of	B/BMSY	at	the	end	of	management	
is	>25%	BMSY?	Compared	to	the	calibrated	buffers	that	were	fine-	
tuned	based	on	perfect	information	(i.e.,	50%–70%	of	MSY	or	FMSY),	
the	 catch-	only	 superensemble	HCRs	 required	more	precautionary	
buffers	to	achieve	this	yield-	risk	objective	(Supporting	Information	
Table	S5).	This	was	 to	account	 for	 large	errors	 in	 the	estimates	of	
B/BMSY	 (Supporting	 Information	 Figure	 S1)	 and	 other	 parameters	
(Supporting	Information	Figure	S4).	The	effort-	based	HCRs	required	
60	or	80%	buffers,	while	the	catch-	based	HCRs	would	only	achieve	
the	biomass	objective	with	30	and	40%	buffers,	when	pooled	across	
species	(Supporting	Information	Table	S5).

Over	a	5-	year	management	period,	shifting	the	HCR	buffers	from	
1	through	to	0.3	resulted	in	a	large	reduction	in	yield	with	minimal	
improvement	in	the	10th	percentile	of	B/BMSY,	particularly	for	long-	
lived	species	(Supporting	Information	Figure	S9).	After	20	years,	the	
yield-	risk	 relationship	 across	 the	 size	of	buffers	was	 shallower	 for	
effort-	based	HCRs,	as	more	precautionary	buffers	achieved	similar	
yields,	with	lower	risk	of	stock	collapse.	In	contrast,	for	catch-	based	
HCRs,	 lower	 buffers	 had	 no	 effect	 on	 the	 risk	 of	 collapse,	 until	 a	
definite	threshold	was	reached	at	either	0.3	or	0.4	(except	for	tuna,	
Supporting	Information	Figure	S9,	Table	S5).

F IGURE  5 Performance of each 
harvest	control	rule	based	on	the	catch-	
only	superensemble	model	and	calibrated	
buffers	for	bocaccio	rockfish	representing	
the	trade-	off	between	four	objectives,	
clockwise	from	left	corner:	(i)	lower	
10th	percentile	of	B/BMSY	status	(across	
iterations,	averaged	over	the	last	three	
years	of	management),	(ii)	proportion	of	
stocks	that	were	above	B/BMSY	at	end	
of	management	period	(B/BMSY	>	1),	(iii)	
annual	median	yield	over	management	
period	across	iterations	relative	to	yield	if	
fished	at	FMSY	and	(iv)	median	proportion	
of	years	where	overfishing	was	not	
occurring	across	the	management	period	
(F/FMSY	<	1).	Each	plot	shows	a	different	
scenario	of	harvest	dynamics	and	
management	period,	and	the	results	from	
rockfish	are	representative	of	all	other	
species,	except	tuna	shown	in	Figure	6.	
All	axes	have	centre	values	=	0.	Each	axis	
along	the	radar	plot	displays	a	different	
objective,	where	data	points	further	from	
the	centre	of	the	graph	indicate	better	
performance
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3.5 | Sensitivity analysis with underreported catch

When	catches	were	underreported	(with	negative	bias),	catch-	only	
superensemble	effort-	based	HCRs	had	similar	or	slightly	worse	per-
formance	 across	 all	 metrics	 to	 management	 runs	 without	 bias	 in	
the	 catch	 (Supporting	 Information	 Table	 S6).	 However,	 the	 catch-	
based	HCRs	performed	significantly	better	 in	 the	biomass	metrics	
with	 underreporting	 than	 without	 (Supporting	 Information	 Table	
S6),	especially	 for	species	with	higher	underreporting	 (corvina	and	
tuna,	UR	=	50%,	results	not	shown).	This	is	because	the	proportional	
error	 of	MSY	with	 underreported	 catch	was	much	 lower	 (median:	
−0.22,	min:	−0.10,	max:	15.7),	compared	with	unbiased	catch	data	
(median:	0.14,	min:	−0.10,	max:	27.5).	Instead,	the	effort-	based	rules	
are	derived	from	FMSY,	which	had	similar	proportional	error	with	or	
without	catch	biases	(underreporting:	median	=	−0.09,	min	=	−0.83,	
max	=	1.63,	 no	 underreporting:	 median	=	−0.09,	 min	=	−0.83,	
max	=	1.62).	The	median	proportional	error	of	B/BMSY	with	under-
reported	catch	was	slightly	higher	(median	proportional	error:	0.73,	
min:	−0.68,	max:	28.3),	compared	with	the	proportional	error	from	
unbiased	data	(median:	0.65,	min:	−0.95,	max:	21.94),	although	the	

effect	 on	 performance	metrics	was	minimal.	With	 underreporting	
bias	in	the	catch	data,	the	buffers	required	to	reach	a	10th	percentile	
B/BMSY	>	0.25	for	the	effort-	based	HCRs	were	equal	to	or	more	pre-
cautionary	than	if	the	catch	data	were	unbiased,	while	catch-	based	
HCRs	 required	 less	 conservative	 buffers	 (Supporting	 Information	
Table	S5).

4  | DISCUSSION

Our	 study	 builds	 on	 previous	MSEs	 that	 test	 the	 performance	 of	
other	 data-	limited	 methods	 and	 HCRs	 (Carruthers	 et	al.,	 2014,	
2015;	Dichmont	et	al.,	2017;	Punt	et	al.,	2014;	Wetzel	&	Punt,	2011;	
Wiedenmann	et	al.,	2013).	However,	 these	past	studies	have	been	
largely	 restricted	 to	 empirical	 harvest	 strategies	 that	 bypass	 the	
need	 for	 estimating	 population	 status	 (Dowling	 et	al.,	 2015).	 The	
recent	 development	 and	 testing	 of	 catch-	only	 models	 and	 super-
ensembles	that	estimate	population	status	(B/BMSY)	has	established	
several	new	management	options	to	set	catch	limits	for	data-	limited	
stocks,	 particularly	 the	 use	 of	 dynamic	 harvest	 control	 rules	 that	

F IGURE  6 Performance	of	each	harvest	control	rule	for	skipjack	tuna	across	scenarios,	based	on	the	catch-	only	superensemble	
model	and	calibrated	buffers	representing	the	trade-	off	between	four	objectives	clockwise	from	left	corner:	(i)	lower	10th	percentile	of	
B/BMSY	status	(across	iterations,	averaged	over	the	last	3	years	of	management),	(ii)	proportion	of	stocks	that	were	above	B/BMSY	at	end	of	
management	period	(B/BMSY	>	1),	(iii)	annual	median	yield	over	management	period	across	iterations	relative	to	yield	if	fished	at	FMSY	and	(iv)	
median	proportion	of	years	where	overfishing	was	not	occurring	across	the	management	period	(F/FMSY	<	1)
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rely	on	quantitative	biomass	status	estimates.	We	demonstrate	that,	
for	 the	wide	 range	 of	 stocks	 and	management	 scenarios	we	 have	
simulated,	catch-	only	models	coupled	with	effort-	based	HCRs	and	
precautionary	buffers	can	improve	the	stock	status	and	reduce	the	
likelihood	of	overfishing	though	with	considerable	variability	across	
runs.

4.1 | Performance of catch- only harvest strategies

In	practice,	fishing	quotas	and	catch	limits	can	reduce	the	risk	of	over-
fishing	and	effectively	achieve	a	biomass	that	can	sustain	maximum	
sustainable	 yields	 (Edward	 &	 Dankel,	 2016).	 None	 of	 the	 harvest	
strategies	 tested	 in	 our	 analysis	 performed	best	 across	 all	 perfor-
mance	metrics	and	scenarios.	However,	the	HCRs	had	better	perfor-
mance	than	BAU	across	most	scenarios,	except	yield	(Figures	5	and	
6).	Another	specific	exception	was	when	BAU	performed	better	than	
the	catch-	based	HCRs	for	biological	risk	(10th	percentile	B/BMSY)	for	
the	 rockfish,	corvina,	 sole	and	sardine	 (Figure	5).	The	effort-	based	
HCRs	were	generally	better	at	avoiding	fishery	collapse	 (10th	per-
centile	B/BMSY	>	0.25)	and	overfishing	 levels,	and	were	able	to	re-
cover	the	population	status	of	most	stocks	to	at	or	above	BMSY	after	
20	years.	The	effort-	based	HCR	using	a	step	function	with	a	buffer	
of	fishing	at	50%	FMSY	only	above	110%	of	BMSY	(as	calibrated	based	
on	perfect	 information)	was	the	most	effective	management	strat-
egy	at	reducing	the	risk	of	overfishing	and	being	heavily	overfished.	
However,	it	did	not	maintain	reasonable	yields	across	most	simulated	
scenarios	of	species	and	underlying	effort	dynamics,	given	the	high	
precautionary	buffer.

Catch-	only	 models	 produced	 falsely	 high	 and	 often	 unsus-
tainable	 recommendations	 for	 fishing	 catch	 targets	 (Supporting	
Information	 Figure	 S3)	 and	 catch-	based	 HCRs	 resulted	 in	 severe	
overfishing	 (Supporting	 Information	 Figure	 S2)	 and	 overfished	
stocks	 (Figures	4	 and	 5).	 This	 was	 due	 to	 positive	 biases	 in	 MSY	
(Supporting	 Information	 Figure	 S4).	 These	 concerning	 levels	 of	
overfishing	 reduced	 the	 overall	 effectiveness	 of	 the	 catch-	based	
HCRs	for	the	five	species	in	our	simulated	management	setting.	In	
contrast,	effort-	based	HCRs	had	 lower	proportional	errors	 (due	to	
more	 accurate	 estimates	 of	 FMSY	 values,	 Supporting	 Information	
Figure	S4).	This	result	is	consistent	with	previous	work	showing	that	
fishing-	mortality-	based	management	targets	are	more	responsive	to	
changes	in	biomass	than	fisheries	management	targets	for	total	har-
vest	(Squires	et	al.,	2017).

The	positively	biased	estimates	of	B/BMSY	 from	the	catch-	only	
superensemble	(Supporting	Information	Figure	S1)	and	the	 inaccu-
racy	 of	 the	 reference	 point	 estimates	 (MSY	 and	 FMSY,	 Supporting	
Information	 Figure	 S4)	 required	 very	 precautionary	 buffers	 to	
consistently	 ensure	 the	 population	 biomass	was	 above	 0.25	 BMSY 
(Supporting	Information	Table	S5).	This	in	turn	resulted	in	very	low	
yields,	which	may	not	be	acceptable	to	some	fishery	managers.	This	
overestimation	of	B/BMSY	is	interesting,	given	past	research	showed	
that	the	random	forest	catch-	only	superensemble	had	low	bias	when	
tested	with	cross-	validation	using	a	full	factorial	simulated	data	set,	
and	 on	 stocks	 from	 the	 RAM	 Legacy	 Database	 (Anderson	 et	al.,	

2017).	While	the	exact	reason	for	the	bias	found	in	this	study	is	un-
clear,	we	suspect	 it	 is	because	the	superensemble	was	fit	to	simu-
lated	data	from	four	effort	dynamic	options,	while	we	only	used	two	
of	these	effort	dynamics	here.

The	MSE	also	 revealed	 that	 the	management	outcomes	of	 the	
catch-	only	 harvest	 strategies	 were	 sensitive	 to	 life-	history	 traits.	
The	 choice	 of	 HCR	 and	 suitable	 buffer	 was	 more	 important	 for	
short-	lived,	fast-	growing	stocks	(e.g.,	sardine	or	tuna)	when	relying	
on	 these	 catch-	only	 harvest	 strategies,	 given	 the	 quick	 response	
time	of	these	populations.	Choosing	an	ineffective	harvest	control	
rule,	such	as	a	catch-	based	40-	10	rule	or	HCRs	with	less	precaution-
ary	buffers,	could	have	much	more	dramatic	and	negative	outcomes	
for	short-	lived	species.	Alternative	management	strategies	such	as	
escapement	 rules	 may	 be	 more	 effective	 for	 short-	lived	 species	
(Cochrane,	Butterworth,	De	Oliveira,	&	Roel,	1998).

4.2 | Using catch- only methods within a stepping 
stone approach

We	demonstrated	that	information	on	catch	and	simple	life-	history	
characteristics	 of	 targeted	 species	 can	 be	 used	 to	 develop	 esti-
mates	 of	 stock	 status,	 which,	 when	 coupled	 with	 precautionary,	
model-	based	HCRs,	could	be	a	possible	alternative	in	the	toolbox	to	
manage	data-	limited	fisheries.	This	is	a	useful	advance	for	stock	as-
sessment	modelling,	given	that	model-	based	HCRs	would	have	pre-
viously	been	reserved	for	data-	moderate	or	data-	rich	stocks.	Rather	
than	relying	on	past	trends	of	catches	such	as	the	DACS,	ORCS	and	
Restrepo	methods,	 the	catch-	only	superensemble	method	 informs	
HCRs	with	an	estimate	of	biomass	status.	As	new	data-	limited	as-
sessment	 models	 become	 available	 in	 future,	 they	 can	 be	 easily	
added	to	an	ensemble	or	superensemble,	making	this	approach	flex-
ible,	cost-	effective	and	relatively	easy	to	implement.	The	downside	
to	 these	methods	 is	 that	precautionary	buffers	are	 required,	 lead-
ing	to	reduced	yields.	In	addition	to	conservative	buffers,	as	tested	
here,	it	would	be	important	to	consider	a	broader	suite	of	decision	
rules	and	conservation	measures,	such	as	protected	areas,	seasonal	
closures	 and	 gear	 restrictions.	 As	 with	 all	 HCRs,	 we	 recommend	
conducting	 thorough	 simulation	 testing	on	 a	 case-	specific	 fishery,	
including	an	assessment	of	the	influence	of	priors	and	potential	error	
sources,	before	applying	the	superensemble	catch-	only	methods	to	
management	of	real	stocks.

While	the	superensemble	of	catch-	only	models	presented	here	
tended	 to	 produce	 positively	 biased	 status	 estimates,	 the	 HCRs	
using	 these	 estimates	 and	 precautionary	 buffers	 did	 outperform	
the	BAU	 scenarios,	 resulting	 in	 lower	 risks	 of	 severely	 overfished	
populations	and	effective	 stock	 recovery	after	20	years.	This	 sug-
gested	that	there	 is	value	 in	using	the	 limited	available	data	 in	the	
early	stages	of	a	 longer-	term	management	plan.	It	may	be	possible	
to	use	the	catch-	only	models	as	a	preliminary	assessment	tool	while	
preparing	to	transition	to	data-	moderate	assessment	methods	that	
include	more	data	types.	However,	the	catch-	only	methods	are	not	
intended	to	be	a	long-	term	solution	for	data-	limited	stocks.	We	en-
vision	that	they	could	be	used	alongside	monitoring	programmes	to	
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collect	additional	data,	which	would	eventually	allow	stocks	under	
catch-	only	HCRs	to	transition	to	data-	rich	assessments	methods	in	
future.	This	way,	they	can	act	as	a	stepping	stone	in	the	right	direc-
tion	towards	the	implementation	of	methods	integrating	more	infor-
mation	to	inform	estimates	of	stock	status.

It	 is	 generally	 accepted	 that,	 in	 truly	 data-	limited	 fisheries,	
more	information	could	improve	stock	assessment,	thus	lowering	
the	risk	of	overfishing	(e.g.,	Dichmont	et	al.,	2017),	and	potentially	
reducing	 the	 need	 for	 precautionary	 buffers.	 An	 example	 of	 an	
intermediate	 step	between	 the	 catch-	only	 approaches	 evaluated	
here	 and	 full	 stock	 assessment	 could	 be	 the	 collection	of	 catch-	
at-	age	or	effort	data,	which	can	be	used	to	 improve	estimates	of	
population	status	and	fishing	mortality	rate	within	models	such	as	
the	catch	curve	stock	reduction	analysis	(Thorson	&	Cope,	2015).	
Investigating	the	potential	benefits	of	incorporating	additional	in-
formation	into	catch-	only	models,	such	as	the	age	or	size	compo-
sition	of	the	catch	or	trends	in	fishing	effort,	will	be	an	important	
focus	for	future	research.	Such	an	analysis	would	be	able	to	answer	
questions	about	trade-	offs	between	allocating	time	to	implement	
an	interim	HCR	or	focusing	efforts	on	collecting	more	data	to	con-
duct	a	more	accurate	assessment	in	a	few	years.	Ultimately,	data-	
limited	 fisheries	 are	 a	 result	 of	 limited	 resources	 being	 spent	 on	
their	exploitation,	management	and	monitoring.	The	need	for	more	
information	creates	a	need	for	more	resources,	which	 is	a	gover-
nance	challenge.

4.3 | Limitations of catch- only harvest strategies for 
implementation

There	are	 several	 technical	 caveats	 and	 limitations	 that	 should	be	
considered	before	using	catch-	only	models	to	 inform	management	
strategies.

1. Quality	of	catch	data:	For	many	data-limited	species,	particularly	
in	 developing	 countries,	 even	 the	 modest	 data	 requirements	
of	 catch-only	 models	 are	 difficult	 to	 meet.	 Annual	 catch	 data,	
when	 it	 is	 available,	 may	 consist	 of	 extrapolated	 estimates	
from	 short	 intermittent	 data	 collection	 periods,	 only	 include	 a	
proportion	of	 fishing	vessels,	or	only	account	 for	 landings	 from	
specific	sectors	 (i.e.,	commercial),	excluding	discards	or	 landings	
from	 small-scale	or	 subsistence	 fisheries	 (Pauly	&	Zeller,	 2016).	
We	 accounted	 for	 different	 observation	 error	 between	 devel-
oped	 and	 developing	 regions	 in	 the	 analyses,	 but	 any	 effects	
in	 the	 management	 performance	 were	 overridden	 by	 different	
life	histories.	This	suggests	that	the	HCRs	are	robust	to	modest	
to	 high	 levels	 of	 observation	 error.	 Additionally,	 catch-only	
models	 should	 be	 applied	 to	 catch	 data	 that	 have	 “contrast”	
through	 time,	 meaning	 that	 the	 stock	 has	 been	 at	 both	 high	
and	 low	 abundance	 levels.	 It	 has	 been	 noted	 that	 CMSY,	 in	
particular,	 should	 not	 be	 applied	 to	 very	 lightly	 exploited	 fish	
stocks	as	 the	 time	series	will	 not	 contain	 sufficient	 information	
about	 productivity	 (Froese,	 Demirel,	 Coro,	 Kleisner,	 &	Winker,	
2017).	 Finally,	 it	 will	 be	 difficult	 to	 define	 the	 upper	 bound	

on	 carrying	 capacity	 in	 a	 developing	 fishery	 or	 a	 fishery	 that	
displays	 a	 continuous	 increase	 in	 catch	 as	 the	 maximum	 po-
tential	 has	 yet	 to	 be	 realized.

2. Biases	in	catch	data:	The	improved	performance	of	catch-based	
HCRs	 when	 applied	 to	 biased	 catch	 data	 was	 counterintuitive	
(Supporting	Information	Tables	S5	and	S6)	but	occurred	because	
an	 input	of	 lower	 catch	 into	 the	 catch-only	models	 produced	 a	
lower	MSY	estimate.	The	lower	estimated	MSY	in	turn	resulted	in	
lower	catch	or	effort	targets	and	thus	higher	biomass	status.	This	
created	 a	negative	 feedback	 loop.	The	biological	 and	economic	
consequences	of	this	finding	are	important	to	consider:	It	is	pos-
sible	that	overreporting	catch	(positive	bias)	could	lead	to	an	op-
posite	result,	with	higher	MSY	estimates,	higher	catch	and	effort	
quotas	and	thus	lower	biomass.

3. Time	 series	 of	 catch	 data:	 The	 performance	of	 these	 catch-only	
models	has	been	simulation	tested	with	a	minimum	of	20	years	of	
data	(of	a	60-year	fishing	history)	with	minimal-to-moderate	biases	
in	observation	error	(this	study,	Rosenberg	et	al.,	2014).	An	incom-
plete	catch	history	already	violates	the	assumption	of	 the	catch-
only	 models	 that	 a	 complete	 catch	 history	 is	 required.	 Their	
performance	with	a	shorter	time	series	is	unknown	and	is	likely	to	
decrease	the	precision	and	accuracy	of	the	B/BMSY	estimates.	For	
stocks	where	20	years	of	catch	data	are	not	available,	harvest	strat-
egies	that	 involve	gear	restrictions,	spatial	closures	or	“move	on”	
decision	rules	may	be	more	appropriate	(Dowling	et	al.,	2015).	This,	
indeed,	may	 restrict	 the	use	of	 the	catch-only	 superensemble	 in	
regions	that	have	only	recently	started	collecting	the	information	
(or	recently	improved	the	quality	of	data	collection	programmes).

4. Management	 history:	 The	 catch-only	 models	 are	 designed	 for	
stocks	that	have	not	been	previously	managed,	because	they	rely	
on	annual	variation	in	total	catch	to	estimate	biomass	status	(see	
above	point	1	regarding	contrast	 in	the	data).	Management	that	
fixes	catch	at	a	certain	level,	such	as	a	total	allowable	catch,	stalls	
any	useful	information	input	into	the	model	or	can	otherwise	af-
fect	 the	 interpretation	of	catch	time-series	data	 (Thorson	et	al.,	
2013).	 For	 this	 reason,	 they	 may	 be	 better	 suited	 as	 an	 initial	
guide,	 when	 starting	 to	 improve	 management	 of	 unassessed	
stocks,	within	a	 stepping	 stone	approach	before	other	data	are	
collected.

5. Management	capacity:	Many	data-limited	 fisheries	are	also	 lim-
ited	 in	 their	 management	 capacity,	 which	 often	 may	 preclude	
their	ability	to	effectively	control	catch	or	effort.	In	this	analysis,	
we	assumed	that	there	was	capacity	for	management	to	be	intro-
duced	and	enforced	for	intended	fisheries	and	that	the	catch	or	
effort	could	be	controlled	with	moderate	(20%)	to	high	(50%)	lev-
els	of	implementation	error.

6. Assumptions	used	to	set	fishing	targets:	The	superensemble	of	
catch-only	models	used	here	was	designed	to	only	estimate	B/
BMSY.	 It	 does	 not	 produce	 estimates	 of	 other	 information	 re-
quired	to	set	the	HCRs,	such	as	FMSY	or	MSY	(although	such	a	
superensemble	 could	 potentially	 be	 built).	 Instead,	 to	 set	 the	
catch-based	and	effort-based	HCRs,	we	relied	on	output	 from	
two	of	the	underlying	catch-only	models	and	assumptions	from	
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theoretical	fisheries	dynamics	to	estimate	these	biological	refer-
ence	points,	 for	example,	MSY	=	rK/4	 (Supporting	 Information	
Table	S3).	While	these	assumptions	are	not	ideal,	they	allowed	
us	to	implement	more	sophisticated,	dynamic	harvest	rules	that	
have	previously	not	been	possible	for	data-limited	stocks.	Biases	
and	uncertainty	 in	 these	estimated	biological	 reference	points	
propagated	through	the	setting	of	harvest	rates,	which	reduced	
the	 performance	 of	 each	 management	 strategy,	 but	 still	 pro-
vided	better	management	outcomes	than	business	as	usual.

If	 these	 limitations	 are	 carefully	 considered,	 the	 catch-	only	
superensemble	may	provide	 an	 alternative	method	of	 stock	 sta-
tus	 estimation	 for	 some	 data-	limited	 stocks—a	 transition	 step	
between	 catch-	based	 empirical	 static	 or	 dynamic	 methods,	 and	
data-	moderate	 methods.	 This	 could	 be	 an	 approach	 for	 data-	
limited	 fisheries	 where	 initial	 investments	 into	 collecting	 catch	
data	 can	 inform	 the	 implementation	 of	 more	 effective	manage-
ment	systems	that	are	data-	driven	and	evidence-based.	This	set	of	
conditions	might	occur	more	frequently	for	small-	scale	fisheries	in	
developed	countries.

5  | CONCLUSION

There	 is	potential	value	 in	using	catch-	only	superensemble	models	
coupled	with	large	precautionary	buffers	to	inform	short-	term	man-
agement,	in	addition	to	the	current	empirical	methods	derived	from	
catch.	Catch-	only	methods	and	HCR	combinations	did	not	 recover	
most	populations	to	BMSY	after	5	years,	but	they	reduced	the	risk	of	
overfishing	and	stock	collapse.	We	found	that	the	effort-	based	HCRs	
were	more	 robust	 and	 less	 sensitive	 to	error	 in	 catch-	only	models	
than	catch-	based	HCRs.	The	positive	biases	and	inaccuracies	of	the	
biological	 status	 and	 reference	 points	 estimated	 from	 the	 catch-	
only	 models	 strongly	 affected	 the	 long-	term	 performance	 of	 the	
catch-	based	HCRs	in	terms	of	their	risk	of	overfishing.	In	some	cir-
cumstances	when	suitable	catch	data	are	available	(e.g.,	small-	scale	
fisheries	 in	 developed	 countries),	 these	 data-	limited	 approaches	
could	provide	a	“stop	gap”	to	reduce	overfishing	and	the	probability	
of	being	overfished,	at	the	expense	of	 low	yields.	However,	due	to	
restrictive	data	requirements,	technical	caveats	and	large	yield-	risk	
trade-	offs,	catch-	only	superensembles	are	not	 likely	 to	provide	re-
liable	 or	 practical	management	 advice	 for	 all	 data-	limited	 fisheries	
(including	 those	 in	 developing	 regions	 limited	 in	management	 and	
research	capacity).
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