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A B S T R A C T

Water is vital not only for food, energy and sanitation but also for ecosystem functioning, human health, socio-
economic progress and poverty reduction. Water security exists when all people have physical and economical
access to sufficient, safe, and clean water that meets basic needs. However, water security is threatened by
growing human population, episodic environmental disasters, indiscriminate land management practices, con-
taminants, and escalation in geopolitical conflicts. < 3% of the estimated 1.4 billion cubic kilometers of water on
earth is available for consumption. Although there exist a range of laboratory and field methods for measuring
the chemical, physical and biological properties of water, the information available to the public remains in-
consistent and patchy. To this end, we advance a new theory of a single-value objective water quality index
(WQI) that considers the interaction between the above properties, to provide concise information for source
water quality surveillance and monitoring. Although geospatial technologies such as remote sensing is credited
as a high frequency spatiotemporal mapping tool, exiguous information is available on its application for con-
structing single-value WQIs. Besides, no remote sensing device exists that directly measures water quality, which
must indirectly be inferred through modeling sensed remote sensing signals with measured water properties.
This review not only highlights the water security conundrum but also provides an overview of methods for
integrating geolocated qualitative (e.g., management data) with quantitative (i.e., measured water constituent
properties) into a WQI.

1. Introduction

Other than climate change and the increasing population estimated
at 80 million per year, global challenges include indiscriminate land
use, rising economic disparities and anticipated deficiencies in food,
energy and water (Esteban and Max, 2016; Gleick and Palaniappan,
2010; Lal, 2015b; UNU, 2013). Although water is one of the crucial
resources for life on earth, defining a generic water quality standard
that satisfies all water uses is challenging. This is because standards
considered suitable for human consumption are different from those for
industrial or even agricultural use (Haji Gholizadeh et al., 2016; Ritchie
et al., 2003). Despite the diverse data processing platforms, water
quality determination at field, watershed and even landscape scale is
challenging because of spatiotemporal variation in the physical, che-
mical and biological water constituents (Table 1). Moreover, gleaning
water quality information for routine management operations can be
impeded by data scarcity and artifacts, nebulous baselines, and vali-
dation challenges (de Paul Obade et al., 2013, 2014). Indeed, in-
coherence in water quality information can contribute to feigned

conclusions, poor regulatory enforcement, health risks, or even devalue
environmental concerns (EPA, 2016b; Reif, 2011). To avoid cata-
strophic health ailments, diagnostic screening tools are required to
ensure drinking water quality satisfies international standards, speci-
fied by World Health Organization (WHO), American Public Health
Association (APHA), or Environmental Protection Agency (EPA),
among others (EPA, 2016a; Kumar and Puri, 2012; WHO, 2011).

Water pollutants are categorized as point source (PS) and non-point
source (NPS). PS pollutants are anthropogenic contaminants discharged
via a discrete conveyance thus are traceable to single source (e.g., pipes
discharging effluent of industrial or domestic wastewater). In contrast,
NPS have diffuse origins, and are facilitated by: (a) infrastructure
dysfunction (open/leaky sewer systems, landfill leakages, impervious
urban surfaces), (b) land mismanagement (e.g., broadcasting fertilizer
on soil surface, flood irrigation, agricultural and livestock waste, soil
erosion), meteorological conditions (i.e., precipitation intensity, tem-
perature and wind speed), (c) hydromodification and atmospheric de-
position of industrial pollutants (Chipman et al., 2009; Kozlowski et al.,
2016; Michalak et al., 2013; Selman et al., 2009; Swanson et al., 2015).
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Phosphates which are largely lost through runoff and erosion are major
NPS pollutants; compared with nitrates which being soluble are leached
and recyclable depending on climate and bioactivity (Causse et al.,
2015; de Paul Obade et al., 2013). In essence, high quality soils are
natural buffers against contaminants (Adhikari and Hartemink, 2016;
Lal, 2018). For brevity, soil organic Carbon (SOC), a proxy of soil
quality plays a key role in: (i) water purification and retention, thereby
preventing indiscriminately managed nutrients (e.g., nitrogen and
phosphorus) from contaminating surface or ground water, (ii) food,
fuel, and fibre production, (iii) biodiversity conservation, (iv) climate
regulation, and (v) nutrient cycling (de Paul Obade, 2017)

Conceptually, a water quality index (WQI) synthesizes complex
water characteristic properties into more interpretable and informative
format to support decision-making (Chaturvedi and Bassin, 2010; Khan
et al., 2003; Liou et al., 2004; Mohebbi et al., 2013). In essence, WQIs
should integrate water quality parameters using techniques that: (i) are
simple to develop and use, (ii) correlate well with water constituent
properties, and (iii) are replicable and accurate at variable scales
(Cobbina et al., 2010; House, 1990; Mohebbi et al., 2013). Although
guidelines exist for water quality determination (Ashbolt et al., 2001;
WHO, 2011), no universal comprehensive single-value WQI has been
conclusively determined. Here, the feasibility of integrating field and
remote sensing data to generate a concise objective WQI is explored.
Remote sensing technologies acquire data even from inaccessible field

locations; is rapid, non-destructive, reproducible, durable and provides
both analog and digital data to support automated processing. How-
ever, no remote sensing device exists that directly measures water
quality, which can instead be indirectly inferred by modeling sensed
remote sensing signals with measured water properties. Because, water
management decisions determine ecosystem health and productivity,
other reviewed priorities include: (i) evaluating consequences of an-
thropogenic activities on water security, (ii) which strategies ensure
sustainable freshwater ecosystems? and (iii) what tools, models, and
information are required for cost-effective monitoring of water quality?

2. Risks and impacts of water insecurity

Although 71% of the earth's total surface area (51×107 km2) is
water, only 2.5% (3.5million cubic kilometers out of a total 1.4 bil-
lion cubic kilometers) is renewable freshwater (Lal, 2015a). Approxi-
mately 70% of this freshwater is contained in ice caps, glaciers, per-
manent snow, ground ice, permafrost, or ground water, and only 1.2%
is available for direct consumption by living organisms (Gleick and
Palaniappan, 2010). Consumptive water refers to water unavailable for
use after being evapotranspired, ground infiltrated or incorporated into
plant or animal tissue, whereas, non-consumptive returns to surface
runoff and is reusable after treatment. Blue water refers to fresh surface
or ground water and includes precipitation, whereas green water is the

Table 1
Overview of parameters for water quality surveillance and monitoring.

Physical Chemical Biological

Temperature
-Water temperature determines the amount of oxygen
dissolved in the water, the photosynthesis rate of
aquatic plants and metabolism of aquatic organisms.

-Causes of temperature change include weather,
removal of shading streambank vegetation,
impoundments, discharge of cooling water, urban
storm water, and groundwater inflows to the stream.

Chlorophyll
-Chlorophyll pigment is useful for photosynthesis,
whereby green plants and algae convert sunlight
energy into chemical energy by taking in CO2, H2O
and producing carbohydrates and O2. Chlorophyll
measures plant and algae pigments, and can be used as
proxy biomass estimate. Chlorophyll absorbs blue and
red light and reflects green (thus healthy plants appear
green).

-Algal blooms make water unsuitable for swimming,
toxic and unpalatable to the aquatic food chain.
Besides, unconsumed algae sink and decay, depleting
deeper water of oxygen.

Benthic macroinvertebrates:
-Macroinvertebrates are organisms large (macro) enough to
be seen through the naked eye; and lack a backbone
(invertebrate). Benthic refers to the bottom of a waterway.
Examples of benthic macroinvertebrates include insects in
their larval or nymph form, crayfish, clams, snails, and
worms. Most are attached to submerged rocks, logs, and
vegetation.

-Some macro invertebrates are more sensitive to pollution
than others.

pH
-pH indicates the alkalinity or acidity of a substance,
ranked on a scale from 1 to 14. pH < 7 is acidic
whereas pH > 7 is alkaline. A pH of 7.0 is neutral.

-Aquatic organisms differ as to the range of pH in
which they flourish.

Suspended solids/minerals
-Suspended minerals or sediments move along in a
stream, thus are dependent on water flow and rainfall.
-sediments obstruct light and may harbor pathogens.
-suspended particles/algae pigments affect how
ambient light is absorbed and reflected.

Streamflow
-Streamflow, or discharge, is the volume of water that
moves over a designated point over a fixed period of
time.
-It is affected by weather as it increases during
rainstorms and decreases during dry periods; and
varies by season.

Colored Dissolved Organic Carbon contains fulvic
or humic acid, which makes water-bodies to have
brownish tan color.
Turbidity estimates particulate matter suspended in
water. Water with high turbidity is cloudy or opaque.
High turbidity increases water temperatures because
suspended particles absorb heat, and reduce
penetration of light into water. Murky water is unsafe
for recreational purposes because hazardous
materials/objects are obscured.
Secchi Disk Transparency measures water clarity.
This measurement is done by lowering a black and
white disk into the water and recording the depth at
which the disk is invisible. Clear water signifies
environmental health.
Dissolved Oxygen: Respiration of most aquatic
organisms requires Oxygen dissolved in water.
Rapidly moving water dissolves more Oxygen than
stagnant water. Colder water dissolves more oxygen
than warmer water.
-An oxygen-deficient aquatic environment results in
water bodies with excess organic material, which
cause death to aquatic life.

Submerged Aquatic Vegetation: Submerged aquatic
vegetation (SAV) provides invaluable benefits to aquatic
ecosystems. It not only provides food and shelter to fish and
invertebrates but also produces oxygen, traps sediment and
absorbs nutrients such as nitrogen and phosphorus.
Whereas SAV are dependent upon the transmission of
sunlight through the water, the location of individual
species depends upon a variety of factors such as salinity,
depth and bottom sediment.

-plankton include bacteria, archaea, algae, protozoa and
drifting or floating animals that inhabit oceans, seas, lakes,
ponds
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soil water, which plants uptake and transpire. “Gray” or contaminated
water originates from domestic use, urban and industrial discharge;
whereas virtual water encompasses water consumed in production of
commodities (e.g., agricultural or industrial) and traded across inter-
national boundaries (DIA, 2012; Lal, 2015b).

Water scarcity occurs when human demand or consumption exceeds
supply to the extent that per capita availability of renewable freshwater
is< 1000m3/person/year, whereas water stress or extreme lack of
water to satisfy human or ecological demands occurs when water
supply< 1700m3/person/year (DIA, 2012; Lal, 2015b; Rijsberman,
2006). Globally, an estimated 2 billion people live under squalid con-
ditions in areas of high water stress with limited sanitary facilities,
insufficient clean water, and unreliable energy access (WHO, 2008;
Water and United Nations, 2008; WHO/UNICEF, 2004). Producing
energy requires water, for instance, thermoelectric power expends
roughly 40% of freshwater in the U.S. (i.e., 160 billion cubic meters).
Yet, water purification and desalinization consumes energy and emits
CO2(g) (FAO, 2008; Rijsberman, 2006; UNDESA, 2014). Reduction in
soil-water storage or low soil-water availability at critical crop growth
stages can result in pedological, or agronomical drought respectively.
Conversely, ecological drought refers to low water availability after
land-use conversion, whereas sociological drought occurs when human
water demand exceeds supply. Meteorological and hydrological
droughts are long-term deficiencies in precipitation or water flow in
reservoirs, respectively (Lal, 2013). Imperfections in climate models
may explain the sometimes blurred and unreliable information on
drought phenomenon (Awange et al., 2016; Cutter et al., 2012). Against
the backdrop of abrupt climate change and increasing water footprint,
over 50% of the global population will lack clean water, and about 700
million people risk water instigated displacement by 2050 (FAO, 2008;
Rijsberman, 2006; UNDESA, 2014).

Societal vulnerability to disasters depends on settlement patterns
and population density, economic status, precipitation intensity and
land use patterns (Gleick, 2014; Swanson et al., 2015). These disasters
can have devastating consequences to human life, environment and
even slow down economic progress (Vorosmarty et al., 2000). For in-
stance, flooding destroy infrastructure, displaces people, submerge
homes, inundate farmlands, and cause recurring humanitarian crisis in
the states of Colorado, Missouri, Illinois, Tennessee, Arkansas, Mis-
sissippi, and Louisiana, USA (Coffman and Dobuzinskis, 2013). Not only
is the precise environmental footprint of the 2010 gulf of Mexico oil
spill unknown, but also the efficacy of remedial measures; especially
after spending over US $ 12 billion on the restoration efforts (Haq,
2010). In Africa, disastrous floods recur in the Limpopo basin of Mo-
zambique (Spaliviero et al., 2014), and river Nyando in Kenya (IFRC,
2016). Minimizing disaster impacts requires proactive strategies that
include: (a) creating socio economic safety nets, (b) restoration plans
backed by scientifically credible data (Bouma and McBratney, 2013;
Lal, 2009a, 2009b; Power, 2010). Fig. 1 depicts the interconnection
between water quality, society and environment, based on the Driving
Forces-Pressure-State-Impact-Response (DPSIR) framework (EEA,
1997). DPSIR gauges effectiveness of strategies for tackling environ-
mental challenges (Gari et al., 2015; Niemeijer and de Groot, 2008).

Demographic explosion and overcrowded settlements, resource over
use, poor waste disposal, leaching of pollutants, flooding, dysfunction
of infrastructure, and rapid groundwater depletion adversely affect
water quality and availability (FAO, 2008, 2013; Laurent and Ruelland,
2011; Mueller-Warrant et al., 2012; Ramadas and Samantaray, 2018;
Rijsberman, 2006). Due to water withdrawal for irrigation exceeding
average annual recharge, the groundwater levels at Ogallala aquifer
declined by 30 cm/year between 1996 and 2011 (i.e., totaling 4.3m);
which doubled to 60 cm/year after the 2012 drought (Kisekka et al.,
2017; Lal et al., 2012; NBC, 2016). Meanwhile, the risk of leakages from
the $3.8 billion Midwestern U.S. oil pipeline traversing Missouri River
not only threatens biodiversity and environmental health but also the
sanctity of sacred sites belonging to Native American Indians (Levine,

2016).
As realized from the extreme lead (Pb) levels in Flint, Michigan

(USA) in 2016 (Ingraham, 2016), and Toledo, Ohio (USA) in 2010 and
2014 (Lindstrom, 2016; Stewart et al., 2014), no guarantees exist for
clean water. Intake of water with elevated Pb levels can cause anemia,
severe mental and physical impairment especially in children. Pb has
been used for ages in plumbing fittings and water distribution systems,
however, because of Pb poisoning, copper has replaced Pb as a safer
alternative. Alternately, chromium-6, a raw material for stainless steel
production, was found in approximately 75% of water samples in U.S.A.
between 2013 and 2015, and may have been consumed by an estimated
200 million people (Zaremba, 2016). Chromium-6 pollution causes
liver damage, reproductive health problems and cancer. Although
permissible limit for Pb in treated drinking water is documented as 15
parts per billion (ppb); that for Chromium-6 is unknown (Scott, 2016;
Zaremba, 2016). Other adverse ramifications of pollution include soil
salinization, and outbreak of water-borne diseases (Rijsberman, 2006;
Semenza et al., 2012; Vincent et al., 2004). In Kenya, almost half of the
population (~16 million) resides in unhygienic sanitary conditions;
which has contributed to disease outbreaks, soaring infant mortality
rate, and lower graduation rates among children (http://water.org/
country/kenya/). Arsenic, detected in dangerous levels in some
drinking water supplies in India (i.e., Ganges delta) and rural China, is
carcinogenic and genotoxic in high concentration, and its intake can
cause acute abdominal pain, vomiting, diarrhea, muscular pain, and
skin cancer (Komorowicz and Barałkiewicz, 2016; Kumar and Puri,
2012). Above all, the arsenic concentration in drinking water should
not exceed 10 μg L−1 (WHO, 2011).

Elevated nutrient concentration (i.e., Total Nitrogen (TN) or Total
Phosphorus (TP)) in water reservoirs trigger blossoming of cyano-
bacteria such as Anabaena sp., Planktothrix or Microcystis sp. that cause
eutrophication. Eutrophication stresses aquatic ecosystems, reduces
water aesthetics impacting on tourism industry, threatens drinking
water supplies, produces a bad odor, and clogs reservoirs (de Paul
Obade et al., 2013, 2014; Vincent et al., 2004). According to the World
Health Organization, the maximum threshold for phytoplankton mi-
crocystin toxin in recreational waters is 20 μg/L (Michalak et al., 2013).
Water contaminated with toxic cyanobacterium can cause ailments
such as blue baby syndrome (methaemoglobinaemia), liver cancer,
nausea, vomiting, respiratory illnesses or even death (Chang et al.,
2015; Wright, 2016). Extreme cases of “hypoxia” or “dead zones” at-
tributed to oxygen depletion have reportedly occurred in the Black Sea
(Eastern Europe), Lake Taihu and Pearl River Delta (China), Lake
Winnipeg (Canada), Lake Erie, the Gulf of Mexico, and Chesapeake Bay
(U.S.) (Selman et al., 2009). Elsewhere, the water hyacinth (Eichhornia
crassipes) invaded Lake Victoria, the largest lake in East Africa with over
30 million people in its vicinity, blocking fishing access and providing
breeding grounds for disease carrying mosquitoes and snails (le Roux
et al., 2016; UNEP, 2013).

Geopolitical tensions are simmering between Ethiopia and Egypt
because of the grand renaissance dam, located in the Blue Nile river
(Khaled et al., 2016). This dam built at an estimated cost of U.S. $4
billion has a capacity to retain about 70 billion cubic meters of water,
useful for irrigation, flood control, and generating 6000MW of elec-
tricity. However, apart from Egypt risking the loss of 60% of its crop-
lands due to water diversion, the environmental consequences could be
catastrophic (Chellaney, 2013; Khaled et al., 2016). Alternately, Tur-
key's numerous dam construction along the Tigris and Euphrates river
basin for military purposes, hydroelectric power and irrigation, has
reduced water flow and created rifts with neighboring Iraq and Syria
(Gleick, 2014). Syria accuses Turkey of socio-economic sabotage and
creating a humanitarian crisis by contaminating water with fecal
matter, a scenario that enhances risk of waterborne diseases, lowers
yields of irrigated fruits and vegetables, and interferes with aquatic
ecosystems (Chellaney, 2013). Drought may have ignited the ongoing
civil war in Syria, that has created a humanitarian crisis and displaced
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over 2 million people (Gleick, 2014).

3. Remediation options overview

Despite existing legislation, the complexity of natural systems and
their interactions with anthropogenic activities complicate prioritiza-
tion of remediation strategies to control pollution. Curtailing water
pollution requires understanding of key driving forces influencing
water quality, strict enforcement mechanisms, and proactive manage-
ment strategies. Examples of feasible management options include the
Proper Functioning Condition (PFC) assessment method and water
quality trading (WQT). PFC method evaluates the hydrology, vegeta-
tion and erosion/deposition within riparian areas thereby providing
critical information for understanding the drivers of ecosystem function
(Kozlowski et al., 2016; Swanson et al., 2015). However, PFC is a
subjective approach because the assessment criteria relies on expert
opinion and visual interpretation of field sites either directly, or by
using raw aerial photographs and satellite imagery. Besides, PFC does

not objectively integrate qualitative and quantitative water quality
constituent variables, and thus is non-comprehensive and unreliable. In
this regard, the question remains how to blend data on water properties
into a credible and robust water quality metric? Otherwise, WQT is a
market strategy designed to reduce water pollution through issuing
permits and providing economic incentives to support ecosystem
management and restoration initiatives.

Approximately half of water reservoirs within USA do not meet
minimum water quality standards (EPA, 2000). Purifying polluted
water resources in USA is estimated to cost millions of dollars each year
(de Paul Obade et al., 2013; Ritchie et al., 2003). The Clean Water Act
(CWA) was enacted in 1972 to: (i) control water effluent standards by
establishing a pollution cap based on mandated Total Maximum Daily
Loads (TMDLs), (ii) ensure the water reservoirs are fishable and
swimmable (EPA, 2016b; Freeman, 2000; Ghosh et al., 2011). Based on
the sum of all pollutants, TMDLs provide permissible pollution limits
allowable in water reservoirs. Under section 303 (d) of CWA, all im-
paired waters within respective watersheds must be listed (EPA,

State

point (PS) & non-point source (NPS) pollutants 

contaminated surface and ground water

peace and tranquility threatened

infrastructure and industry issues

Impacts

pathogens, epidemics
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Fig. 1. Driving Forces-Pressures-State-Impact-Responses (DPSIR) water quality infrastructure. Abbreviation WQI stands for Water Quality Indicator.
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2016b). Although CWA is credited for significantly controlling PS water
pollutants, NPS pollution remains a problem.

As a strategy to control pollution, the U.S. federal CWA requires all
facilities that discharge wastewater, or storm water within specific
watersheds to purchase a WQT permit applicable within the defined
jurisdiction. WQT allows point polluters (e.g., industries) to opt out
from fully implementing pollution reduction technologies but instead
purchase “pollution credits” from NPS polluters (e.g., farmers) (de Paul
Obade et al., 2014; Moore, 2014). However, prior to participating in
WQT, U.S. Environmental Protection Agency (EPA) requires these NPS
polluters to incorporate best management practices (BMPs). Examples
of BMPs include crop rotation, water conservation, allocating a con-
servation easement, prescribed burning, grazing management plan,
conservation agriculture, recycling waste, integrated nutrient and pest
management (Kozlowski et al., 2016; Lal, 2013; Lal et al., 2012;
Swanson et al., 2015).

WQT permits are issued by the National Pollutant Discharge
Elimination System (NPDES) a subsidiary of EPA, which enforces the
CWA mandate (Ghosh et al., 2011; Moore, 2014; Stephenson and
Shabman, 2011). Approximately 1000 permits have been issued costing
between US $ 400 to 2000. However, NPDES continues to impose
stringent measures for WQT permits, for instance, by reducing TP limits
to 1mg/L, with considerations of lowering further to between 0.5 and
0.75mg/L, which is arduous to monitor (de Paul Obade et al., 2014;
Moore, 2013). No wander, specifying spatial and temporal scales for
which WQT can be most effective remains a challenge.

To recapitulate, WQT credibility depends on: (i) enforcement of a
pollution cap, (ii) BMP verification system, and (iii) restrictions cur-
tailing pollution (de Paul Obade et al., 2014; EPA, 2016b; Savard, 2000;
Shrestha et al., 2008). WQT can be a risky venture because legal lia-
bility is not transferrable for credits purchased, implying that the credit
buyer may be fined for exceeding TMDL cap stated in original permit
should the contract with the non-point polluter lapse (Selman et al.,
2009). The Alpine and Muskingum WQT programs (Moore, 2014); and
the electrical power research institute's (EPRI), exemplify WQT in-
itiatives operational in Ohio, Kentucky and Indiana (USA) (EPRI, 2016),
that can be emulated in other localities.

4. Monitoring water quality strategies

Sustainable water quality management entails: (i) developing robust
water quality assessment models and tools, and (ii) utilizing technolo-
gies that can promote water use efficiency, for instance, by increasing
green water, purifying gray water and minimizing virtual water (de
Paul Obade et al., 2013, 2014; Lal, 2015a; Maruthi Sridhar and Vincent,
2007; Mohammed, 2002). Besides, new monitoring capabilities pro-
viding real time information are required to assess the risks and im-
plications of anthropogenic land management practices on water re-
servoirs (Bushaw-Newton and Seller, 1999; Vincent et al., 2004). Many
different statistical methods, automated or semi-automated technolo-
gies utilizing field data, and interpretations from aerial or satellite
imagery, or both to assay water quality exist (Hajigholizadeh and
Melesse, 2017). A conceptual flow chart portraying a holistic yet syn-
thesized WQI is depicted in Fig. 2.

Water quality information is gleaned by a range of techniques
varying in complexity and sophistication. The most commonly used
methods regardless of limitations include: (i) in situ (local/point/field)
measurements (e.g., Secchi disk depth (SDD) which evaluates the depth
of water transparency/clarity in reservoirs but may be limited for
flowing river systems), (ii) laboratory analyzed samples, and (iii) em-
pirical/analytical modeling of remotely sensed data from scanned lo-
cations or samples (Haji Gholizadeh et al., 2016; Maruthi Sridhar and
Vincent, 2007; Olmanson et al., 2013; Reif, 2011). Although lacking in
spatial coverage and temporal extent, adequately collected field data
for a point is accurate, and thus used to validate data from other
sources, such as remote sensing. However, collecting field data is a

time-consuming, labor intensive process, and thus expensive (Ramesh
et al., 2010; Ritchie et al., 2003).

From a practical standpoint, laboratory analyzed field data and
geospatial technology (e.g., remote sensing and Global Positioning
Systems (GPS)) are integrated using a Geographical Information
Systems (GIS) (Fig. 3) to provide spatially/temporal continuous data
that can be validated and complemented from the sampled field points
(Gitelson et al., 2008; Haji Gholizadeh et al., 2016; Ritchie et al., 2003).
GIS are computer-based tools that integrate database operations and
can query, statistically analyze, overlay, visualize, manage and store
geographically referenced data. The GIS-based Soil and Water Assess-
ment Tool (SWAT) driven largely by weather data approximates surface
runoff, discharge, sediment and nutrient loads and can thus be used to
predict agricultural management impacts on water quality (Ha et al.,
2018; Michalak et al., 2013). Other hydrologic and water quality
models include the ADAPT, ANNAGNPS, APEX, COUPMODEL,
CREAMS/GLEAMS, DRAINMOD, EPIC, HYDRUS, HSPF, InVEST, KI-
NEROS2/AGWA, MACRO, MIKE SHE, MT3DMS, RZWQM2, SHAW,
SWIM3, STANMOD, TOUGH, WARMF etc. (Adhikari and Hartemink,
2016; Kisekka et al., 2017; Yuan et al., 2015). Among the parameters
integrated and analyzed by these models include hydraulic con-
ductivity, TN, TP, pesticide concentration, bacteria loading rate, eva-
potranspiration (ET), soil porosity and erodibility, soil bulk density (ρb),
fecal coliform concentration, soil organic carbon (SOC), runoff curve
number, rooting depth, crop yield, subsurface drainage flow etc.,
(Adhikari and Hartemink, 2016; Kisekka et al., 2017; Yuan et al., 2015).
However, none of these models explicitly generate “single-value” WQI.
Table 2 reviews standardized WQIs that have been utilized with mixed
results (Mohebbi et al., 2013; Ramesh et al., 2010).

4.1. Water quality surveillance and monitoring using remote sensing

Determination of the spatial extent of water resources is not a dif-
ficult task at a specific site; the problem is monitoring water quality.
This knowledge gap is a major impediment in the process of planning or
even informing water resource managers and decision makers on the
socio-economic impacts of development projects. Thus, the potential of
technologies such as remote sensing which provide continuous spatial
and temporal data needs to be fully explored to understand water
quality dynamics. Optical, thermal, active and passive remote sensing
based systems that are either hand-held, or operated from boats, air-
craft, and satellites have transformed the paradigm of mapping by
sensing beyond the visible electromagnetic spectrum and providing
repetitive, spatially continuous data in real-time that can be upscaled or
downscaled (de Paul Obade and Lal, 2013; Oliver and Webster, 2014;
Ouma, 2016; Pérez Hoyos et al., 2016; Roy et al., 2008, 2014). Active
systems emit and detect own energy to and from the target, whereas
passive systems rely on energy from the sun. Unlike passive sensors,
active sensors generate pulses that penetrate clouds and smoke. Al-
though remote sensing systems provide frequent synoptic coverage, and
are non-destructive, its caveats include: (a) bidirectional reflectance
distribution function (BRDF) effects and spectral mixing problem
caused by adjacency effects and uneven illumination, (b) data-gaps
attributed to cloud cover, smoke, sun-glint, aerosols, atmospheric in-
terference; all of which lower the signal-to-noise ratio (SNR), (c) rig-
orous and continuously evolving data processing and calibration re-
quirements (e.g., changes in data quality and formats following the
launching of newer satellites), (d) mismatches between spatial, spectral
and temporal resolution, (e) high costs of data acquisition, archiving
and absence of long-term data (Chang et al., 2015; de Paul Obade et al.,
2013). Haze in imagery attributed to variation in sensor slope angles or
directions can be minimized by ratio-ing sensor bands. Notwith-
standing, the explosion of digital geo-information products create re-
dundant information (Ouma, 2016; Vitharana et al., 2008).

Although an overview is provided here on water quality sensors
(Tables 3, 4, & 5); the sensor specifications, other sundry details such as
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software's, digital processing techniques are beyond the scope of this
work, but are accessible online or from the following references (Chang
et al., 2015; de Paul Obade and Lal, 2013; Haji Gholizadeh et al., 2016;
Hajigholizadeh, 2016; Ouma, 2016; Pérez Hoyos et al., 2016; Revilla-
Romero et al., 2016). Prior knowledge of spatial (pixel size, or size of
smallest feature distinguishable by sensor), spectral (band ranges, or
region of electromagnetic spectrum sensed), temporal (frequency of
imagery acquisitions), radiometric (color depth, or number of digital
levels representing data) resolution, and swath (area of coverage) are
important considerations in sensor selection (Ouma, 2016). Notably,
remotely sensed data should be calibrated to ensure highest data

quality that accurately represents measured surface signals. Atmo-
spheric signal attenuation and geometric distortions are assumed min-
iscule in proximal sensing given the reduced atmospheric path length
and proximity to target of measurement. However, data acquired from
aerial/space platforms have substantial path length, necessitating geo-
metric and radiometric corrections. Radiometric correction minimizes
atmospheric distortions thereby enhancing clarity of imagery, whereas
geometric correction compensates for systematic and random errors
necessary for accurate extraction of distance, area and direction in-
formation from imagery (Chang et al., 2015).

Spaceborne sensors may be of high spatial resolution (e.g., Compact

data fusion

uncertainty / sensitivity analyses (e.g.,)

R2, Root Mean Square Error (RMSE), 

coefficient of variation = (standard deviation/mean)×100

synthesize (e.g., single-value) water quality index

algorithm development

empirical, analytical & hybrid (e.g., structural equation models)

field (insitu) data (e.g.,)

pigment samples extracted in hot ethanol

phytoplankton chlorophyll quantified fluorometrically

turbidity determined turbidity sensor, secchi disc

dissolved/particulate organic carbon determined by high 

temperature combustion

GIS

Remote Sensing (passive, active; 

passive + active), Google Earth 

Engine, GPS

.

.

.

.

.

.

.

.
Fig. 2. Framework for monitoring water quality. Passive Sensors rely on naturally occurring external energy source (e.g., sun for illumination), whereas Active
sensors provide own energy source to scan target.
Abbreviations: GIS, Geographical Information Systems; GPS, Global Positioning Systems.

Fig. 3. The system-based approach to Water Quality determination.
Abbreviations: GIS: Geographic Information Systems; GPS: Global Positioning Systems.

V. de Paul Obade, R. Moore Environment International 119 (2018) 220–231

225



Airborne Spectrographic Imager (CASI) and HyMap hyperspectral,
QuickBird, IKONOS, and SPOT-5/HRG), medium (e.g., Landsat), or
coarse resolution with limited spectral range (e.g., National Oceanic
and Atmospheric Administration (NOAA) which is a consortium of
several coarse resolution sensors) (Table 3) (Chang et al., 2015; Haji
Gholizadeh et al., 2016; Hajigholizadeh, 2016; Pérez Hoyos et al., 2016;
Reif, 2011; Revilla-Romero et al., 2016). Aerial sensors operating from
relatively lower platforms (altitude) have greater spectral and spatial
resolution but less swath width (Table 4) (Olmanson et al., 2013). Be-
cause hyperspectral sensors have numerous, narrower, spectral bands,
they contain more precise and detailed information than multispectral
and panchromatic respectively; but require greater storage and pro-
cessing requirements (Chang et al., 2015; Haji Gholizadeh et al., 2016).
Data from coarse spatial resolution satellite sensors are generally lower
in cost and sometimes free, compared with high spatial resolution sa-
tellite or aerial sensors (Chipman et al., 2009; Vinciková et al., 2015).
Besides, airborne surveys require more flight planning, and adjustment
considerations to cater for air traffic, solar conditions, weather and
flight dynamics (i.e., pitch, roll, yaw) (Chang et al., 2015; Chipman
et al., 2009; Reif, 2011). Data acquired using ground based sensors such
as portable hand-held spectroradiometers (e.g., Fieldspec,1 PSR+
35002) can be used to calibrate or even synergize data from space or
aerial platforms (de Paul Obade et al., 2013; Maruthi Sridhar and
Vincent, 2007).

Oftentimes relating remotely sensed spectra to specific water
properties can be challenging. In general, the criteria used to decipher
information from remotely sensed data include color, pattern, texture
and tone. Gleaning water quality information from remotely sensed
data initially requires correlating sensed signals (e.g., reflectance,
brightness temperature because water has low emissivity, backscatter)
directly recorded or available in spectral libraries to surrogate in situ
measured variables such as total sediments (or turbidity), algae con-
centrations (~chlorophyll-a), particulate and/or dissolved organic
matter (PDOM), temperature, dissolved oxygen, salinity, total phos-
phorus (TP), total nitrogen (TN), chlorides, fecal coli bacteria, trans-
parency (e.g., Secchi disk depth), or pH (Chipman et al., 2009; Ramadas
and Samantaray, 2018; Ritchie et al., 2003). Basically, clear water
generates higher reflectance within the blue region of the visible elec-
tromagnetic spectrum than in the red, and vice versa for turbid water.

Moderate Resolution Imaging Spectrometer (MODIS) sensor on the
Aqua satellite, Landsat, and Earth Observing-1 (EO-1) satellite data
have been used to model the relationship between surface reflectance,
chlorophyll-a, and water hyacinth presence (le Roux et al., 2016).
Awange et al. (2008a, 2008b) demonstrated using Gravity Recovery
and Climate Experiment (GRACE) and auxiliary data that abrupt cli-
mate change and not the expanded hydroelectric power station in
Uganda significantly contributed to the receding Lake Victoria water
level. At a coarse spatial resolution (i.e., 300–400 km), GRACE satellite
maps temporal variations of the Earth's gravitational field which highly
correlates with terrestrial water storage after screening-out atmospheric
and oceanic effects (Pérez Hoyos et al., 2016). Aircraft-mounted
thermal sensors, Advanced Very High Resolution Radiometer (AVHRR)
or other satellite platforms, not only permit mapping of thermal plumes
but may also provide new insights on the role oceans play in regulating
weather (Ritchie et al., 2003). Alternately, thermal pollution arising
from extreme water temperature variability attributed to thermal re-
leases from electrical power plants, adversely affect aquatic ecosystem.
Indeed, high water temperatures kill aquatic life because essential gases
(e.g., oxygen) are released from the water into the atmosphere (Kumar
and Puri, 2012). Although temperatures of surface water bodies sig-
nificantly fluctuate on a seasonal or even daily basis, that for

Ta
bl
e
2

So
m
e
st
an

da
rd
iz
ed

w
at
er

qu
al
it
y
in
de

x
(W

Q
I)

(a
da

pt
ed

fr
om

M
oh

eb
bi

et
al
.,
20

13
).

In
de

x
M
et
ho

d
Pa

ra
m
et
er
s

A
dv

an
ta
ge

s
D
is
ad

va
nt
ag

es

(1
)
N
SF

W
Q
I
(U

.S
.N

at
io
na

l
Sa

ni
ta
ti
on

Fo
un

da
ti
on

W
at
er

Q
ua

lit
y
In
de

x)

-S
el
ec
ts

an
d
ag

gr
eg

at
es

pr
od

uc
t
of

th
e
re
sp
ec
ti
ve

w
ei
gh

te
d

w
at
er

qu
al
it
y
pa

ra
m
et
er
s,

-u
se
s
ra
ti
ng

cu
rv
es

ra
ng

in
g
fr
om

0
to

10
0
w
it
h
ze
ro

de
no

ti
ng

po
or

qu
al
it
y
an

d
10

0
hi
gh

w
at
er

qu
al
it
y

un
iq
ue

pa
ra
m
et
er
s
i.e

.,
di
ss
ol
ve

d
ox

yg
en

,f
ec
al

co
lif
or
m
s,
pH

,
bi
oc

he
m
ic
al

ox
yg

en
de

m
an

d,
ni
tr
at
e,

to
ta
l
ph

os
ph

at
e,

te
m
pe

ra
tu
re

ch
an

ge
,t
ur
bi
di
ty
,t
ot
al

so
lid

s

es
ti
m
at
es

w
at
er

qu
al
it
y

-i
nfl

ex
ib
le

st
ru
ct
ur
e,

-n
on

-c
om

pr
eh

en
si
ve

in
pu

t
pa

ra
m
et
er
s,

-s
ub

je
ct
iv
e
ra
ti
ng

cu
rv
es

(2
)
D
ri
nk

in
g
W
at
er

Q
ua

lit
y
In
de

x
(D

W
Q
I)

4
de
fi
ni
te

st
ep
s:

-p
ar
am

et
er

se
le
ct
io
n
an

d
ca
te
go

ri
za
ti
on

,
-d
ev

el
op

m
en

t
of

su
b-
in
de

x
w
it
h
re
gr
es
si
on

st
at
is
ti
cs

-a
ss
ig
nm

en
t
of

w
ei
gh

t
fa
ct
or
s
to

pa
ra
m
et
er
s,

-fi
na

l
ag

gr
eg

at
io
n
of

D
W
Q
I
w
it
h
M
in
-M

ax
op

er
at
or

22
pa

ra
m
et
er
s
i.e

.,
A
cc
ep
ta
bi
lit
y
pa

ra
m
et
er
s:
A
lu
m
in
um

(A
l)
,A

m
m
on

ia
ni
tr
og

en
,

C
al
ci
um

(C
a2

+
),
C
hl
or
id
e
(C

l−
),
H
ar
dn

es
s
(t
ot
al
),
Ir
on

(F
e)
,

M
ag

ne
si
um

(M
g2

+
),
pH

,S
od

iu
m

(N
a+

),
Su

lp
ha

te
(S
O
4
2
−
),

To
ta
l
di
ss
ol
ve

d
so
lid

s
(T
D
S)
,Z

in
c
(Z
n)
.

H
ea
lth

–
ba

se
d
pa

ra
m
et
er
s:
A
rs
en

ic
(A

s)
,C

ad
m
iu
m

(C
d)
,

Tu
rb
id
it
y,

C
op

pe
r
(C

u)
,F

ec
al

co
lif
or
m
s,

Fl
uo

ri
de

(F
−
),
Le

ad
(P
b)
,M

an
ga

ne
se

(M
n)
,M

er
cu

ry
(H

g)
,N

it
ra
te

(N
O
3
−
)
an

d
N
it
ri
te

(N
O
2
−
)

Si
m
pl
e,

an
d
st
ab

le
fo
r

es
ti
m
at
in
g
w
at
er

qu
al
it
y

-c
om

pl
ex

an
d
ti
m
e
co

ns
um

in
g
ca
lc
ul
at
io
n,

-s
ub

je
ct
iv
e
ra
ti
ng

cu
rv
es
,

-la
ck

of
fl
ex
ib
ili
ty

in
se
le
ct
io
n
of

w
at
er

qu
al
it
y
pa

ra
m
et
er
s
an

d
ev

al
ua

ti
on

cr
it
er
ia

(3
)
C
an

ad
ia
n
D
ri
nk

in
g
W
at
er

Q
ua

lit
y
In
de

x
(D

W
Q
I)

C
om

pa
re
s
ob

se
rv
ed

w
at
er

qu
al
it
y
pa

ra
m
et
er
s
to

st
an

da
rd

or
gu

id
el
in
e
va

lu
es

co
ns
id
er
ed

be
nc

hm
ar
ks

ra
th
er

th
an

st
an

da
rd
iz
in
g
ob

se
rv
at
io
ns

us
in
g
su
bj
ec
ti
ve

ra
ti
ng

cu
rv
es

fl
ex
ib
le

-s
im

pl
e
ca
lc
ul
at
io
ns
,

-fl
ex
ib
ili
ty

in
se
le
ct
io
n
of

w
at
er

qu
al
it
y
be

nc
hm

ar
ks

an
d

pa
ra
m
et
er
s

-i
ns
en

si
ti
ve

sc
or
e
sy
st
em

i.e
.,
eq

ua
l
eff

ec
t

of
di
ff
er
en

t
w
at
er

qu
al
it
y
pa

ra
m
et
er
s
in

fi
na

l
D
W
Q
I
sc
or
e

1 http://www.asdi.com/products-and-services/fieldspec-spectroradiometers/fieldspec-
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2 http://www.spectralevolution.com/spectroradiometer_PSR_plus.html
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groundwater is relatively stable (Pérez Hoyos et al., 2016). Active
sensor Radar data such as the synthetic aperture radar (SARs) are useful
for mapping oil spills in water bodies, ocean topography and for re-
gional ice monitoring (Chang et al., 2015; Haji Gholizadeh et al., 2016;
Minvielle et al., 2015).

Different inversion methods, for instance, empirical (e.g., statis-
tical), analytical (bio-optical) and hybrid (i.e., empirical and analytical
combined) are frequently used to extract water quality information
from remotely sensed data; sensed from specific bands, and transformed
into indices (Chang et al., 2015; Gitelson et al., 2008; Ramadas and
Samantaray, 2018). Remote sensing indices are numerical indicators
derived from ratios of spectral bands that highly correlate with specific
object of interest. Empirical methods are site specific and non-trans-
ferable, whereas analytical methods based on the correlation between
optical information and the radiative transfer equation are transferable
(Reif, 2011; Ritchie et al., 2003). However, generic analytical models
are yet to be constructed with data from hyperspectral bands (Chang
et al., 2015). Mapping using remotely sensed data entails preprocessing
and classification techniques such as supervised and unsupervised,
which utilize statistical algorithms to discriminate among groups.
Major preprocessing steps especially critical in change detection and
time-series analyses include georeferencing, radiometric calibration,
atmospheric corrections and cloud removal (Pérez Hoyos et al., 2016).
Classifying digital imagery can be useful for making predictions and
interpolation. Common classification techniques include: (i) cluster
analyses, which group data based on similarities within classes, or
dissimilarities of different classes, (ii) structural equation models (e.g.,
multivariate regression, least squares optimization, factor analyses, and
discriminant analysis or supervised pattern recognition technique that
uses linear combinations of several variables to construct statistical
classification of sample into categorical-dependent values, and (iv)
geostatistics (de Paul Obade and Lal, 2013; Larson and Pierce, 1994).

It is desirable to develop a standardized objective single-value WQI
that rates water quality based on specific use on a % scale, ranging from
zero to 100 with for instance, 100% denoting high/excellent quality
and 0% poor quality water (Abtahi et al., 2015). Ascertaining high and
low quality water thresholds a priori is critical for generating a stan-
dardized framework to ease comparability between WQIs values. Hy-
pothetically, utilization of electromagnetic radiation to monitor water
quality is feasible because backscattering characteristics of water is
dependent on the type and concentration of substances in water. Thus,

WQI can be constructed from measured water quality constituents (e.g.,
Table 1) sensed over a broad electromagnetic spectrum, for instance, by
screening key variables using factor analyses in tandem with multiple
regression methods to analyze the interrelationship between measured
and latent critical variables. Eq. (1) exemplifies WQI parameters, which
can subsequently be graphed as WQI (y-axis) over time (x-axis) to de-
pict spatial-temporal trends:

≡

+

+

+

+ others

WQI {weather (e. g., precipitation, temperature, wind speed)

land use and management (e. g., fertilizer

/manure application and tillage practiced)
remotely sensed data (spectral library acquired at different time

/location) water constituent properties (i. e.

, clarity, pesticides, bacteria, nutrient loading)

(e. g.

, assumed baseline, reservoir circulation
, residence time for water constituents)} (1)

WQI represents water quality index
Applicable parametric multivariate regression methods that syn-

thesize complex models include the: (i) forward selection which selects
predictor variables sequentially until the model fit (R2) cannot be im-
proved, (ii) backward elimination or reverse of forward selection, or
(iii) stepwise method which deletes one non-significant predictor
variables upon each iteration. However, parametric statistics must sa-
tisfy the following assumptions: (i) independence of observations, (ii)
linearity, (iii) homoscedasticity, and (iv) normal distribution of errors

Table 3
Some current spaceborne water quality systems (Modified from Hajigholizadeh, 2016; Chang et al., 2015).

Satellite sensor Spectral bands (wavelength, nm) Spatial resolution
(m)

Approximate revisit interval
(days)

Category

OrbView-2 SeaWiFS 8 (402–885) 1130 16 Coarse (regional−global)
Envisat-1 MERIS 15 (390–1040) 300–1200 daily
Terra MODIS 2 (620–876)-5 (459–2155)-29 (405–877 & thermal band) 250, 500, 1000 1 to 2
EO-1 Hyperion 242 (350–2570) 30 16 Moderate resolution
Landsat-8 OLI/TIRS 5 (430–880)-1 Pan (500–680)-2SWIR (1570–2290)-1cirrus cloud

detection (1360–1380)-2TIRS (10600–12,510)
30, 15, 100 16

HICO 128 (350–1080) 100 10
Digital Globe

Quickbird
4 (430–918)-1 Pan (450–900) 2.62–0.65 2 and half High resolution

SPOT-5 HRG 3 (500–890)-1 Pan (480–710)-1SWIR (1580–1750) 2.5; 5–10–20 2 to 3
CARTOSAT Pan (500–850) 2.5 5

Table 4
Some current Airborne Water Quality Sensors (modified from Hajigholizadeh, 2016).

Sensor Scan system/sensor type Number of bands, & spectral range (μm) Resolution (m) Imaging swath

Airborne Visible Infrared Imaging Spectrometer
(AVIRIS)

Whiskbroom/Hyperspectral 224 (0.40–2.50 μm) 17 12 km (614 pixels/scanline)

Daedalus Multispectral Scanner (MSS) Pushbroom/Multispectral 12 (0.42–14.00 μm) 25 714 pixels/scanline
PROBE-1 in USA (HyMap) Whiskbroom/Hyperspectral 128 (0.40–2.50 μm) 3 to 10 512 pixels

Table 5
Some current microwave radiometers for water quality studies (Hajigholizadeh,
2016).

Satellite Spatial resolution (km) Swath
width (km)

Frequency (GHz)

Nimbus-5 25 3000 19.4
TRMM 8×6 at 85.5 GHz to

72× 43 at 10.7 GHz
760 10.7,19.4,21.3,37.0, & 85.5

SEASAT 22 at 37.1 GHz to 100
at 6.6 GHz

600 6.6, 10.7, 18.0, 21.0, and
37.1
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(Chong and Jun, 2005; Hajigholizadeh and Melesse, 2017; Mehmood
et al., 2012). In contrast, non-parametric methods such as artificial
neural networks (ANNs), support vector machines (SVMs), genetic al-
gorithms (GAs), decision tree techniques, principal component analyses
(PCA), partial least squares regression (PLSR) are parsimonious
(Hajigholizadeh and Melesse, 2017; Liou et al., 2004). Multivariate
statistics not only screen significant model variables but can also extract
regression coefficients even from quantitative and qualitative (e.g.,
management) data simultaneously, which can conjoined as exemplified
in de Paul Obade and Lal, (2016). In principle, the construction of a Soil
Quality Index (SQI) and WQI are similar, because both constitute che-
mical, physical and biologic attributes. Eq. (2) is a prototype water
quality model subsequently aggregated, standardized and transformed
into WQI (%) (Eq. (3)). For monitoring purposes or to conduct relative
comparison of water quality which is the gist of WQIs, the units cancel
out so long as “oranges are compared with oranges”, that is, same input
variables (e.g., physical, chemical and biologic properties) are modelled
into WQI per site.

…

αAttribute Index (AI) {water properties (e. g.

, clarity, nutrient concentration ..)} (2)

= − ×( )AI
MAXAI MINAIWQI 100

(3)

AI: Attribute Index computed from derived remote sensing band
ratios.

MAXAI: Maximum Aggregate Index remotely sensed for good
quality water (e.g., good drinking water per WHO standards).

MINAI: Minimum Aggregate Index remotely sensed for poor quality
water (e.g., waste-water).

Other techniques include the parsimonious decision tree which re-
cursively splits data into mutually exclusive subsets using tree like
partitions, and classifies data either continuously or categorically (dis-
cretely) (de Paul Obade et al., 2014; Saghebian et al., 2014). Yet, the
challenge remains identifying specific spectral resolution sensitive to
water constituents to rank and map critical parameters influencing
water quality. Nonetheless, the multivariate regression models and
geostatistics may facilitate interpolation and mapping of point data
over a continuous surface, especially through fusing field data with
remotely sensed data.

5. Calibration and validation

Although uncertainty and sensitivity analyses (SA) are often carried
out in tandem, they serve different purposes; because uncertainty fo-
cuses on error propagation, whereas SA explores the strength of re-
lationships between model inputs and outputs (Yuan et al., 2015). SA is
applied in parameter fixation, screening-out of key model parameters,
resource allocation for parameter and data measurement, model or al-
gorithm corroboration, and to justify scientific based decisions
(Hajigholizadeh and Melesse, 2017; Yuan et al., 2015). However, SA
results of models are derived for specific scenarios thus are site and
condition dependent. For all applications, the reliability of geo-in-
formation products depends on sampling strategy; accuracy between
model inputs, outputs and actual field conditions. Among the common
sampling techniques for field data acquisition include; random, cluster,
stratified, systematic, and Latin hypercube among others. Visual in-
spection of statistical input versus output plots (e.g., box and whisker
plots) can rudimentarily inform on model reliability.

Frequently used “goodness-of-fit-measures” for quantifying accu-
racy include: (i) coefficient of determination (R2), which describes the
closeness of data to the fitted regression line, (ii) standard deviation,
and (ii) root-mean square error (RMSE). For instance, a lower RMSE
signifies higher accuracy, and conversely for R2. R2 > 0.7 is considered
as the limit of applicability for linear regression-based sensitivity
techniques (Yuan et al., 2015). Cross validation is another accuracy

assessment technique whereby each measured observation is sequen-
tially estimated and error determined (de Paul Obade and Lal, 2013;
Mehmood et al., 2011, 2012). Confusion matrix or classification table is
normally used to evaluate accuracy of remotely sensed data
(Hajigholizadeh and Melesse, 2017). This table has rows representing
observed categories of the dependents, the columns having predicted
categories for each dependent, whereas the diagonal representing per-
fect predictions. Thus, the percentage of correct classifications is com-
puted based on relating the diagonal values with the totals in the row or
columns, using Kappa. Kappa (KHAT statistic) is a metric that quantifies
the difference between actual and chance (Congalton, 1991;
Hajigholizadeh and Melesse, 2017). Kappa values range between ne-
gative to positive one, with positive one value indicating a perfect
classification significantly better than a random result, whereas nega-
tive values represent a poor classification (Congalton, 1991; de Paul
Obade et al., 2014; Foody, 2002, 2010).

6. Conclusions and future perspectives

This review highlights water security issues and explicates potential
requirements for constructing a synthesized WQI linking biogeochem-
ical water properties to refined remotely sensed data. Indeed, water
quality is determined by quantifying concentration or existence of
specific biological, chemical and physical water constituent properties.
However, constituent elements that can threaten water quality do
change over time (i.e., sometimes high concentration of Arsenic occur).
Thus, this review proposes a WQI generated from fused field and re-
motely sensed data that can integrate multivariate qualitative and
quantitative water constituent properties into a “single-value” WQI, so
insights can be gained to guide future model development and appli-
cations. WQI information is pertinent for (i) decision making and
management especially regarding control and remediation of con-
tamination hotspots, (ii) reporting and understanding various water
quality threats to human health, and (iii) surveillance of water quality
life cycle, for instance, from the reservoir to tap.

Some future remote sensing systems equal to this task are also listed
in Table 6. It is important to note that small payload sensors are be-
coming fashionable because their electronics and detection sensors
have reduced size and mass (Ouma, 2016). For instance, unmanned
aerial vehicles (drones), or nanosatellites (e.g., from Terra Bella3 and
Planet Labs4) packed with high-powered optics and sensors are not only
affordable in comparison to current aerial and space borne sensors, but
their agility allows them to achieve attitude-change maneuvers rapidly
allowing them to operate from any orbit; thereby providing high tem-
poral resolution products (Olmanson et al., 2013; Ouma, 2016; Rango
et al., 2009).

From a practical standpoint, calibrated remote sensors/devices sy-
nonymous to “no contact thermometers” should be constructed that
directly measure water quality (e.g., in %, with 100% denoting ex-
cellent/high quality and 0% low quality). Such devices will not only
provide an insight on the deviation from pristine conditions for natural
water bodies (e.g., to inform recreational water users); but also enhance
knowledge on the interrelationship between water quality dynamics,
abrupt climatic change and anthropogenic land use/management.
Thus, robust algorithms accurately synthesizing water quality in-
formation and transferable to other regions are required. Finally, de-
velopment of high fidelity and concise WQI will be useful for time series
analyses so as to enhance the understanding of socio-economic dy-
namics vis–à–vis water quality status.

3 https://terrabella.google.com/?s=in-action&c=case-mongolia
4 https://www.planet.com/
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