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a b s t r a c t

The global proliferation of harmful algal blooms poses an increasing threat to water resources, recreation
and ecosystems. Predicting the occurrence of these blooms is therefore needed to assist water managers
in making management decisions to mitigate their impact. Evaluation of the potential for forecasting of
algal blooms using the phytoplankton community model PROTECH was undertaken in pseudo-real-time.
This was achieved within a data assimilation scheme using the Ensemble Kalman Filter to allow un-
certainties and model nonlinearities to be propagated to forecast outputs. Tests were made on two
mesotrophic lakes in the English Lake District, which differ in depth and nutrient regime. Some fore-
casting success was shown for chlorophyll a, but not all forecasts were able to perform better than a
persistence forecast. There was a general reduction in forecast skill with increasing forecasting period but
forecasts for up to four or five days showed noticeably greater promise than those for longer periods.
Associated forecasts of phytoplankton community structure were broadly consistent with observations
but their translation to cyanobacteria forecasts was challenging owing to the interchangeability of
simulated functional species.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Algal blooms are a global problem affecting water resources,
recreation and ecosystems (Carmichael, 1992; Smith, 2003; World
Health Organization, 1999). These problems are particularly acute
when cyanobacterial species dominate because of the risk of toxin
production that can cause adverse effects to humans and wildlife
(Metcalf and Codd, 2009). In addition, water supply companies face
associated problems such as poor taste and odour and, in extreme
cases, high concentrations of algal-derived toxins which are costly
to manage (Pretty et al., 2003; Dodds et al., 2009; Michalak, 2016).
Costs associated with implementation of management strategies
are growing because of increased bloom frequency (Ho and
Michalak, 2015) and because of the effects of widespread nutrient
enrichment and climate change (Paerl and Huisman, 2008; Brookes
and Carey, 2011; Rigosi et al., 2014). As a result, there is an urgent
need for reliable predictions of algal bloom formation to enable
timely management interventions to be implemented.
Forecasting algal blooms in lakes is relatively new (Kim et al.,
2014) but is increasingly becoming a requirement for lake and
reservoir managers (Huang et al., 2013; Recknagel et al., 2014; Xiao
et al., 2017) to help inform decisions regarding timely and cost-
effective management interventions. The fact that limmnology is
rapidly becoming data-rich (Marc�e et al., 2016; Xiao et al., 2014)
means that effective real-time forecasts are increasingly more
feasible. However, forecast simulations will be inherently uncertain
for a number of reasons including input data resolution and sim-
plifications in model process representation. These uncertainties
have implications for the accuracy and reliability of a forecast and
therefore effort is required to allow for modelling uncertainty. Data
assimilation (DA) is one approach to reducing forecast uncertainty
but has, to date, received relatively little attention for forecasting
phytoplankton community dynamics. There is hence a need to test
different DA methodologies across different lake systems and
different models.

There are still relatively few studies for operational lake fore-
casting systems and various approaches have been taken such as
using: Ensemble Kalman Filter (EnKF; Evensen, 1994) schemes and
physically-based simulation models (e.g. Allen et al., 2003; Huang
et al., 2013; Kim et al., 2014); evolutionary computation
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(Recknagel et al., 2014; Ye et al., 2014); Lagrangian particle tracking
model methods (Rowe et al., 2016); and a combination of wavelet
analysis and neural networks (Luo et al., 2011; Xiao et al., 2017). The
EnKF has been developed to deal with highly non-linear model
dynamics which cannot be represented well using the traditional
Kalman Filter. Phytoplankton population dynamics are highly non-
linear with multiple modes of behaviour that can respond rapidly
to threshold-type effects and are prone to rapid changes in their
physical and chemical environment (e.g. water temperature, light
levels and available nutrients). This makes the EnKF a suitable
choice to exploring algal bloom forecasting when coupled with a
phytoplankton community model.

Herewe assess our ability tomake pseudo-real-time forecasts of
phytoplankton communities in two lakes in the English Lake Dis-
trict in the north west of England, which are prone to cyanobacteria
blooms during the summer. Forecasts were made using a modified
version of the phytoplankton community model PROTECH
(Reynolds et al., 2001) within a DA scheme using the EnKF. The
version of PROTECH employed is appropriate for this problem as it
is intermediate in its complexity between physically-based coupled
3-dimensional hydrodynamic-biochemical models and more
simplistic “black box models” which have both been used in this
context. More complex models are extremely computationally
expensive in forecasting (Huang et al., 2013; Recknagel et al., 2014),
such that only a limited number of ensemble members can be used
(Kim et al., 2014); simple black box models may not be able to
represent phytoplankton community dynamics driven by ecolog-
ical strategies that are represented in phytoplankton community
models such as PROTECH.

We aimed to determine the efficacy of phytoplankton commu-
nity forecast simulations, evaluate the EnKF as a DA strategy and
investigate the ensemble size required for making consistent
forecasts. Ultimately, success will rely on the modelling strategy
being sufficiently effective to capture the necessary short-term
phytoplankton community dynamics, given the available meteo-
rological forecasts and limitations associated with driving data.
Demonstrating the efficacy of the approach therefore requires a
robust appraisal procedure with predictions tested qualitatively
and quantitatively against appropriate benchmarks. This approach
allows other pertinent questions to be investigated; namely, how
does forecasting reliability diminish with time-scale of forecast
and, most pertinently, what can be learnt from any forecasting
failure regarding future model development and optimisation of
monitoring strategies.
2. Methods

2.1. Study lakes

This study considers two lakes in the English Lake District of
North West England with differing depths and nutrient regimes
(Table 1). The catchments associated with each of the lakes are
predominantly hill land, rough-grazed by sheep throughout the
year and contain towns and villages that are tourist destinations
and are hence associated with seasonal increases in lake nutrient
inputs. Windermere is England's largest natural lake and comprises
Table 1
Study Lakes and primary characteristics.a

Name/location Mean Depth (m) Max. Depth (m) Max. Leng

Windermere (South Basin) 16.8 41 9300
Esthwaite Water 6.4 15.5 2500

a Details from Ramsbottom (1976).
two basins connected at a shallow region approximately halfway
along its main axis. The two basins are usually considered sepa-
rately as they have different characteristics: both basins are mon-
omictic and mesotrophic, but only the south basin was modelled in
this study. Esthwaite Water is a small, generally monomictic and
occasionally dimictic, lake that has been subject to eutrophication
for many decades because of elevated phosphorus levels (Bennion
et al., 2000; Dong et al., 2012): cyanobacterial blooms are common
in the summer to early autumn. Previous work has shown that
internal sources from the lake sediment form an important
component of the P budget of the lake (Hall et al., 2000; Heaney
et al., 1992; Mackay et al., 2014).
2.2. Data

2.2.1. Forcing inputs: meteorological forecasts
The primary forcing inputs were meteorological forecasts pro-

vided by the European Centre for Medium-term Weather Forecasts
(ECMWF) Ensemble Prediction System. The 10-day-ahead forecasts
include an ensemble of 50 simulations from perturbed initial states
(at 32 km2 resolution) and stochastic perturbations of model pa-
rameters (see Buizza et al., 1999; Ollinaho et al., 2017). The re-
initialisation of model states in the ECMWF forecasting system is
implemented using a higher resolution 3-h forecast each day. As
this re-initialisation is repeated each day, and as perturbations are
random, there is no specific relationship between individual
ensemble members in subsequent days. The forecast associated
with each ensemble member was hence treated as independent
from prior forecasts for this study. Daily averages of forecasts were
used (i.e. the average of 3-hourly forecasts for days 1e6 and of 6-
hourly forecasts day 6e10) for consistency with the daily time-
step of PROTECH. Historic forecasts were obtained for 2008, 2009
and 2010 and used in pseudo-real-time. Given the scale of the
forecast grid, each forecast variable was “downscaled” to local data
as described in the next section.
2.2.2. Sampling meteorological forecasts
Downscaling relationships were developed for air temperature,

wind speed, precipitation, cloud cover, relative humidity and solar
radiation (Table 2). For air temperature, a relationship was identi-
fied between forecasted temperatures and observed temperatures
using linear regression. Residuals from this initial analysis helped
identify an additional hysteretic relationship between forecasted
and observed temperatures, which was attributed to a lake thermal
effect; this effect was implemented as an additional correction for
each day of the year. Similarly, wind speed was corrected using a
linear correction factor coupled with an additional correction based
upon wind direction; this was required owing to complex moun-
tainous topography and lake-axis orientation. A wind-rose with
sectors of 30� was used to classify forecasted wind speeds and a
sector-specific correction was applied. The uncertainty associated
with the corrections was represented by fitting a gamma distri-
bution to the data in each sector. All other variables (precipitation,
cloud cover, relative humidity and solar radiation), were corrected
using a correction multiplier identified using linear regression,
without propagating the uncertainty in the relationship. The
th (m) Volume (m3) Catchment Area (km2) Residence Time (days)

1.06� 108 230.5 100
5.97� 106 17.1 100



Table 2
Forcing inputs and downscaling relationships.

Model Inputs Downscaling factor/relationship Uncertainty sampled

Air Temp (Ta; K) Windermere: 0.095(Tax) þ 279.75a

Esthwaite Water: 0.013(Tax) þ 280.16a
Y (Regression)

Solar Radiation (SR; Wm�2) 0.85 N
Wind Speed (W; m s�1) 0.38b Y (Gamma Dist.)
Relative Humidity (RH; %) 1 N
Cloud Cover (Cc; eighths) 1.25 N
Rainfall (R; mm) 3 N
Nutrient Inputs (P; N; SiO2/mg m�3) See section 2.2.3 Y (Gamma Dist.)

Tax is the forecast air temperature (K).
a See Section 2.2.2 for additional lake-effect correction.
b See Section 2.2.2 for additional wind direction correction.
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uncertain relationships for air temperature and wind speed were
resampled as perturbations of the ensemble members allowing
investigation of the effect of different ensemble sizes.
2.2.3. Nutrient inputs
Knowledge of diffuse nutrient inputs for the study lakes is

relatively poor. Observations available were from approximately
monthly frequency routine monitoring and did not cover all river
inputs. Both lakes are also impacted by point sources from waste
water treatment works (WwTW) and Esthwaite is subject to sig-
nificant internal P fluxes (Mackay et al., 2014). Diffuse nutrient in-
puts and WwTW inputs (where included) were treated as reported
by Page et al. (2017) and these inputs were modified by a multi-
plicative parameter included in the EnKF scheme (Table 4). For
Windermere, upstream lake inputs of nutrients (and chlorophyll a)
were treated as reported by Page et al. (2017) but were not included
in the EnKF scheme.
2.2.4. Data for assimilation and evaluation of forecasts
Specific years where the observed data were of the highest

frequency, were chosen to test the DA strategy. High frequency
(4min) data from the automatic lake monitoring systems
(Madgwick et al., 2006; Mackay et al., 2014) were available and
were aggregated to daily values. The variables used for DA are listed
in Table 3. The “observed” temperatures for the epilimnion (Te) and
hypolimnion (Th) used to compare with the modelled variables for
these layers were calculated as volume-weighted averages of
thermistor chain data, using the simulated epilimnetic depth to
delineate the hypolimnion and epilimnion. The “observed” epi-
limnetic depth (De) was estimated using a density gradient method
(e.g. see Read et al., 2011). In addition to the automatic monitoring,
routine monitoring was carried out at the buoy location at a fre-
quency of approximately every 14 days and included chlorophyll a,
phytoplankton species “counts”, soluble reactive phosphorus (SRP),
dissolved inorganic nitrogen (DIN) and silica (SiO2) (Table 3). These
observations were derived from a water sample at the buoy loca-
tion integrated over 0e7m depth (Windermere) or 0e5m depth
(Esthwaite Water) (Maberly et al., 2011).
Table 3
Observed data assimilated in the EnKF scheme.

Assimilated state Frequency Source

Epilimnetic Temperature (oC) Daily buoy obs.
Hypolimnetic Temperature (oC) Daily buoy obs.
Epilimnetic depth (m) Daily buoy obs.
Chllorophyll a (mg m�3) z14 days Monitoring
Nutrient Inputs (SRP; N; SiO2/mg m�3) z14 days Monitoring
2.3. Modelling methodology

The modelling strategy employed was designed to represent the
different facets of the forecasting system as simply as possible to
reduce computational burden, whilst retaining the requirement to
explicitly simulate phytoplankton community structure and, spe-
cifically, to estimate the likely concentrations of cyanobacteria
given the simulated community structure. Thus, the catchment-
lake system was simulated using a suite of models of differing
complexity from purely data-based (statistically estimated) trans-
fer function (TF) models and processed-based models which are
consistent, in their complexity, with the available data. A schematic
of how the models were combined in the forecasting system is
presented in Fig. 1 and each model is described in this section. The
modelling system is structured around the rationale that epi-
limnetic depth must be estimated as accurately as possible so that
the phytoplankton model, PROTECH, is more likely to provide good
estimates of phytoplankton community structure. In PROTECH,
community structure is simulated using functional algal types as
classified by Reynolds (1988) and as outlined in the next section.
The simple conceptual model that estimates epilimnetic depth is a
heat energy “balance” model that requires estimates of epilimnetic
temperature and energy fluxes to the epilimnion, including those
associated with river inflows and outflows.

The TF models, epilimnetic depth model and PROTECH are run
sequentially; the TF and epilimnetic depth models provide forecast
estimates of river flow, epilimnetic depth, epilimnetic temperature
and hypolimnetic temperature as inputs to PROTECH. Data assim-
ilation is employed for the two primary models (the epilimnetic
depth model and PROTECH) using two separate EnKF schemes that
assimilate observations at different intervals; the epilimnetic depth
model scheme assimilates epilimnetic depth and epilimnetic
temperature estimates as well as hypolimnetic temperature esti-
mates on a daily basis and the scheme for PROTECH assimilates
nutrient and chlorophyll a concentrations approximately every 14
days.
2.3.1. The PROTECH model
PROTECH (Reynolds et al., 2001) is a lake phytoplankton com-

munity model that runs on a daily time-step. It is a 1-dimensional
model where the lake is represented by horizontal layers. In the
model representation all layers are assumed to be fully mixed
throughout the epilimnion. River inputs drive fluxes of diffuse
nutrients as well as the flushing of phytoplankton. Upstream lake
inputs are treated as river inputs but are given the phytoplankton
concentrations associated with the upstream lake, where data are
available.

Underwater light for model layer i is calculated using:



Table 4
States and parameters included in the ENKF scheme.

State/Parameter Acceptable range Observational error (%) Initial distributions (uniform)a

Epilimnetic Temp. (Te, 0C) 2e25 5 5.5e7 (W); 4e6(E)
Hypolimnetic temp. (Th, 0C) 2e25 10 5.5e7 (W); 4e6(E)
Epilimnetic depth (De, m) 0.5-max. depth 5 41 (W); 15.5(E)
Chlorophyll a (mg m�3) 1e�6-1e3 10 3e4.5 (W); �4.5-6 (E)
Background light extinction (εb, m�1) 0.15e0.9 N/A 0.15e0.6(W); 0.45e0.75(E)
Epilimnetic P conc. (Pe,mg m�3) 1e�6-1e4 25 10-20(W); 8e15(E)
Epilimnetic DIN conc. (Ne,mg m�3) 1e�6-1e4 25 400-700(W); 500e1100(E)
Epilimnetic SiO2 conc. (Sie,mg m�3) 1e�6-1e4 25 1500-2500(W); 2000e2500(E)
Diffuse P input multiplier (Pf, dimensionless) 0.05e7 N/A 0.01e1.5
Diffuse DIN input multiplier (Nf, dimensionless) 0.1e3 N/A 0.5e1.2
Diffuse SiO2 input multiplier (Sif, dimensionless) 0.1e3 N/A 0.5e1.2
Point source P input multiplier (WwTWf, dimensionless) 0.01e2 N/A 0.1e1.4

a Where distributions are different for each lake W ¼ Windermere; E¼ Esthwaite Water.

Fig. 1. Schematic diagram of the forecasting system. The schematic shows sequential
model input-output structure and DA strategy. De is epilimnetic depth; Te is epi-
limnetic temperature; Th is hypolimnetic temperature, Q is lake inflow/outflow and
Chl and Cyano are the concentration of total phytoplankton chlorophyll a and cya-
nobacterial chlorophyll a respectively.
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li ¼ Isurf ·eð�ε·diÞ (1)

Where: Isurf is the daily surface light flux, d is the depth from the
lake surface, ε is the light extinction coefficient resulting from the
sum of lake-specific abiotic water attenuation (εb) and the extinc-
tion of light associated with the concentration of phytoplankton at
each timestepmultiplied by the parameter εa. In the layers from the
surface to the epilimnetic depth, the available light is represented
by the geometric mean of the epilimnetic layers and hence assumes
that phytoplankton spend an equal time in each layer at each
timestep. Phytoplankton population dynamics are simulated using
the following equation which describes the change in chlorophyll a
concentration (X) of each phytoplankton species selected to
represent the algal community (Reynolds et al., 2001):

DX
Dt

¼
�
r
0 � S� G� F

�
·X (2)

where r
0
is the growth rate, S is settling loss, G is a grazing loss and F

is the loss due to flushing. The growth rate is defined for each layer
using:

r
0 ¼ min

n
r
0
ðqÞ; r

0
ðPÞ; r

0
ðNÞ; r

0
ðSiÞ

o
(3)

where r’(q,I) is the growth rate at a given temperature (q) and daily
photoperiod (I) and r’P, r’N, r’Si are the growth rates determined by
phosphorus, nitrogen and silica concentrations. The final growth
rate (r'cor(q,l)) is a corrected rate allowing for dark respiration using
equation (4). This is required as themodel growth equations are net
of basal metabolism but not dark respiration burden.

r
0
corrðq;lÞ ¼ RdðqÞ· r

0
ðq;lÞ �

�
1� RdðqÞ·

�
·r

0
ðq;lÞ (4)

Where RdðqÞ is the dark respiration rate at temperature q.
PROTECH simulates the dynamics of the species chosen to

represent the phytoplankton community of a given lake. Species
are represented by their morphology, nutrient requirements (i.e.
silica requirement and nitrogen fixing ability) and their vertical
movement strategies. The number of species simulated is nomi-
nally eight (although unlimited) and they are chosen to represent
the dominant functional types of the system. Simulations hence
represent the behaviour of the functional algal community rather
than the dynamics of specific species. The C-S-R functional
phytoplankton classification of Reynolds (1988) is used to classify
phytoplankton into morphologically defined groups relating to
broad ecological strategies. The primary groups are: C-types,
which are invasive, ecological pioneers that are small with high
surface-to-volume ratios (e.g. Chlorella, and Plagioselmis); S-types
which are ‘stress tolerators’ that tolerate relatively low nutrient
availability and strong stratification (e.g. Woronichinia, Microcystis
and Oocystis); and R-types which can harvest sufficient light at
low levels to be able to maintain growth and are hence tolerant of
well-mixed, intermittently insolated environments (e.g. Aster-
ionella, Aulacoseira and Planktothrix). Also present, but less
important for the lake-years studied here, are CS-types, whose
characteristics are intermediate between those of C and S species
(e.g. Dolichospermum, Aphanizomenon and Ceratium) and CSR-
types (e.g. Cryptomonas) that are intermediate between C-, S-
and R-types. The eight phytoplankton used in each lake for this
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study are presented in Table Supp. 2.
2.3.2. Epilimnetic depth model
As a way of reducing computational burden, a simplified rep-

resentation of lake thermal structure was employed to estimate
epilimnetic depth (De). The simplified model works on the basis of
independent estimates of epilimnetic temperature and lake heat
energy fluxes. The estimate of epilimnetic temperature (Te) uses a
TF model (see Section 2.3.3) with inputs of air temperature (Ta),
solar radiation, wind speed (Ws) and De. Air temperature, solar
radiation and wind speed are derived from the forecasts and De

estimates are from the previous simulation timestep. The inde-
pendent estimates of heat energy fluxes are calculated using the
PROTECH energy flux function (see Reynolds et al., 2001) for each
timestep using Te, river temperature and flow magnitude, day
length, cloud cover, Ta, Relative Humidity and Ws.

These two independent estimates are “balanced” to obtain
hypolimnetic volume (Vh) using:

Vh ¼ EDT
DT ·Cw·rw

(5)

where, EDT is the heat energy associated with DT (the difference
between Te and the hypolimnetic temperature, Th), Cw is the specific
heat capacity of water, rw is the density of water. Equation (5) is
solved to find Vh where: DT . Cw. rw . Vh z EDT . Subsequently, the
epilimnetic volume (Ve) and hence epilimnetic depth (De) are
estimated by difference:

Ve ¼ Vt  � Vh  (6)

where Vt is the total lake volume. The requirement for DT is
satisfied by calculating Th using:

Th ¼ Eth
Cw·rw·Vt  

(7)

where: Eth is the “background” heat energy in the lake (associated
with Th and Vt, as defined by Eqn. (7)). During the forecast period, Eth
remains at its previous value until updated during the data
assimilation step. This treatment of Eth neglects the explicit
downward transfer of energy from EDT to Eth for forecasting and
assumes that these are negligible over this timescale: energy is,
however, explicitly transferred downwards each timestep when
temperatures are updated during data assimilation. The sequence
of calculations for each forecast timestep is:

1. Estimate lake surface temperature using TF model
2. Update EDT

I. Radiative energy fluxes
II. River/upstream lake fluxes
� Estimate river input volume using TF model
� Estimate river temperature using TF model
� Assume upstream lake temperature¼modelled lake
temperature

III. If EDT < 0 loose energy from Eh (minimum energy set to 0 �C)
3. Estimate Th from Eth
4. If EDt > 0 and If Te - Th is greater than a threshold parameter

(nominally set to 1 �C) estimate epilimnetic depth by solving for
the volume of water required to match EDT given DT: subse-
quently estimate Ve and hence De by difference.
2.3.3. Transfer function models
Transfer Function (TF) models were used to estimate lake
surface temperature, river temperature and river inflows and out-
flows. Each model is a discrete-time TF identified directly from the
available data. Both the model structures and parameters were
identified using the Refined Instrumental Variable (RIV) algorithm
(Young, 2015) implemented within the CAPTAIN Toolbox for Mat-
lab™ (Taylor et al., 2007). The resulting model structures and
parameter values are presented in Section (Supp. 1) and are either
single input- or multi-input, single-output first order models of the
general form:

yt ¼ B1ðz� 1Þ
Aðz� 1Þ U1 þ

B2ðz� 1Þ
Aðz� 1Þ U2 þ…

Bnðz� 1Þ
Aðz� 1Þ Un (8)

where, yt is the variable being estimated at time t, U1-n are model
input vectors, Aðz� 1Þ and Bnðz� 1Þ are the model coefficients
(polynomials in the backward shift operator: defined by
ytz�1 ¼ yt�1) that number 1 to n in the case of B but note that in
this form for MISO (multi-input single-output) TF the denominator
(A) is common to all n TF elements.
2.3.4. The ensemble Kalman Filter
The EnKF is a sequential Monte Carlo method which uses a

stochastic ensemble of model simulations, and stochastic forcing,
to propagate estimates of model states and (or) parameter values
between assimilation timesteps. As the ensemble of model simu-
lations is used in place of the linear propagation of an error
covariance matrix (as in the traditional Kalman Filter), non-linear
model dynamics are retained during model evolution and un-
certainties are represented by the variation of the ensemble. When
observations are available, each ensemble member is updated
individually using a linear update equation (Eqn. (9)) which relies
on the assumption that the relationship between states and pa-
rameters can be described by multivariate Gaussian distributions.
Rather than resampling the posterior distributions of the updated
ensemble, the EnKF uses each updated ensemblemember such that
some of the non-Gaussian properties of the forecast are retained
(Evensen, 2009). The procedure for the scheme is as follows:

1. The EnKF is initialised with an N number ensemble size,
sampling states and parameters from a priori specified distributions
(see below for specific details of this study) and N simulations for
the forecast period are carried out. Where parameters are varied as
part of the EnKF scheme, they are appended to the state matrix to
give a state-parameter matrix.

2. When observed data are available for assimilation:

I. Apply a linear covariance inflation factor ðІÞ to each of the i
states and parameters to reduce the tendency for low ensemble
covariance and for spurious correlations associated with small
ensemble size (Anderson, 2007; Anderson and Anderson, 1999;
Evensen, 2009):

4a
j;i ¼ І ·

�
4a
j;i � 4a

i

�
þ 4a

i (9)
II. Generate N perturbations of the observations ðYÞ; it is
essential that the uncertainty associated with the observa-
tions is sampled from a distribution with mean equal to the
observed value and covariance (Pe) to avoid bias in the up-
date (Evensen, 2009) and to reduce further the tendency for
the updated ensemble to have very low covariance
(Moradkhani et al., 2005).

III. Update the model states and parameters individually for the
jth ensemble member. This is done proportionally to the
deviation of the states in the forecasted state-parameter
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matrix ð4f Þ from the vector of perturbed observation s and
the Kalman gain matrix ðKÞ: note that the timestep suffix is
omitted for clarity in the following equations:

4a ¼ 4f þ
�
KðYÞ � H4f

�
(10)

where, 4a is the vector of updated states/parameters and H is a
matrix that maps the model states to the observed sates. The
appended parameters are updated using the cross-covariance be-
tween the predicted states and parameters. The Kalman gain ma-
trix is calculated using:

K ¼ Pf4 HT
�
H
�
Pf4

�
HT þ Pe

��1
(11)

where, Pf4 is the covariance matrix for the ensemble of forecasted
state-parameter matrix.

IV. Apply any constraints on states and (or) parameter distri-
butions (e.g. to keep them within physically reasonable
ranges). This was implemented using a resampling scheme
where if any state/parameter violated specified constraints
(Table 4), the ensemble was resampled using a truncated
distribution for that state/parameter in conjunction with a
Gaussian copula to retain the ensemble's covariance
structure.

V. Make N number of simulations for the next forecast period
using the updated state-parameter matrix.
2.3.5. Ensemble Kalman Filter scheme: epilimnetic model
As the epilimnetic model is very simple, all the main model

states were used in the EnKF scheme. The states Te, Th and De were
updated using a daily assimilation frequency for the epilimnetic
depth model. The “observed” values of these states are those esti-
mated and described above.

2.3.6. Ensemble Kalman Filter scheme: PROTECH
The choice of states and parameters included in the PROTECH

EnKF scheme was made based on uncertainty and sensitivity ana-
lyses reported by Page et al. (2017). The Page et al., study, which
included the lakes studied here, identified that the main challenges
for forecasting were uncertainties associated with: representing
phytoplankton exposure to light and nutrient inputs (particularly
phosphorus). The DA scheme was therefore defined to include the
main model states, SRP, DIN, SiO2 and chlorophyll a, as well the
parameters associated with modifying nutrient inputs and under-
water light (Table 4). These were updated at an approximately 14-
day frequency set by the monitoring data. For Windermere, both
point source (WwTWf) and diffuse SRP inputs (Pfact) parameters
were included in the DA scheme; for Esthwaite Water only the
parameter modifying the diffuse SRP inputs was included as sim-
ulations which included a simplified representation of sediment-
derived SRP inputs did not provide improved results (these re-
sults are not reported here).

To investigate the effect of ensemble size and to determine an
acceptable ensemble size for the current applications, ensemble
member (EM) size was increased sequentially, using the scenarios
EM50, EM100, EM200, EM300 and EM400 (where the suffix is the
size of the ensemble), until the forecast simulations appeared
consistent. These scenarios were generated by resampling the
downscaled ECMWF forecast distributions as described above and
were used to force the suite of models used. For each of the forecast
scenarios, the error associated with the assimilated data and the
variance inflation factors were “optimised”manually to provide the
best results. For consistency, and in the spirit of the pseudo-real
time treatment of the forecast simulations, the variance inflation
factors were kept consistent across all lake-years considered. For
each of the assimilated variables, the variance was assumed to be
proportional to the magnitude of the variable of interest using a
percentage. Additionally, a minimum variance was applied to
reduce the impact of very small observed values (e.g. where epi-
limnetic SRP values are observed to be very low or within the limit
of detection) where the associated low variance would falsely
indicate low uncertainty.

2.3.7. Assessing forecast skill
Different studies have used different benchmarks to evaluate

the goodness of fit of forecasts (forecast skill), which are often
determined by their aims. Studies tend to use either some form of
“reference” simulation or simulations that do not assimilate any
observations (sometimes called “climatology”) which serve to
quantify the DA effect (e.g. Allen et al., 2003; Kim et al., 2014) or
solely a measure of the goodness-of-fit to observations (e.g. the
coefficient of determination, R2T ). Here, as our aimwas to assess the
value of the model for operational forecasting, we used a more
stringent persistence forecast (e.g. see Stumpf et al., 2009) which
uses the most recent observations as the forecast for each forecast
timestep until the next observation becomes available. In the sec-
tions below, forecast skill was assessed by comparing the simulated
chlorophyll a forecast with a persistence forecast for the entire
annual timeseries. The goodness of fit of the benchmark and the
simulated chlorophyll a forecasts were determined using the root-
mean-square error (RMSE) as a measure. For the epilimnetic depth
model, and other sub-models (i.e. TF models), goodness of fit is
discussed more generally by comparison with observations using
the coefficient of determination (R2T ). Assessment of the forecasts of
phytoplankton community structure and cyanobacteria is made
qualitatively as we have much lower confidence in the absolute
value of the observations. A discussion of how the phytoplankton
species “count” data are used and the associated uncertainties is
provided in the relevant section below.

3. Results and discussion

3.1. TF model results

Transfer function models were identified for epilimnetic tem-
perature, river temperature and river inflows and outflows and all
models provided good fits to the observed data during model
identification: R2T values were between 0.86 and 0.98 (Supp.
Table 1). Model identification was carried out for the entire
period of data available (see Supp. 1) such that they were not year
specific models. As detailed above, in each case the models were
used to forecast their respective variable deterministically.

3.2. Forecasting epilimnetic depth and the phytoplankton
community

3.2.1. Epilimnetic depth forecasts
Epilimnetic depth forecast estimates were made for 2008e2010

forWindermere and 2008 and 2009 for EsthwaiteWater within the
parallel EnKF scheme. Although very simplistic, the epilimnetic
depth model provided reasonable forecasts of epilimnetic depth
when compared to those estimated from observations. For both
lakes, the forecasts were stable and consistent using the smallest
ensemble size of 50 using a variance inflation factor of 1.25. Sim-
ulations for Windermere were better than for Esthwaite Water (R2T
of 0.85 and 0.75 respectively for a 10-day-ahead forecast; Fig. 2a
and b) and there were short periods with significant deviations
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from the ‘observed’ depths in both cases. Simulation of the timing
of temporary stratification events at the beginning of the year was
problematic for both lakes and simulations tended towards overly
rapid mixing during autumn turnover, particularly for Esthwaite
Water. Where significant deviations exist, they have the potential
to reduce the forecast skill and therefore need to be improved,
although, importantly, epilimnetic depth estimates for much of the
high cyanobacterial bloom risk periods (i.e. during periods of
strongest stratification) are reasonable. Given these results, the
epilimnetic depth estimates forWindermere appear to be adequate
out to 10-days-ahead but for Esthwaite they appear to be adequate
Fig. 2. Simulated and measured epilimnetic depth. Results shown for (a) Windermere
2008e2010 10-day-ahead, (b) Esthwaite Water 2008 and 2009 10-day-ahead and (c)
Esthwaite Water 2008 and 2009 3-day-ahead: “observed” epilimnetic depth (red line),
50th percentile of the ensemble of simulated epilimnetic depth (black line) and 5th
and 95th percentiles (grey lines). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
for a much shorter lead time; for example, the 3-day-ahead forecast
is a much better fit with an improved R2T of 0.81 (Fig. 2c). The ad-
equacy of these estimates is assessed more formally in association
with the Chlorophyll a forecasts in comparison to the persistence
forecast in the next section.

3.2.2. Chlorophyll a forecasts
For all lake-years, multiple runs of the EM50 forecasts gave

inconsistent simulations and a higher EM size was required. Fore-
casts for Windermere tended towards stability between the EM100
and EM200 scenarios (Fig. 3), which is an ensemble size consistent
with previous work with relatively complex models (e.g. Evensen,
1994; Allen et al., 2003). For Esthwaite Water, however, a higher
ensemble size appeared to be required with a size of around 400
giving consistent simulations (Fig. 4). Subsequently, in the
following, results presented for Windermere and Esthwaite Water
are associated with the EM200 and EM400 scenarios respectively.
In all cases, the manually “optimised” variance inflation factor was
kept consistent for all lake years at a value of 1.1.

Although forecast simulations for Windermere appear to be
relatively good visually (e.g. see Fig. 5), they were not always an
improvement on the persistence forecasts (Fig. 3). For 2008, the
persistence forecast was better than simulated forecasts for all lead
times. Conversely, simulated forecasts were better than the
persistence forecasts for all lead times for 2009. A lead time of
approximately 6 days or less was an improvement on the persis-
tence forecast for 2010 simulations.

For Esthwaite Water, forecast simulations were not as good as
those for Windermere (Fig. 5), which is consistent with previous
work using PROTECH for these lakes (Page et al., 2017). The fore-
casts for 2008 were, however, still better than the persistence
forecast out to about 5 days ahead (Fig. 4a), but were always worse
than the persistence forecast for 2009 (Fig. 4b). The poorer fits for
Esthwaite Water are likely to be a result of the complex un-
certainties associated with the timing and magnitude of SRP inputs
as well as the poorer simulation of epilimnetic depth reported
above. In Esthwaite Water, during the period where P limitation
dominates phytoplankton growth, it is very difficult to represent
SRP fluxes appropriately, even when a representation of sediment-
derived SRP fluxes was included (the addition of representation of
sediment-derived SRP did not improve forecasts owing to inter-
action between sources of P: this work is not reported here). The
difficulties associated with representing SRP fluxes was helped to
some degree by the DA, but remain problematic during times when
very low concentrations were present in the epilimnion; at these
times, the correlations within the Kalman gain matrix would need
to be very well-represented to provide appropriate updates to both
epilimnetic SRP concentrations and SRP fluxes simultaneously. The
difficulties associated with these updates are compounded by the
relatively low frequency of assimilation timesteps. Subsequently,
even with relatively large ensemble sizes, the correlations within
the Kalman gain matrix have the potential to be spurious. This is
not unexpected as the lake system is highly dynamic and non-
linear and, perhaps most importantly, the relationships between
the states (and parameters in some cases) are not always consistent
(e.g. when the nutrient states are not limiting they may have no
relationship with the phytoplankton state). The temporal evolution
of the nutrient parameter values (modified within the DA scheme)
that change SRP fluxes were consistent with these uncertainties
and did not show any consistent structure. Given these difficulties,
assimilation of higher resolution nutrient observations may be one
of the most important ways of improving forecasts. Conversely, for
both Windermere and Esthwaite Water, forecasts were improved
by the modification of the background light extinction parameter,
εb, within the DA scheme: its evolution over the simulation periods



Fig. 3. Chlorophyll a forecast skill for the differing ensemble size scenarios. Results are shown for (a) Windermere 2008, (b) Windermere 2009 and (c) Windermere 2010, compared
to the benchmark persistence forecast. Note that lower ensemble sizes can give “randomly” better forecast performance (e.g. EM¼ 50 in pane (a)).

Fig. 4. Chlorophyll a forecast skill for the differing ensemble size scenarios. Results are shown for (a) Esthwaite Water 2008 and (b) Esthwaite Water 2009, compared to the
benchmark persistence forecast.

T. Page et al. / Water Research 134 (2018) 74e85 81
was relatively consistent for each of the years considered (Fig. 6)
and reflects known simulation artefacts previously reported by
Page et al. (2017).

3.2.3. Forecasting phytoplankton community structure
Forecasts of species representing the phytoplankton community

structure were made without direct constraint within the DA
scheme. Simulations were, however, indirectly constrained by the
assimilation of epilimnetic depth, chlorophyll a and nutrients and
hence are reliant on the ability of PROTECH simulations to repre-
sent phytoplankton community structure where abiotic conditions
for phytoplankton growth are simulated adequately. They are also
reliant on whether or not the phytoplankton species chosen to
represent the community are appropriate (Elliott, 2010, 2012; Page
et al., 2017).

Forecasts of community structure are assessed here using



Fig. 5. Measured and forecast phytoplankton chlorophyll a in the two lakes during
2008. Results show concatenated forecasts for: (a) 10-day-ahead for Windermere 2008
for ensemble member sizes (EM) of 50, 100 and 200; (b) 5-day-ahead for Esthwaite
Water 2008 for ensemble member sizes (EM) of 50 and 400. Solid lines are 50th
percentile of ensemble and dotted lines are 5th and 95th percentiles. The box and
whisker symbols represent the analytical uncertainty and the total uncertainty of þ/-
8% and þ/- 25% (see Page et al., 2017).

Fig. 6. The evolution of the background light extinction coefficient parameter (εb). Results a
2009. The three lines in each colour are the 5th, 50th and 95th percentiles of the EM20
references to colour in this figure legend, the reader is referred to the Web version of this
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simulations of R- and CS- functional types. These functional types
were used as they dominate our study lakes. The observations to
which they are compared here are estimated from “counts” of algal
species, which are classified into the same functional groups. The
“count” data were converted to biovolume using microscope
measurements (Centre for Ecology & Hydrology, unpublished data)
and subsequently to Chlorophyll a using the relationships in
Reynolds (1984). This chain of approximations means that the
observed data are associated with significant uncertainty. Accord-
ingly, we used the relative abundance of each functional type for
each observation timestep to partition the observed chlorophyll a
concentration as our final estimate and estimated the sampling/
analytical error to be þ/- 25% and the overall error to be þ/- 50% in
accordance with Page et al. (2017).

A comparison of the uncertain observations of R- and CS-
functional types are presented in Fig. 7 where it can be seen that for
most lake-years the overall pattern of the simulations are consis-
tent with the observations. There are some periods where the
simulations are not consistent, which are associated primarily with
the period of transition between the early blooms of R-type species
and succession by CS-types (approximately between days 100 and
200). This inconsistency can clearly be seen for Windemere 2008
and 2009 (Fig. 7a and d) and is most likely associated with inade-
quate representation of nutrient fluxes and subsequent periods of
nutrient limitation (Page et al., 2017). There are also some periods
where the overly rapid mixing simulated by the epilimnetic depth
model made it difficult to simulate the relatively high observed
biomass: this is particularly evident for CS-species in Esthwaite
Water 2008 (Fig. 7k) and R-species in Esthwaite Water 2009
(Fig. 7l); these inconsistencies are a direct result of the spurious
deep mixing events simulated around days 220 and 250 for 2008
and 2009 respectively (see Fig. 2 b and c) and strengthen the
requirement to improve the epilimnetic depth model.

3.2.4. Forecasting cyanobacteria
Observations of Cyanobacteria are estimated in the same way as

functional species types discussed in the previous section and are
associated with similar uncertainty (see Fig. 7). As PROTECH sim-
ulates the functional algal community using the dynamics of a
number of selected individual species, the philosophy behind this
method means that the forecasts of individual species are not as
robust as those for functional community structure and are hence
more uncertain. This is the case for forecasts of cyanobacteria
where they are represented by more than one functional type: e.g.
re shown for (a) Windermere 2008, 2009 and 2010 and (b) Esthwaite Water 2008 and
0 (Windermere) and EM400 (Esthwaite Water) ensembles. (For interpretation of the
article.)



Fig. 7. Concatenated five-day ahead forecasts of R-species, CS-species and cyanobacteria concentration for all lake years; black line is 50th percentile and grey shaded area rep-
resents the 5th and 95th percentiles of the ensemble: EM200 and EM400 for Windermere and Esthwaite respectively. The box and whisker symbols represent the analytical
uncertainty and the total uncertainty estimated by the project team. Note that 5-day ahead forecasts are presented as approximately this lead time provided the most consistently
acceptable results.
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for Windermere cyanobacteria are represented by Planktothrix, an
R-type species, together with Aphanizomenon flos-aquae and Doli-
chospermum which are CS-type species (see Table Supp. 2). In this
situation, the interchangeability of species with similar functional
behaviour, but which have differing species traits, requires addi-
tional interpretation for forecasts of cyanobacteria to be made. For
example, the simulations of the R-species Planktothrix for all lake-
years for Windermere result in overestimations of cyanobacteria
concentrations for the periods where Planktothrix proliferates
(approximately between days 150 and 275: Fig. 7c, f & i). Cyano-
bacteria forecasts, made for this study, are also a spatial average for
each lake, constrained using data collected at one point; they
therefore do not necessarily correspond with the risk from near-
surface accumulations of cyanobacteria where significant spatial
heterogeneity exists, as can be the case for wind-blown cyano-
bacterial species (e.g. George and Heaney, 1978). Extending point
forecasts to spatial forecasts for species that have these character-
istics is hence an additional challenge. However, forecasts may be
presented as probabilistic or possibilistic risk estimates, such as the
likelihood of a cyanobacterial concentration of greater than a given
critical threshold: this will be the focus of further research.

4. Conclusions

We rigorously tested the ability of the phytoplankton commu-
nity model PROTECH to make forecasts of phytoplankton commu-
nity structure within a data assimilation scheme using the
Ensemble Kalman Filter. Some forecasting success was shown for
chlorophyll a, but not all forecasts were better than a persistence
forecast. The results typically indicated a reduction in chlorophyll a
forecast skill with length of forecasting period with forecasts for up
to four or five days showing greater promise than those for longer
time-scales. Associated forecasts of phytoplankton community
composition, represented by functional algal types, were broadly
consistent with observations. Translation of forecasts of functional
algal types to forecasts of cyanobacteria are challenging because of
functional similarities between species which may or may not be
cyanobacteria. Improvements in forecasts are likely to come from
higher frequency observations for both chlorophyll a and nutrient
concentrations. Fluorescence-based field sensors for both chloro-
phyll and the cyanobacterial pigment phycocyanin exist and while
they are not completely quantitative, they would permit patterns of
change to be captured. While higher frequency observations for
these variables should help improve forecasts, they will also
simultaneously improve the persistence forecast. It, therefore, re-
mains to be seen whether or not a modelled forecast driven with
improved observations would provide a significant improvement
over the associated persistence forecast and the potential to fore-
cast algal blooms in this type of lake.
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