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Abstract. Rapid changes in state have been documented for many of Earth’s ecosystems. Despite a grow-
ing toolbox of methods for detecting declining resilience or early warning indicators (EWIs) of ecosystem
transitions, these methods have rarely been evaluated in whole-ecosystem trials using reference ecosys-
tems. In this study, we experimentally tested EWIs of cyanobacteria blooms based on changes in the spatial
structure of a lake. We induced a cyanobacteria bloom by adding nutrients to an experimental lake and
mapped fine-resolution spatial patterning of cyanobacteria using a mobile sensor platform. Prior to the
bloom, we detected theoretically predicted spatial EWIs based on variance and spatial autocorrelation, as
well as a new index based on the extreme values. Changes in EWIs were not discernible in an unenriched
reference lake. Despite the fluid environment of a lake where spatial heterogeneity driven by biological
processes may be overwhelmed by physical mixing, spatial EWIs detected an approaching bloom suggest-
ing the utility of spatial metrics for signaling ecological thresholds.

Key words: algal bloom; critical transition; early warning indicators; ecosystem experiment; regime shift; resilience;
spatial analysis.

Received 20 June 2017; accepted 26 June 2017. Corresponding Editor: Debra P. C. Peters.
Copyright: © 2017 Butitta et al. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: vincent.butitta@wisc.edu

INTRODUCTION

Ecosystem transitions can result in drastic
changes in composition, structure, and internal
processes (Scheffer et al. 2001, 2012). Desertifica-
tion of grasslands (K�efi et al. 2007), collapse of
coral reefs (Hoegh-Guldberg et al. 2007), and
blooms of harmful cyanobacteria in freshwaters
(Scheffer et al. 1997) represent examples of nota-
ble state transitions. Models of transitions are
often characterized by bifurcation points (or tip-
ping points), in which a small perturbation
causes the ecosystem to quickly and easily “tip”
from one dynamical pattern to another (Lenton
et al. 2008, Scheffer et al. 2009).

Recent work in ecology has explored how to
identify when an ecosystem is at risk of undergo-
ing a critical transition (Scheffer et al. 2009, 2012,

2015). Modeling suggests that there are common
statistical characteristics of spatial or temporal
data near a tipping point between alternative
ecosystem states. Identifying these statistical
characteristics—often referred to as early warn-
ing indicators (EWIs)—could make it possible to
detect an approaching tipping point before it is
crossed. Many EWIs assess an ecosystem’s weak-
ening attraction to its current state, which is rep-
resented by a decreasing ability to recover
quickly after perturbations. Slower recovery rate
of an ecosystem to a local equilibrium is referred
to as critical slowing down and is the foundation
of many EWIs (Wissel 1984, Dakos et al. 2011,
Scheffer et al. 2015). Critical slowing down has
been detected from changes in temporal dynam-
ics in mesocosm experiments (Drake and Griffen
2010, Veraart et al. 2012, Dai et al. 2013) and in
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whole-lake experiments (Carpenter et al. 2011,
Pace et al. 2017). Simple spatially explicit models
of critical transitions indicate that characteristics
of spatial structure can also signal loss of resili-
ence, and thus might be useful for early warnings
(review by Scheffer et al. 2015). The mechanisms
for spatial early warnings are diverse and are still
active subjects of research. In many cases, appro-
priate spatial indicators are based on measures of
variance, skewness, spatial autocorrelation, or
patch size.

Although temporal and spatial EWIs may be
fundamentally linked (Dakos et al. 2010), spatial
analysis may sometimes be more powerful for
assessing risk of critical transition (Guttal and
Jayaprakash 2009, Dakos et al. 2010, Donangelo
et al. 2010, Dai et al. 2013). Time series useful for
detecting EWIs require unbroken series of fre-
quent observations sustained for long periods of
time. Existing time series that were collected for
other purposes may not meet these requirements
and thus can yield ambiguous results (Gsell et al.
2016). Spatial analysis at a few points in time
(e.g., by remote sensing) may provide greater
sensitivity at less cost than high-frequency time
series.

While there are clear demonstrations of spatial
EWI behavior drawn from theoretical examples
(van Nes and Scheffer 2005, Guttal and Jaya-
prakash 2008, Carpenter and Brock 2010), and a
handful from microcosm experiments (Drake and
Griffen 2010, Dai et al. 2013), field experiments on
spatial early warnings are rare (but see Carpenter
et al. 2011, Cline et al. 2014, Ratajczak et al. 2016,
Rindi et al. 2017). Physical processes that influ-
ence spatial patterning such as mixing or other
homogenizing forces may limit detection of early
warnings (Carpenter and Brock 2010, Dakos et al.
2010, Dai et al. 2013, Eby et al. 2017). For this rea-
son, field studies exploring detection of EWIs
under natural conditions are needed.

Lakes are a potentially useful ecosystem for
evaluating spatial EWIs. Transitions of lakes to
cyanobacterial bloom states, a common phe-
nomenon of eutrophic lakes, can involve several
types of critical transitions (Scheffer et al. 1997,
2000, Gragnani et al. 1999, Veraart et al. 2012,
Batt et al. 2013). Many of these critical transitions
could generate EWIs, and at least one model
analysis has shown that this is the case (Batt
et al. 2013). Spatial models of bloom formation

by cyanobacteria exhibit complex changes in spa-
tial patterns that may generate spatial early
warnings (Serizawa et al. 2008). Blooms are
easily detected in surface waters with automated
sensors capable of gathering high-frequency
measurements. Time series from automated sen-
sors successfully anticipated a cyanobacteria
bloom in a whole-lake experiment (Pace et al.
2017). Cyanobacteria blooms are also of practical
interest as they can create serious economic and
human health problems (Dodds et al. 2009) as
well as extensive alterations to aquatic ecosys-
tems (Paerl et al. 2001). Their frequency and
intensity are increasing in freshwaters globally—
a trend that is expected to continue (O’Neil et al.
2011, Taranu et al. 2015).
Modeling studies cited above, especially the

work of Serizawa et al. (2008), suggest that spa-
tial patterns of cyanobacteria on lake surfaces
may generate early warnings of blooms, but this
phenomenon has yet to be tested under field con-
ditions. Here, we induced a cyanobacteria bloom
by adding nutrients to an experimental lake to
investigate whether spatial early warnings are
detectable prior to harmful cyanobacterial
blooms. Cyanobacteria were mapped using a
mobile sensor platform to measure the spatial
structure of the cyanobacteria and attempt to
detect early warnings of the bloom. We tested for
increased spatial variance (Guttal and Jaya-
prakash 2009, Reinette et al. 2009), increased
skewness (Guttal and Jayaprakash 2008), increased
frequency of extreme events, and increased spatial
autocorrelation (Dakos et al. 2010).

METHODS

In two consecutive years, we measured lake-
wide spatial patterning of cyanobacteria using
the FLAMe platform (Crawford et al. 2015). To
evaluate EWIs of a critical transition, in the first
year we induced a cyanobacteria bloom through
nutrient addition in an experimental lake while
using a nearby unmanipulated lake as a refer-
ence ecosystem (Pace et al. 2017). During the sec-
ond year, both lakes were left unmanipulated.
Proposed detection methods for EWIs were com-
pared between the manipulated and reference
lakes to test for their ability to accurately detect
statistical signals before the cyanobacteria bloom
developed.
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Lake description
Peter and Paul Lakes are small, oligotrophic lakes

(Peter, 2.5 ha, 6 m, 19.6 m; and Paul, 1.7 ha, 3.9 m,
15 m, for surface area, mean, and max depth,
respectively) located in the Northern Highlands
Lake District in the Upper Peninsula of Michigan,
USA (89°320 W, 46°130 N). These lakes have similar
physical and chemical properties and are connected
via a culvert with Paul Lake being upstream. Both
lakes stratify soon after ice-off and remain stratified
usually into November (for extensive lake descrip-
tions, see Carpenter and Kitchell 1993).

In the first year, Peter Lake (hereafter “manipu-
lated lake”) was fertilized daily starting on 1 June
2015 (day of year [DOY] 152) with a nutrient addi-
tion of 20 mg N�m�2�d�1 and 3 mg P�m�2�d�1

(molar N:P of 15:1) through the addition of H3PO4

and NH4NO3 until 29 June (DOY 180). The deci-
sion to stop nutrient additions required meeting
four predefined criteria based on temporal
changes in phycocyanin and chlorophyll concen-
trations indicative of early warning behavior of a
critical transition to a persistent cyanobacteria
bloom state (Pace et al. 2017). Nutrients uniformly
mix within 1–2 d after fertilization based on prior
studies (Cole and Pace 1998). No nutrient addi-
tions were made to Paul Lake (hereafter “refer-
ence lake”). In the second year (2016), neither lake
received nutrient additions.

Field sampling
We mapped the surface water characteristics

of both experimental lakes to identify changes in
the spatial dynamics of cyanobacteria. In 2015,
mapping occurred weekly from 4 June to 15
August (11 sample weeks). In 2016, when neither
lake was fertilized, the lakes were mapped three
times in early to mid-summer. In both years,
mapping occurred between the hours of 07:00
and 12:00 (before the daily nutrient addition). We
rotated the order that we sampled the lakes to
avoid potential biases due to differences in time
of day. Each individual lake sampling event was
completed in approximately one hour.

The FLAMe platform maps the spatial pattern
of water characteristics. A boat-mounted sam-
pling system continuously pumps surface water
from the lake to a series of sensors while geo-
referencing each measurement (complete descrip-
tion of the FLAMe platform in Crawford et al.
2015). For this study, the FLAMe was mounted

on a small flat-bottomed boat propelled by an
electric motor and was outfitted with a YSI EXO2
multi-parameter sonde (YSI 2015). We focused
for this study on measures of phycocyanin (a pig-
ment unique to cyanobacteria) and temperature.
Phycocyanin florescence was measured using the
optical EXO Total Algae PC Smart Sensor. The
Total Algae PC Smart Sensor was calibrated with
a rhodamine solution based on the manufac-
turer’s recommendations. Phycocyanin concen-
trations are reported as lg/L; however, these
concentrations should be considered as relative
because we did not calibrate the sensor to actual
phycocyanin nor blue–green algae concentra-
tions. Geographic positions were measured using
a Garmin echoMAP 50s (Garmin International,
Olathe, Kansas, USA). Sensor data were collected
continuously at 1 Hz and linked via timestamp
to create spatially explicit data for each lake.
Each sampling produced approximately 3500
measurements in the manipulated lake and 2000
in the reference lake. The measurements were
distributed by following a gridded pattern across
the entire lake surface to characterize spatial pat-
terns over the extent of the lake (Fig. 1).

Statistical analysis
Phycocyanin concentration were transformed

to log10(x + 1) units for statistical analysis. Q-Q
plots indicated that transformation improved fit
to a normal distribution. Reported concentrations
and ranges were back-transformed for ease of
interpretation; lower bounds included negatives
because the range of sensor output extends from
slightly negative to positive values. We analyzed
the statistical and spatial properties of phyco-
cyanin to calculate proposed EWIs of a cyanobac-
terial bloom. Specifically, we were interested in
estimates of spatial variance, spatial skewness,
frequency of extreme events (as indicated by the
shape parameter of the extreme value distribution
or EVD-shape), and spatial autocorrelation. Based
on models (Guttal and Jayaprakash 2009, Carpen-
ter and Brock 2010, Dakos et al. 2010) and a labo-
ratory experiment (Dai et al. 2013), we expected
increases in spatial variance, skewness (in the
positive direction), and spatial autocorrelation
prior to the bloom. In addition, we expected the
frequency of extreme values to increase as the
manipulated lake approached a bloom. Extreme
values were assessed using the shape parameter
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of the generalized EVD (Gilleland and Katz 2016).
This parameter increases with the frequency and
magnitude of extreme events, assessed relative to
the expectation from the normal distribution.

To check for spurious responses unrelated to a
cyanobacteria bloom, we compared (1) statistical
properties of cyanobacteria between the manipu-
lated lake and reference lake, (2) years with and
without fertilization in the manipulated lake,
and (3) statistics for cyanobacteria to an abiotic
variable, temperature. Temperature patterns
should reflect physical processes that were not
directly affected by nutrient addition nor biology.
Thus, temperature provides an internal reference
for abiotic effects on spatial pattern. Temperature
was not transformed as it appeared to be nor-
mally distributed in Q-Q plots. The reference
ecosystem tests the possibility that factors
impinging on both lakes, such as weather, gener-
ated patterns we observed in the manipulated
lake (Carpenter and Kitchell 1993).

High winds could potentially influence advec-
tive mixing of the lakes and thus the spatial struc-
ture of cyanobacteria. Comparisons between the

reference lake and the manipulated lake are likely
minimally affected by differences in mixing given
that they were sampled on the same day, are adja-
cent to each other, and are of similar size. How-
ever, to evaluate possible differences in wind
between sampling dates, wind speeds from a
nearby tower (3.2 km from the lakes) managed
by the National Ecological Observatory Network
(http://www.neonscience.org) were analyzed for
high average wind speeds and gust speeds (aver-
age and maximum wind speed over 5-min win-
dows) from a 4-h window that immediately
preceded each day’s sampling.

Data handling
All data are publicly accessible through the

LTER data repository (Butitta et al. 2017). All
statistical analyses were computed using R statis-
tical software (R Core Team 2016). Aggregate
statistics such as standard deviation (SD), med-
ian absolute deviation (MAD), and skewness
were estimated across the spatial extent of the
entire lake. Standard deviation and MAD were
calculated using the “stats” package (R Core
Team 2016). Skewness was calculated using the
“moments” package (Komsta and Novomestky
2015). Extreme value distributions were fitted
using the “extRemes” package in R using block
maxima from bins of 16 consecutive data points
(Gilleland and Katz 2016). Bin size is a compro-
mise between precision of the block maxima and
the number of bins for fitting the EVD. Extreme
value distribution fits were based on an average
of 200 bins for the manipulated lake and no <100
bins for the reference lake.
Non-parametric bootstraps of 1000 resamples

were employed to calculate 99% confidence inter-
vals for estimates of SD, MAD, skewness, and
EVD-shape.
Semivariogram models and correlograms were

used to evaluate changes in spatial structuring of
individual lake variables. For both semivariogram
and correlogram analysis, we used the geographic
positions of point measurements. Semivariograms
and correlograms were calculated at approxi-
mately 3-m intervals up to a distance of 60 m
(approximately half the diameter of the manipu-
lated lake). Model semivariograms were fit using
fit.variogram function in the gstat package in R
(Pebesma and Graeler 2016), using either an expo-
nential or linear model (depending on goodness

Fig. 1. A representative sampling day during the lake
manipulation for both the manipulated lake (N = 4169)
and reference lake (N = 2422). Each point represents a
sampling location (sampling at 1 Hz), and the color of
the point relates to the phycocyanin concentration.
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of fit) with weighting equal to Nj/(c(hj)
2), where Nj

is the number of observations in a distance class
and c(hj) is the estimated semivariance at distance
class hj. These models and parameterization were
chosen because they consistently characterized
sample semivariograms well and highly weight
observations that are close in space. Correlograms
were calculated using the correlog function in
the “ncf” package in R (Bjornstad 2016). Standard
deviations for correlograms (Figs. 4, 5) were calcu-
lated using 250 random resamples of 80% of obs-
ervations from each sampling event. All reported
error terms in the text are SDs.

RESULTS

We successfully initiated a cyanobacterial
bloom during the experimental treatment (year 1)
in the manipulated lake. Phycocyanin concentra-
tions increased three orders of magnitude, reach-
ing a peak lake-wide average of 4.8 lg/L on 25–26
of June (DOY 176–177; Fig. 2a). After nutrient
additions stopped on 29 June (DOY 180), cyano-
bacteria concentrations steadily dropped until 30
July (DOY 211), after which they remained similar
to the reference lake for the final three weeks of
sampling. We used the date of peak phycocyanin
concentration as the reference date for evaluating
the spatial indicators, consistent with the interpre-
tation of Pace et al. (2017). Phycocyanin concen-
trations in the reference lake (median � 1 SD)
were 0.0 lg/L (�0.02, 0.02) throughout both years
of the study (Fig. 2a). In the second year, with no
nutrient additions, the manipulated lake had
consistently low phycocyanin concentrations,
0.0 lg/L (�0.07, 0.07). The manipulation that
caused the cyanobacterial bloom allowed us to
explore possible EWIs at a whole-lake areal scale.
Standard deviation and MAD of phycocyanin

had similar temporal and within-treatment
patterns. Standard deviation and MAD of phyco-
cyanin concentrations were consistently low for the

Fig. 2. Early warning statistics of cyanobacteria for
manipulated and reference lakes during 2015 (left;
with nutrient addition) and 2016 (right; no manipula-
tion). For both the polygons and the lines, red and blue
colors represent the manipulated and reference lake,
respectively. Vertical gray lines represent the date
nutrient addition stopped. Phycocyanin concentrations
are displayed in the top panel (a). Lines are the follow-
ing statistics based on phycocyanin: (b) standard devi-
ation (SD), (c) median absolute deviation (MAD), (d)
skewness, (e) shape parameter of the extreme value
distribution (EVD-shape), and (f) autocorrelation
range. Dotted gray line at 60 m in panel (f) represents
the range of sample variograms, and estimated ranges

≥60 m were plotted at 60 m (lines jittered to see both).
Polygons in panels (b–e) represent 99% confidence
intervals computed from a non-parametric bootstrap.
All estimates are based on 13 sampling events over
11 weeks in 2015 and three sampling events over a
similar period in 2016.

(Fig. 2. Continued)
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reference lake during both years. In contrast, dur-
ing nutrient additions in the manipulated lake, SD
and MAD doubled at least one week prior to the
cyanobacteria bloom (Fig. 2b, c). During nutrient
addition, SD and MAD generally increased until
nutrient additions halted, after which both quickly
returned to low levels comparable to the reference
lake. In the unfertilized year, SD and MAD in the
manipulated lake remained low and were compa-
rable to the reference lake. There were no early
warnings of critical transitions nor discernible dif-
ferences in the SD or MAD of temperature between
the two lakes in either year (Fig. 3a, b).
Cyanobacteria displayed positively skewed

spatial distribution before, during, and shortly
after the bloom (Fig. 2d). During fertilization,
increased skewness of cyanobacteria in the
manipulated lake—however variable—was
noticeably higher than in the reference lake at
least one week prior to the bloom occurring.
After nutrient additions halted, skewness in the
manipulated lake decreased within a week to
levels comparable to the reference lake and
remained consistently low for the rest of the year.
Skewness of cyanobacteria in the reference lake
was consistently low during both years of the
study. The skewness of temperature remained
consistently low for both lakes which were indis-
tinguishable from one another (Fig. 3c).
The shape parameter of the EVD was consis-

tently higher for the manipulated lake compared
to the reference lake leading up to the bloom,
indicating a greater frequency and magnitude of
extreme phycocyanin concentrations in the
manipulated lake during enrichment. After halt-
ing nutrient additions, EVD-shape estimates
returned to low levels comparable with the refer-
ence lake within a week (Fig. 2e). There was no
difference in EVD-shape between the two lakes
in the year with no cyanobacteria bloom. The
EVD-shape of temperature was similar between
the two lakes and showed no relationship to the
cyanobacteria bloom (Fig. 3d).
Spatial autocorrelation in the reference lake

was consistent and relatively weak throughout

Fig. 3. Early warning statistics of temperature for
manipulated and reference lakes during (2015) and
after (2016) manipulation. For both the polygons and
the lines, red and blue colors represent the manipulated
and reference lake, respectively. Vertical gray lines rep-
resent the date nutrient addition stopped for reference.
Lines are the following statistics based on temperature:
(a) standard deviation (SD), (b) median absolute devia-
tion (MAD), (c) skewness, (d) shape parameter of the
extreme value distribution (EVD-shape), and (e) auto-
correlation range. Polygons in panels (a–d) represent
99% confidence intervals computed from a non-
parametric bootstrap. Dotted gray line at 60 m in panel
(e) represents the range of sample variograms, and esti-
mated ranges ≥60 m were plotted at 60 m. For 2015
data, all spatial temperature measurements were ana-
lyzed as deviations from a temperature probe mounted
on a stationary central buoy to account for diel changes
during the course of a sampling run (2016 data are not

similarly corrected for lack of high-resolution buoy tem-
perature measurements). All estimates are based on 13
sampling events over 11 weeks in 2015.

(Fig. 3. Continued)

 ❖ www.esajournals.org 6 October 2017 ❖ Volume 8(10) ❖ Article e01941

BUTITTA ET AL.



the study (mean autocorrelation distance = 8.2 �
3.8 m). In the manipulated lake, semivariance
models showed increased autocorrelation ranges
during nutrient addition (mean = 33.2 � 26 m)
compared to baseline phycocyanin concentra-
tions in 2016 (mean = 5.1 � 3.6 m; range esti-
mates larger than semivariogram fitting were
rounded down to the sample semivariogram
range of 60 m; Fig. 2f). Autocorrelation ranges
were variable but generally higher during ele-
vated phycocyanin levels. We detected no differ-
ences in autocorrelation between the two lakes in
the non-manipulation year. This finding suggests
that there is no inherent lake-specific difference
between lakes in spatial patterning with respect
to spatial autocorrelation. Also, analysis of auto-
correlation of temperature showed no evidence
of changes in the physical mixing between the
two lakes in the first year that might be used to
explain the changes observed in cyanobacteria
(Fig. 3e).

Correlograms depicted detailed spatial pat-
terns of cyanobacteria consistent with autocorre-
lation range estimates. During nutrient addition,
we observed generally higher autocorrelation of
cyanobacteria over a wide range of distances
(10–60 m) in the manipulated lake compared to
the reference lake (Fig. 4a). After phycocyanin
concentrations in the manipulated lake returned
to levels comparable to the reference lake, there
were no noticeable differences in autocorrelation
between the two lakes (Fig. 4b). Similarly, in
the non-manipulation year, autocorrelation of
cyanobacteria was indistinguishable between the
two lakes (Fig. 4c). Correlogram characteristics
of temperature were consistent between the two
lakes and showed no relationship to the timing
of cyanobacteria bloom (Fig. 5).

DISCUSSION

We detected spatial EWIs in the experimental
lake before the onset of the cyanobacteria bloom.
We observed changes in spatial variance, skew-
ness, EVD-shape, and autocorrelation distance
that were consistent with expected EWIs of criti-
cal transitions between alternative ecosystem
states. On the other hand, autocorrelation dis-
tance was often at the maximum value and less
useful as an early warning. Although the indica-
tors differed in sensitivity to the approaching

bloom, these findings show that spatial EWIs
could predict an impending regime shift, even in
a dynamic fluid environment with patterns that
could change within hours.

Fig. 4. Correlograms of phycocyanin for manipulated
(red) and reference lake (blue) for each sampling date.
Data were binned into distance classes of 3 m, and
distance classes over 60 m were omitted. Correlation
coefficients (y-axis) were calculated using Moran’s I. The
correlograms for both lakes are shown during the 2015
enrichment (top), baseline cyanobacteria concentrations
after the bloom in 2015 (day of year 205–225; middle),
and all dates in 2016 when there was no enrichment. Four
dates (spanning two weeks) that immediately followed
halting nutrient additions in 2015 were omitted from the
middle panel as cyanobacteria concentrations remained
elevated relative to the reference lake. Polygons represent
one standard deviation around each estimate based on
250 random resamples of 80% of each sampling event.
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We found marked increases in spatial SD,
MAD, and skewness of cyanobacteria in the
manipulated lake as it approached the bloom
(Fig. 2). In a spatially heterogeneous situation,
exponential growth of cyanobacteria in patches
could generate extremely high concentrations. We
observed increases in the frequency of extreme
events (EVD-shape) as the manipulated lake
approached the bloom, likely reflecting these high
and patchy cyanobacterial concentrations (Fig. 2).
To our knowledge, this is the first study that
shows the potential usefulness of the EVD as an
EWI. The high rate of change between sampling
dates of some statistics suggests a high sensitivity
of the statistical indicators to changes in the spa-
tial structure over a few days. Nonetheless, we
observed no discernible differences in any of the
EWI statistics in the reference lake in either year.
Also, spatial statistics for temperature did not
exhibit changes consistent with early warnings
and remained similar for the manipulated and ref-
erence lakes. Lack of response in the reference
lake suggests that responses in the manipulated
lake were the result of enrichment rather than
some regional factor, such as weather, that would
have affected both lakes equally. Lack of spatial
pattern in temperature suggests that responses of
phycocyanin to enrichment were biological, or a
combination of physical and biological processes.
Spatial autocorrelation, like temporal autocor-

relation, is expected to increase near critical tran-
sitions (Dakos et al. 2010, Dai et al. 2013, Rindi
et al. 2017). Correlograms during the period of
enrichment showed that spatial autocorrelation
of phycocyanin was higher in the manipulated
lake than in the reference lake at nearly all spatial
distances (Fig. 4). In contrast, correlograms of
phycocyanin were similar in the manipulated
and reference lakes during the unenriched period
of 2015 and all samples from 2016. Correlograms
of temperature were similar in both lakes in both
years (Fig. 5). These results are consistent with
expected responses near a tipping point (Dakos
et al. 2010, Dai et al. 2013). In contrast, autocor-
relation range was more ambiguous in relation
to nutrient enrichment. Autocorrelation ranges
of phycocyanin and temperature were frequently
near the maximum discernible value (Figs. 2, 3).
In this study, at least, autocorrelation range did
not appear to provide consistent early warnings
of the cyanobacterial bloom.

Fig. 5. Correlograms of temperature for manipulated
(red) and reference lake (blue) for each sampling date.
Data were binned into distance classes of 3 m, and
distance classes over 60 m were omitted. Correlation
coefficients (y-axis) were calculated using Moran’s I.
The correlograms for both lakes are shown during the
2015 enrichment (top), baseline cyanobacteria concen-
trations after the bloom in 2015 (day of year 205–225;
middle), and all dates in 2016 when there was no
enrichment (bottom). For 2015 data, all spatial tempera-
ture measurements were analyzed as deviations from a
temperature probe mounted on a stationary central
buoy to account for diel changes during the course of a
sampling run. 2016 data are not similarly corrected due
to lack of high-resolution buoy temperature measure-
ments. Four dates (spanning two weeks) that immedi-
ately followed halting nutrient additions were omitted
for direct comparison to Fig. 3. Polygons represent one
standard deviation around each estimate based on 250
random resamples of 80% of each sampling event.
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Interestingly, most of the EWI statistics were
relatively higher when transitioning to the bloom
compared to the shift back to low cyanobacteria
concentrations. This was most notable in SD,
MAD, and EVD-shape where the statistics
returned to low levels (comparable to the refer-
ence lake) within days after halting nutrient
inputs. In theoretical phytoplankton models,
temporal EWIs can differ depending on the
direction of transition between alternative states
(Batt et al. 2013). Nutrient addition stopped prior
to a critical transition to cycling blooms, but our
results suggest an asymmetry of spatial EWIs
similar to theory that are related to the direction
of the transition. This suggests that our detection
of early warnings is not merely a product of ele-
vated phycocyanin concentrations, but is also
related to whether the bloom is rising or falling.
Thus, the indicators responded differently from
phycocyanin concentration itself.

Spatial EWIs are likely influenced by many dif-
ferent factors, including diffusion/advection rates
due to stochastic processes of wind and other
mixing events, population or community interac-
tions (e.g., clustered areas of high growth of
cyanobacteria, trophic interactions), or lake-speci-
fic characteristics such as hydrology, surface
shape, and bathymetry (van Nes and Scheffer
2005, Serizawa et al. 2008). These factors may
cause differences among lakes and dates in the
performance of early warning statistics. Therefore,
multiple methods may provide diverse informa-
tion, greater rigor, and more insight about charac-
teristics of ecosystems near thresholds and the
potential for critical transitions. While our results
show that spatial statistics are promising tools for
the study of developing blooms in lakes, further
testing and comparisons on a wider variety of
lake ecosystems are advisable.

The patterns suggestive of approaching thresh-
olds in this study could potentially have been
measured using remote sensing. The possibility
of using remote sensing to detect changes in
cyanobacteria at potentially relevant scales for
EWIs is appealing (though currently limited by
the availability to accurately differentiate
cyanobacteria spectral properties). Future work
should explore the usefulness of remote sensing
to detect spatial EWIs in aquatic ecosystems.

This study is the first application of spatial
indicators to detect impending blooms of

harmful cyanobacteria in lakes and addresses a
growing call for testing the usefulness of early
warnings approaches in ecosystems (Scheffer
et al. 2009, Dakos et al. 2011, 2012). Surprisingly
in the small lakes we considered, many spatial
EWIs were detected under the manipulation
despite the potential for physical mixing to
homogenize conditions. We are far from a com-
plete understanding of critical transitions in spa-
tially structured ecosystems, and the findings
presented here support the need for further tests
of these ideas in the field.
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