
ORIGINAL PAPER

Vulnerabilities of macrophytes distribution due to climate change

Kaizar Hossain1
& Sarita Yadav2 & Shlrene Quaik1

& Gaurav Pant3 & A. Y. Maruthi4 &

Norli Ismail1

Received: 6 August 2015 /Accepted: 15 May 2016 /Published online: 1 June 2016
# Springer-Verlag Wien 2016

Abstract The rise in the earth’s surface and water tempera-
ture is part of the effect of climatic change that has been ob-
served for the last decade. The rates of climate change are
unprecedented, and biological responses to these changes
have also been prominent in all levels of species, communities
and ecosystems. Aquatic-terrestrial ecotones are vulnerable to
climate change, and degradation of the emergent aquatic mac-
rophyte zone would have contributed severe ecological con-
sequences for freshwater, wetland and terrestrial ecosystems.
Most researches on climate change effects on biodiversity are
contemplating on the terrestrial realm, and considerable
changes in terrestrial biodiversity and species’ distributions
have been detected in response to climate change. This is
unfortunate, given the importance of aquatic systems for pro-
viding ecosystem goods and services. Thus, if researchers
were able to identify early-warning indicators of anthropogen-
ic environmental changes on aquatic species, communities
and ecosystems, it would certainly help to manage and con-
serve these systems in a sustainable way. One of such early-
warning indicators concerns the expansion of emergent mac-
rophytes in aquatic-terrestrial ecotones. Hence, this review

highlights the impact of climatic changes towards aquatic
macrophytes and their possible environmental implications.

1 Introduction

Global change has been revealed and forecast to have major
effects on biodiversity at local, regional and global scales. The
global change constitutes a number of different forms of an-
thropogenic impacts, including land use alterations, nitrogen
deposition and invasions of exotic species, much recent inter-
est has been directed at climate change (Sala et al., 2000;
Parmesan, 2006; Hossain and Rama Rao, 2014). Although
the earth has experienced considerable climate changes in
the past, the rate and magnitude of the recent and projected
future changes are unprecedented (IPCC, 2001; Hossain et al.,
2016). Furthermore, the effect of future climate change on
biodiversity has been predicted to be unparalleled, with 15–
37 % of terrestrial species possibly facing extinction due to
climate change alone in the next 50 years (Thomas et al.,
2004), and a similarly dark future has been suggested for
freshwater species in the next few decades (Xenopoulos
et al., 2005). Biodiversity, integrity and functioning of differ-
ent ecosystems are facing serious problems on the global scale
and freshwaters are one of the most highly threatened ecosys-
tems. Thus, research on the effects of climate change on fresh-
water organisms and ecosystems has increased hastily in the
last decade.

Evaluation of anthropogenic impacts on freshwaters relies
on the integrity of community structure of biological groups
and on the presence of indicator species that provides infor-
mation about ecological quality in a water body (Rickert and
Hines 1978; Carpenter et al. 2006). Aquatic macrophytes be-
long to one traditionally studied biological group in ecological
assessments. Macrophytes indicate well on long-term changes
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of the littoral zone, but reflect poorer on rapid changes in water
quality (Palmer et al. 1992, Melzer 1999).

Vascular plants (emergent, floating or submerged),
byrophytes and macro algae in the aquatic environment are
all considered as aquatic macrophytes. They play a vital role
in preserving the fresh water diversity as they provide living
places for other aquatic organism (Thackeray et al. 2010;
Akasaka et al. 2010; Akasaka and Takamura 2011).

Seagrasses are plant communities which represent diverse
plant forms growing intermingled with algae, and phytoplank-
ton. Aquatic macrophytes are also able to change the abun-
dance of stream fauna and possess the potential to compete for
resources such as nutrients, light and space. They also provide
physical structure, an increase in habitat complexity and het-
erogeneity that affect different types of organisms such as
invertebrates, fish and water birds.

In rivers and streams, aquatic macrophytes and benthic
algae act as the major primary producers (Hari et al., 2006;
Schneider et al., 2012). They provide food and habitat, influ-
ence sediment composition as well as physical stream charac-
teristics (Maltchik et al., 2007; Istvánovics et al., 2008;
Kleeberg et al., 2010). In the aquatic environment, plant tis-
sues play different roles depending on their positions. Table 1
shows the roles of different plant tissues in the aquatic envi-
ronment, categorized by their tissues’ position in the aquatic
environment.

Factors such as physico-chemical state of water in terms of
pH and transparency of water, sedimentation types, water
depth and surface area are believed to affect the distribution
and the richness of macrophytes (Geurts et al. 2008).
However, James et al. (2005) reported that water chemistry
(nutrients and components present) is predominantly vital in
determining the richness of macrophytes although Akasaka
et al. (2010) indicated that the importance vary with the
growth forms of macrophytes. Free-floating macrophytes of-
ten have a large impact on freshwater ecosystems. The limi-
tations of carbon hydroxide and sunlight for photosynthesis
rarely happened. When nutrient loading is high, free-floating
macrophytes will form dense mats that cover the entire surface
of the water body. Hence, submerged macrophytes are strong-
ly affected by the decrease in the amount of light penetrated,
as well as dissolved inorganic carbon (DIC).

According to the EU Water Frame-work Directive (WFD;
European Parliament, 2000; Lekka et al., 2004)), aquatic mac-
rophytes have been listed as bio-indicators as the survival of
aquatic macrophytes is highly dependent on environmental
factors (Akasaka et al., 2010). One of the early-warning indi-
cators is the expansion of emergent macrophytes in the
aquatic-terrestrial ecotones (Alahuhta et al., 2011). Hence,
the dispersion and abundance of macrophytes diversity can
act as indicators of many environmental conditions and in this
review, the focus lies on the immediate effect of climate
change towards the growth of macrophytes.

2 Climate change

Climate warming is undeniable. Changes that have been ob-
served since the 1950s are unprecedented. Warming is occur-
ring in the atmosphere, as well as the ocean. Snow and ice are
diminishing and the level of sea water has risen. However,
ocean warming is more evident on the surface. According to
IPCC (2014), the upper 75 m of the ocean is warmed by 0.11
(0.09 to 0.13) °C per decade over the period 1971 to 2010. The
shrinking of glaciers is happening worldwide. The loss of the
mass of glaciers has contributed to the rise of the sea level
throughout the twentieth century.

The concentration of greenhouse gases (GHGs) in the at-
mosphere is highest in at least 800,000 years (IPCC, 2014).
Concentrations of GHGs such as methane, nitrous oxide and
carbon dioxide are showing increment since 1750, and con-
centration of carbon dioxide is increasing at the fastest rate for
the year 2002–2011 (2.0 ± 0.1 ppm/year). The concentration
of methane has shown increment after being stable for many
years since the late 1990s. Nitrous oxide has shown steady
increment at the rate of 0.73 ± 0.03 ppb/year over the last three
decades (IPCC, 2014).

The climate has shown profound alterations over the years.
Increases in carbon dioxide (CO2) (an increase from 280 to

Table 1 Roles of macrophytes tissues in aquatic environment

Position of
macrophytes tissues

Roles in aquatic environment

In air -Reduce wind speed
-Act as light attenuation
-As the storage of nutrients, metals and organic

matters
-Improve the appearance

In water -Reduce the velocity of flow
-Provide filtering effect by absorption of various

debris
-Provide physical living or nursery habitats for

organisms
-Release of photosynthesis oxygen which help in

increasing the aerobic
degradation in aquatic environment

-Uptake and act as storage for nutrients, metals
and organic matters

In sediment -Provide stabilization to the sediment surface
(reduce erosion and restrain resuspension)

-Provide physical living or nursery habitats for
organisms

-Release oxygen that facilitate aerobic
degradation

-Release of antibiotics and phytochelatins
-Uptake and act as storage for nutrients, metals

and organic matters

Source: Vymazal (2011) and Wang et al. (2015)
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650 ppm) and other greenhouse gases have contributed to the
increase in global temperatures (IPCC, 2007). Earth surface
temperatures have increased by 0.6 °C and the mean global
surface temperatures elevated for 1.4 to 5.8 °C in the next
century is predicted (IPCC, 2007). An increment of 2–4 °C
in temperature is expected by the end of the twenty-first cen-
tury by; a 2–4 °C temperature increase is expected in the
Mediterranean region in spring (Stocker et al., 2013). In the
climatic region, freshwater ecosystems are often shallow wa-
ter bodies or small lakes. Hence, they are predominantly prone
to climate change (Álvarez-Cobelas et al., 2005; Morecroft
and Keith, 2009; Parcerisas et al., 2012).

Climate change has imposed new selection pressure to-
wards the distribution and abundance of the widespread mac-
rophytes species (Rothausler et al., 2011; Lovejoy and
Hannah, 2005). Higher tolerance level towards temperature
change caused by climate change is expected specifically for
species existing in an environment with numerous variables.
Phenotypic features and phenotypic plasticity of the species
may be changed to adapt in response to climate change
(Walters, 2005).

Rise in temperature, CO2 concentration and alterations in
precipitation affect growth, productivity and distribution of
terrestrial and aquatic vegetation directly and indirectly
(Lucht et al., 2006; Wrona et al., 2006; Heikkinen et al.,
2009; Heino et al., 2009; Peeters et al., 2013). Alterations in
water chemistry and hydrological regimes affect the structure
and function of aquatic ecosystems (freshwater and marine)
especially in the boreal regions (Rahel and Olden, 2008;
Heino et al., 2009; Knutti and Sedlacek, 2013). Changes in
climate alter the characteristics of the water. These include
high nutrient loading from the catchment areas to the lakes
(Jeppesen et al., 2009a, b; 2010, 2011, 2012, 2014) and high
salinity causing a shift to oligosaline or mesosaline conditions
(Wrona et al., 2006; Beklioglu and Tan, 2008; Jeppesen et al.,
2009a, Jeppesen et al., 2009b; Beklioglu et al., 2011;
Trenberth et al., 2014).

Aquatic macrophytes are keystone species in the aquatic
ecosystems. Hence, it becomes mandatory to study and dis-
cuss the effects of climate change on aquatic vegetation.

3 Growth and distribution of macrophytes
influenced by abiotic factors for climate change

Temperatures of river and lake water are expected to be
affected imminently by climate change (Hammond and
Pryce, 2007). As river water temperatures are in close
equilibrium with the air temperature, when the air temper-
ature increases, the river temperature will be affected as
well. The European Environment Agency (EEA) (EEA
2007) reported, in the past 100 years, a temperature rise
of 1–3 °C has been observed in major European rivers. In

addition, Hari et al. (2006) reported significant increment
in temperature for water courses in Switzerland at all
altitudes.

Temperature influences plant growth extensively.
However, the effects of increased temperature somehow de-
pend on individual species and their thermal tolerances.
Temperature may alter plant phenology, for instance, busting
of leaf bud, flowering period, nutrient uptake, competition
between species and lastly the metabolic events including
photosynthesis, respiration and enzyme-mediated processes
(Meis et al., 2009; Thackeray et al., 2010; Mooij et al., 2005).

Emergent aquatic macrophytes will becomemore abundant
(increase by 25 %) as the reproductive capacity including
spore production, germination and sporophyte growth will
be enhanced (Heikkinen et al., 2009; Anja et al., 2009).

Enhancement in growth measured as an increase in
shoot length, plant height, leaf surface area and biomass
production has been reported in Phalaris arundinacea,
Potamogeton natans, Lemna major, Equisetum fluviatile,
and Typha on exposure to high temperature (3–7 °C
above ambient). The enhanced growth could be attribut-
ed to the increase in elemental contents especially N
and P and increased physiological activities such as
photosynthesis and respiration. Enhancement in produc-
tivity of seaweeds due to the increase in temperature is
due to the increase in photosynthesis. Increased seed
germination in response to the increase in temperature
has been reported in Ruppia sp., Zostera marina and
Zostera noltii. Biochemical and physiological adapta-
tions such as heat shock proteins have been noted in
aquatic species to encounter high temperatures (Sorte
and Hofmann, 2005; Kim et al., 2011; Eggert, 2012).

In contrast, very high temperatures will have an overall
negative impact on the net primary productivity (NPP) of
plants as an increase in the rate of respiration is more
rapid compared to photosynthesis. At higher tempera-
tures, the rate of respiration increases at a faster speed,
and primary productivity compromised. The changes are
evident in microalgae and seagrasses (Rosset et al., 2010;
Tait and Schiel, 2013). In eelgrass, Z. marina L., the rate
of leaf respiration increases more rapidly with rising tem-
perature than photosynthesis, leading to a steady decrease
in the photosynthesis-to respiration ratio (P/R) (Short and
Neckles, 1999; Demars and Trémolières 2009).

Higher temperature plays a vital role in accelerating
most of the chemical reactions and bacteriological pro-
cesses. Therefore, the increase in temperature due to cli-
mate change will affect the growth of macrophytes.
Elevation in temperature had a small effect on macro-
phytes relative to nutrient effect (Feuchtmayr et al.,
2007). In a nutshell, warming will favour the growth of
a few species; hence, the diversity and species richness of
macrophytes will decrease (Feuchtmayr et al., 2010).
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4 Nutrient

According to Brown et al. (2007), climate change is expected
to have effects on river regimes, river flow velocity, hydraulic
characteristics, water levels, inundation patterns, residence
times, changes in the wetted areas as well as habitat availabil-
ity and connectivity across habitats. Most probably, under the
influence of climate change, rivers will be under low flow
conditions during summer. Biochemical oxygen demand
(BOD) and phosphorus level would increase. However, am-
monia levels would reduce as higher nitrification rates that
may occur. Hence, nitrate concentration will increase as am-
monia decays (Kleeberg et al., 2010; Whitehead et al., 2009).
Suspended solids and nutrients from land are transported by
runoff to water bodies; thus, they stimulate the growth of
emergent aquatic macrophytes. Alteration in the nutrient com-
position will particularly affect the free-floating and rooted
macrophytes (Feuchtmayr et al. 2007; Human et al. 2015).

Warm climate support eutrophication (typically
oligotropic-mesotrophic boreal lakes) and hence increases
the availability of phosphorus to plants. High phosphorus con-
centrations negatively influence the growth of submerged
macrophytes. Increase in phosphorous concentration increase
competition between macrophytes and phytoplankton (Lacoul
and Freedman, 2006). This results in phytoplankton domi-
nance and the disappearance of macrophytes (Declerck
et al., 2005). Warming lead to a shift from a clear, macrophyte
dominated state to a turbid, phytoplankton-dominated state
(Mooij et al., 2007).

Thus, a long-term effect of global change may cause more
rapid eutrophication and accelerate the loss of seagrass habi-
tats. Eutrophication promotes algal (benthic and planktonic)
growth, ultimately decreasing the light reaching the other
plants, hence decreasing growth, productivity and distribution
of macrophytes. In a nutshell, increased nutrient loading in-
creases the abundance of algae but decreases the diversity of
other macrophytes (Partanen and Luoto, 2006).

Studies also indicate that high nitrate concentrations
support the growth of free-floating species and hence in-
stigate low species richness. Macrophyte populations
might decrease from nutrient enrichment (Harley, 2011).
Nutrient enrichment stimulates the production of plank-
tonic microalgae and opportunistic macroalgae at the cost
of seagrasses and perennial macroalgae (Human et al.
2015).

Nevertheless, severe eutrophication (nitrogen or phospho-
rus overloading) has caused a decrease in species diversity and
disappearance of submerged macrophytes (Ansari et al., 2011;
Xing et al., 2013). However, in eutrophic condition, highmac-
rophytes diversities can still be observed (Le Bagousse-
Pinguet et al., 2012). Sand-Jensen et al. (2008) indicated that
the declining of diversities is only at the very end of the eu-
trophication gradient.

5 CO2 concentration

Aquatic plant species survive on either CO2 or both HCO3 and
CO2. The CO2 (inorganic carbon source) in the air is mainly
being utilized by free-floating plants whereas submerged spe-
cies survived on both CO2 from sediments, air and water and
HCO3. The rise of CO2 level in the atmosphere will directly
promote the photosynthesis process leading to intensification
of productivity which favours the growth of aquatic plants
specifically those mainly utilizing CO2. Nevertheless, the sur-
vival of other species may be negatively affected
(BhupinderDhir, 2015).

Limiting factors for the growth and the productivity of
submerged macrophytes are the limited availability of free
CO2 in natural water bodies and limited uptake of inorganic
carbon due to high diffusion resistance. Emergent and floating
macrophytes use CO2 as a carbon source; hence, their growth
will be promoted as a direct result of the CO2 increase.
Enhancement of growth (2–8 times) has been observed in
plants such as Vallisneria americana, Ceratophyllum
demersum and Hydrilla verticillata exposed to elevated CO2

(approx. 700 μmol−1) concentrations (Alahuhta et al., 2011).
The increased photosynthetic rate supported height develop-
ment and production of more root, rhizome and leaf biomass.
However, the response of seagrasses to long-term increases in
CO2 depends on the physiological and morphological accli-
mation. Seaweeds will benefit from the increase in inorganic
carbon concentration as more CO2 is more accessible while
the growth of macroalgae will be reduced (Kroeker et al.,
2010).

The growth rate of algae and macrophytes utilizing CO2

and HCO3 may be doubled due to atmosphere CO2 elevation
under the eutrophic condition. On the other hand, threefolds of
growth of macrophytes that are restricted to CO2 assimilation
may be observed (Schippers et al., 2004).

The increase in CO2 concentration in the atmosphere is
very likely to affect plant traits including photosynthesis and
plant growth. Acclimation towards the climate changes will be
essential for the plant to compete and expand. Phenotypic
plasticity has been known as a vital feature of submerged
aquatic plants for capturing resources (Hyldgaard and Brix,
2012; Malheiro et al., 2013). Malheiro et al. (2013) found a
strong phenotypic response with submerged species
Myriophyllum aquaticum (Vell.) Verdc. The leaf surface was
reported to be maximized in order to increase CO2 uptake.

Increased concentrations of free CO2 may bring disadvan-
tages for some species that survive under low light intensity.
Hence, the high concentrations of free CO2 may not have
significant impact towards submerged species as their inva-
siveness is partly due to their capability to use bicarbonate.
The study also suggested that the invasive bicarbonate users
responded little to changes in free CO2 availability. Hence, in
the future, the increase of free CO2 concentration in water
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bodies may be more likely to favour species that are currently
limited by the ambient free CO2 concentration (Caldeira and
Wickett 2005; Eller et al., 2015).

Carbon and light availability are the two major factors that
are interrelated with each other on the effects on growth and
photosynthetic traits of macrophytes especially the submerged
species. The rate of supply of dissolved inorganic carbon
(DIC) is one of the major constraints associated with under-
water photosynthesis. However, aquatic macrophytes often
have adaptive features which will assuage this constraint.
Sediment and atmospheric CO2 pools will be utilized in con-
junction with a physiological and biochemical mechanism to
enhance the efficiency of carbon uptake.

6 Light conditions

Light intensity is a crucial limiting factor when it comes to the
growth of aquatic plants. Eutrophication indirectly resulted
from climate change has affected water turbidity of major
shallow lakes with transparencies ranging from 0.25 to
0.5 m. This has resulted in growth suppression ofmacrophytes
as only very limited light is available. On the other hand, the
rising of sea level has further increased the water depth which
thereby reduced the availability of light. Under high water
turbidity, only floating plant communities will strive
(BhupinderDhir, 2015). According to Hussner et al. (2010,
2011), the growth of Elodea canadensis, Egeria densa, and
Lagarosiphon major decreased by threefold in branching, as
well as the below-ground mass under reduced light conditions
(25–50 %). Variations in light and temperature have led to
acclimation within the submerged aquatic plants.

In a study conducted by Eller et al. (2015) with four
invasive aquatic plants, the results indicated that under
high free CO2 concentration, Hydrilla verticillata showed
12 times higher root/shoot ratio in low light intensity
condition compared to those in high light intensity con-
dition. As for E. Canadensis, higher main and total shoot
lengths were reported in high light intensity. However,
the number of internodes was greater in low light inten-
sity condition. Few species such as Thalassia testudinum
and Cymodocea nodosa have shown an increase in leaf
biomass, width and canopy height because of the in-
creased photosynthetic rate (Harley et al., 2012).

Morphological adaptation due to light intensity was ob-
served in Charahispida and Cattleya intermedia. Branches
were reported to be pointing steeply upward towards the high
light intensity condition (Schneider et al., 2015). The stems of
Chara that were branching out towards the light under high
light intensity can be interpreted as a protective mechanism in
order to protect the plant from excessive light (Schneider et al.,
2015). Enhanced elongation under low light intensities is

construed as a method to increase light harvest by growing into
an area with higher available light (Blindow and Schütte, 2007).

7 Salinity

Coastal flooding and changes in sea level caused by climate
change will affect the salinity of estuaries. A slight increase in
salinity to 0.5–5.0 parts per thousand will lead to the replace-
ment of species such as oligohaline and mesohaline
submerged macrophyte populations by seagrasses
(BhupinderDhir, 2015). Low salinities (1 ± 10 ppt) stimulate
germination of Zostera nana, Z. marina, Z. noltii and Zostera
capricorni seeds, and while in high salinities, the seedlings
survival is affected. Germination of many upper estuarine
submerged macrophyte species has been shown to decrease
with the increase in salinity. The salinity of ~5–18 parts per
thousand (mesohaline) supports the growth of salt-tolerant
submerged and emergent species such as Vallisneria
americana, Ruppia maritima and Potamogeton pectinatus
(Luoto et al., 2007; Luoto and Heikkinen, 2008; Heino and
Toivonen, 2008; Lampinen and Lahti, 2009; Tingley and
Herman, 2009).

Localized elimination of non-halophytic macrophytes spe-
cies was caused by a drastic rise in salinity. Though these may
not change the community’s composition, evidence suggested
that such salinity elevation could modify the habitat ranges of
non-halophytic macrophyte species in wetlands by reducing
their inundation stress tolerance (Salter et al., 2008). The rise
in salinity will probably restrict the ability of macrophytes to
alleviate the effect of rising water levels. Keddy (2010) report-
ed macrophytes species strongly displayed zonation as a result
of their inundation tolerance limit as inundation reduces the
availability of light and atmospheric gases to plants and spe-
cies. As a result, the reduction in tolerance towards inundation
due to the increase in salinity will control the potential of
elevation ranges of susceptible species within salt-affected
wetlands (Johns et al. 2014).

Plants develop morphological and biochemical adaptations
such as salt exclusion mechanisms, thickened cell walls and
increased numbers of chloroplasts and mitochondria in leaf
epidermal cells. Various organic acids, nitrogen compounds
such as proline, alanine, glutamate and carbohydrates also
function internally in seagrasses to counter increased osmotic
potential. Increases in salinity caused changes in seagrass leaf
ultrastructural morphology and increased the complexity of
the plasmalemma mitochondrial system (Bornette and
Puijalon, 2011). Such adaptations to saline environments al-
low successful physiological functioning of many seagrass
species within the upper ranges of the salinity in oceanic and
estuarine environments. Nevertheless, very limited studies
were carried out on macrophytes’ growth in response to var-
ious conditions in the last decade (Table 2).
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Table 2 Macrophytes growth in response to various conditions and stress in the last decade'

Studies Macrophytes Elements Reference

Stream condition
(riparian disturbance)

Emergent and submerged species
-Hygrophila angustifolia R.Br. -Sagittaria sp.
-Colocasia esculenta (L.) Schott
-Ageratum conyzoides L. subsp. Conyzoides
-Sphagneticola (Wedelia) trilobata (L.) Pruski-
-Unidentified Asteraceae
-Hydrocotyle sp. 1
-Hydrocotyle sp. 2
-Drymaria cordata (L.) Willd. ex Roem & Schult.
-Commelina spp.
-Cyperus aquatilis R.Br.
-Cyperus aromaticus (Ridl.) Mattf. & Kuek.*
-Cyperus odoratus L.
-Cyperus involucratus Rottb.
-Cyperus polystachyos Rottb.
-Cyperus sphacelatus Rottb.
-Cyperus trinervis R.Br.
-Schoenoplectus mucronatus (L.) Palla ex J.Kearn.
-Unidentified Cyperaceae
-Elatine gratioloides A.Cunn.
-Myriophyllum sp.
-Blyxa sp.
-Hydrilla verticillata (L.f.) Royle
-Vallisneria nana R.Br.
-Unidentified -Hydrocharitaceae Lomandra sp.
-Unidentified Malvaceae
-Arundodonax L. var. donax*
-Axonopus fissifolius (Raddi) Kuhlm.
-Chrysopogon filipes (Benth.) Reeder
-Cyrtococcum oxyphyllum (Hochst. ex Steud.) Stapf
-Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs
-Pennisetum purpureum Schumach.
-Sacciolepisindica (L.) Chase-Sorghum halepense (L.) Pers.
-Urochloa mutica (Forssk.) T.O. Nguyen
-Unidentified Poaceae
-Philydrum lanuginosum Banks & Sol. Ex Gaertn.
-Cladopus queenslandicus (Domin) C.D.K. Cook
-Persicaria barbata (L.) H. Hara
-Persicaria lapathifolia (L.) Grey
-Persicaria strigosa (R.Br.) H. Gross
-Potamogeton javanicus Hassk.
-Potamogeton sp.

– Mackay et al. 2010

Metal accumulation -Phragmites australis
-Typhacapensis
-Spartina maritima

Cd
Cu
Pb, Zn

Phillips et al. 2015

Trace elements accumulation -Najas marina
-Potamogeton lucens
-Nuphar lutea
-Potamogeton nodosus

As
Cr
Zn
Ni
Pb
Cu

Mazej and Germ 2009

Toxicity of herbicide fungicides
and wood preservative/biocide

-Elodea canadensis
-Elodea nuttallii
-Myriophyllum spicatum
-Potamogeton crispus
-Ranunculus circinatus

Asulam Chlorothalonil Fluazinam
Pentachlorophenol

Arts et al. 2008

Sampling and temporal variation,
phosphorus concentration and
climate stress (annual growing
degree days)

-Chara spp. – Beck et al. 2014

Ground water-fed river towards
macrophytes distribution

-Azolla filiculoides Lam
-Berula erecta (Huds) Coville
-Butomus umbellatus L.
-Callitriche obtusangula Le Gall
-Ceratophyllum demersum L.

CO2

pCO2

NH4

PO4

Demars and
Trémolières 2009;
Takamura et al. 2009
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8 Conclusions and future prospective

Climate represents an important part of vegetation distribution
globally. Each species has its own distribution patterns and the
limitations of which are mostly defined by climate at a world-
wide scale. Vegetation distribution patterns show the influence
of climatic change towards plant survival, physiology and
growth, as well as the climatic effects on ecological interac-
tions (competitions, pollination and herbivory). Different

types of plants are adapted to the different climatic conditions.
Hence, it is reasonable to expect that climatic change would
gradually lead to a change in species distributions and com-
munity composition (Morecroft and Keith, 2009).

Studies demonstrated that alterations in different compo-
nents of climate will affect aquatic vegetation to a broader
extent. The responses of assemblages will vary among differ-
ent plant groups in response to changing temperature, light
and the availability of nutrients. Impact of climate changes is

Table 2 (continued)

Studies Macrophytes Elements Reference

-Chara vulgaris L.
-Elodea canadensis Michx.
-Elodea callitrichoides (Rich.) Casp.
-Elodea nuttallii (Planch.) H. St. John.
-Enteromorpha intestinalis (L.) Link
-Fontinalis antipyretica Hedw.
-Groenlandia densa (L.) Fourr.
-Hydrodictyon reticulatum (L.) Bory
-Lamprocystis roseopersicina (Kützing) Schroeter
-Lemna minor L./minuta Kunth
-Lemna trisulca L.
-Mentha aquatica L.
-Myosotis scorpioides L.
-Myriophyllum spicatum L.
-Myriophyllum verticillatum L.
-Nuphar lutea (L.) Sm.
-Potamogeton coloratus Hornem.
-Potamogeton crispus L.
-Potamogeton friesii Rupr.
-Potamogeton pectinatus L.
-Potamogeton perfoliatus L.
-Potamogeton pusillus L.
-Potamogeton × fluitans Roth.
-Ranunculus fluitans Lam.
Rorippa nasturtium-aquaticum (L.) Hayek
-Sparganium emersum Rehmann
-Spirodela polyrhiza (L.) Schleid.
-Spirogyra link
-Veronica anagallis-aquatica L.
-Veronica beccabunga L.
-Zannichellia palustris L.

Trace elements transfer -Ranunculus acris L.
-Phragmites australis (Cav.) Trin. Ex Steud.
-Carex riparia Ehrh.,
-Lythrum salicaria L.
-Iris pseudacorus L.,
-Juncus effusus L.,
-Phalaris arundinacea L.

Cu
Zn,
Cd
Cr
Pb
Ni
Mo

Marchand et al. 2014

Environmental gradient
(light deficiency and wave
disturbance)

Submerged macrophytes – Istvánovics et al. 2008

Plastic responses to free
CO2 and light

-Elodea canadensis
-Egeria densa
-Hydrilla verticillata
-Ceratophyllum demersum

– Eller et al. 2015

UVB radiation exposure -Chara baltica
-Chara hispida
-Chara vulgaris
-Nitella hyalina
-Myriophyllum spicatum

– Rubio et al. 2015
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evident in terms of effects on their physiology, growth, repro-
duction and survival in macrophytes. Bioclimatic envelope
models suggested an increase in emergent aquatic plant spe-
cies followed by an expansion in their distribution.

Impact on macrophytes growth and distribution brought by
climatic change is inevitable. Anthropogenic activities have
caused endless possibilities of pollution towards the natural
environment and macrophytes habitat. Diversity and distribu-
tion of macrophytes may be altered due to climate change just
as indicated in studies. Increase in nutrient concentrations,
temperature and sediment accumulation (siltation) will sup-
port the growth of emergent macrophytes such as
Phragmites australis, E. fluviatile, Typhalatifolia and
Schoenoplectus lacustris leading to their increased vegetation
cover, hence altering the community structure (Partanen and
Luoto, 2006; Park and Blossey, 2008). Significant alteration in
the production of macroalgae, phytoplanktons and macro-
phytes will have a great impact on the other ecosystems.
Hence, macrophytes can be taken as a reliable bio-indicator
to study the relationships between environmental disturbance
and vegetation growth. Responses to vegetation growth in
relation to temperature have been the most imminent.
However, there is no doubt that in a long run, a local change
in precipitation or other climatic change may become more
significant due to the global rise of temperature.
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