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Abstract

Aim: Scientists, governments and non-governmental organizations are increasingly moving

towards the collection of large, open-access data. In aquatic sciences, this effort is expanding the

scope of questions and analyses that can be performed to further our knowledge of the global

drivers of water quality. Cyanotoxin concentration is one variable that has received considerable

attention, and although strong local-scale models have been described in the literature, modelling

cyanotoxin concentrations across broader spatial scales has been more difficult. Commonly used

statistical frameworks have not fully captured the complex response of toxic algal blooms to global

change, limiting our ability to predict and mitigate the impairment of freshwaters by toxic algae.

Here, we advance our understanding of emergent drivers of cyanotoxins across a structured land-

scape by applying a hierarchical “hurdle” model.

Location: Lakes and reservoirs in the conterminous United States [n51127].

Methods: We studied cyanobacteria and their toxins [microcystins] during the 2007 summer

period. We applied a hierarchical zero-altered model to test the importance of multi-scale interac-

tions among environmental features in driving microcystin concentrations above the limit of

detection. We then used boosted regression trees [BRTs] to identify environmental thresholds

associated with severe impairment by microcystins.

Results: Accounting for numerous non-detections, spatial heterogeneity and cross-scale interac-

tions substantially improved continental-scale predictions of bloom toxicity. Our model accounted

for 55% of the variance in the probability of detecting microcystins across the United States, and

26% of the variability in microcystin concentrations once detected. BRTs further showed that

although both local and regional drivers were associated with microcystin concentrations at low to

intermediate provisional guidelines, only local drivers came into play when predicting higher limits.

Main conclusions: Identifying the interaction between local and regional processes is key to under-

standing the heterogeneous responses of microcystins to environmental change. Our framework

could increase the effectiveness of continental-scale analyses for many different water variables.
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1 | INTRODUCTION

Human-induced global change is emerging as one of the greatest chal-

lenges of the 21st century with significant consequences for human

health and ecosystem services. In particular, the stability and function

of freshwater ecosystems, which provide critical water supplies and

other services, are being increasingly threatened by climate warming,

eutrophication and their symptomatic cyanobacterial blooms (Paerl &

Paul, 2012). This on-going expansion of cyanobacteria in lakes across

the globe (Taranu et al., 2015) is problematic because some genera pro-

duce neuro- and hepatotoxins ranging in their effects on human health

from relatively minor to severe (Carmichael et al., 2001; Codd, Morri-

son, & Metcalf, 2005; Jonasson et al., 2010; L�evesque et al., 2014). In

addition, cyanobacterial blooms can cause substantial economic losses,

with management costs in areas with fully developed market econo-

mies reaching up to billions of dollars (Hunter et al., 2012). As a result,

predicting when and where cyanotoxins will occur, and if concentra-

tions will exceed guidelines for drinking water and recreational activ-

ities, is of increasing concern (Carvalho et al., 2013; Yuan, Pollard,

Pather, Oliver, & D’Anglada, 2014).

Currently, important discrepancies in the predictive strengths of

cyanotoxin models exist in the literature, which may be attributed to

the timing of sampling, landscape heterogeneity or issues with messy

data and the predominance of below-detection measurements. For

instance, the rapid production of cyanobacteria and their dynamic

response to changes in nutrient concentrations and ratios, light avail-

ability and weather conditions make it difficult to provide robust pre-

dictions of toxic bloom events (Kardinaal et al., 2007; Pimentel & Giani,

2013). Toxigenic cells are in some cases more abundant and/or toxic at

the onset of a bloom (Davis, Berry, Boyer, & Gobler, 2009; Romo,

Soria, Fern�andez, Ouahid, & Bar�o-Sol�a, 2013) or vary depending on the

pool of potentially toxigenic genera in a given site (Monchamp, Pick,

Beisner, & Maranger, 2014; Rolland, Bourget, Warren, Laurion, & Vin-

cent, 2013). In addition to these sampling effects, the predictive

strength of cyanotoxin models may vary with the spatial extent of the

study. For instance, in a regional analysis [Canadian lakes situated

within a spatial extent of 700 km; n522 lakes], Giani, Bird, Prairie, and

Lawrence (2005) found that nutrient concentrations [total nitrogen]

explained as much as 56% of the variance in microcystin [MC] concen-

trations, MCs being one of the most prevalent classes of cyanotoxins

in the environment (Bl�aha, Babica, & Mar�s�alek, 2009). In contrast, in a

meta-analysis conducted across Canada [spatial extent c. 5000 km;

n5246 lakes], Orihel et al. (2012) found that nutrient concentrations

[total nitrogen] explained far less variance in MC concentrations [15%

explained]. Such differences in model fit when expanding the spatial

extent from regional to continental scale may be due to greater hetero-

geneities in geology and climate, which could in turn blur the response

of cyanobacteria to any one predictor [e.g., a confounding effect of low

alkalinity; Carvalho et al., 2013]. Cross-scale interactions [CSIs], defined

as patterns or processes at one scale that affect driver–response rela-

tionships taking place at a different scale (Peters, Bestelmeyer, &

Turner, 2007; Soranno et al., 2014), may account for spatial heteroge-

neity in model performance. For instance, Fergus, Soranno, Cheruvelil,

and Bremigan (2011) showed that CSIs between landscape features

[regional land use and hydro-geomorphology] accentuated the effect

of local land cover on nutrient concentrations in certain lakes. Similarly,

cyanobacterial dominance may be driven by local changes in catchment

land use or water residence time, which may in turn be modified by

regional variations in precipitation or temperature. Failure to account

for these different sources of variability and spatial dependence may

bias model estimates and fit (Finley, 2011). Lastly, cyanotoxin models

can be further biased by a skewed distribution (e.g., Beaver et al.,

2014; Orihel et al., 2012), whereby a large proportion of observations

fall below the detection limit.

At present it is unclear whether variability in model prediction

across studies is the result of spatial hierarchy and/or the presence of a

high proportion of values below the detection limit. This knowledge

gap is likely to derive from the scattered nature of current knowledge,

which largely focusing on narrow ranges in terms of spatial scale or

environmental gradients. To expand from local to macro-scales, how-

ever, it is necessary to apply multi-scale research and novel statistical

approaches to identify emergent properties and better characterize

landscape structures (Cheruvelil, Soranno, Webster, & Bremigan, 2013;

Heffernan et al., 2014). Here, we used a continental-scale data set to

align heterogeneous sites along common environmental gradients and

identify prominent local to regional drivers of toxic algal blooms across

the conterminous United States. The framework presented herein also

allowed us to control for the inflated number of observations below

the detection limit, which in turn provides a clear understanding of cya-

notoxin occurrence.

2 | METHODS

2.1 | Study site information

We analysed 1127 lakes, ponds and reservoirs from the 48 contiguous

United States randomly selected by the U.S. Environmental Protection

Agency (U.S. EPA, 2009) as part of their 2007 nationwide survey

[National Lake Assessment, NLA]. To ensure an accurate representa-

tion of the reference population [c. 50 000 lakes in the conterminous

United States], the NLA based their site selection on a state by lake

size stratified probabilistic sampling design (Olsen, Stahl, Snyder, & Pitt,

2009; Peck et al., 2013). Lakes included in the survey met the criteria

that the maximum depth exceed 1 m and that the surface area be at

least 1023 km2 for lakes and 0.04 km2 for reservoirs. The 2007 moni-

toring programme represents a complete lake trophic gradient [27%

oligotrophic, 26% mesotrophic, 24% eutrophic and 24% hypereutro-

phic lakes and reservoirs] that spanned 11 U.S. EPA national nutrient

water-quality ecoregions [aggregates of the original 84 Omernik level

III ecoregions] (Herlihy et al., 2013; Omernik, 1987; Rohm, Omernik,

Woods, & Stoddard, 2002) [see Figure S1(a) in the Supporting Informa-

tion]. Ecoregions varied in soils, vegetation, climate and geology, and

thus represent broad-scale patterns in ecosystem state and anthropo-

genic impact on water quality.
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An important caveat of using the 2007 NLA lake set to predict

the occurrence of toxic blooms is that most lakes examined in this

study [91.5%] were sampled only once during the open-water sea-

son [June to October; Figure S1(b)]. With a single water sample col-

lected from one pelagic station, we were unable to accurately

characterize within-lake seasonal dynamics, and large cyanobacterial

blooms or peaks in cyanotoxin production might have been missed

in some instances (Håkanson, Bryhn, & Hytteborn, 2007). To test

for temporal variability in detection of MCs, we examined lakes with

two visits per summer [8.5% of the sites used in this study were vis-

ited twice; n595] and compared the proportion of sites with MC

concentrations above the detection limit and whether concentra-

tions above the detection limit were correlated between both sam-

pling events.

2.2 | Limnological and landscape variables

To address our study objective, we selected local, lake-specific explana-

tory variables previously identified in the literature as potential drivers

of pelagic MC concentrations (Beaver et al., 2014; Yuan et al., 2014). In

particular, we tested the importance of variables measured within the

water column (total nitrogen [TN], total phosphorus [TP], TN:TP ratio,

chlorophyll a [Chl a], cyanobacterial biomass, alkalinity [acid-neutraliz-

ing capacity, ANC; conductivity], dissolved organic carbon [DOC], tur-

bidity, colour, and surface water temperature), as well as site and

catchment characteristics [maximum depth, lake origin, drainage ratio,

percentage agricultural land cover]. We also evaluated the effect of

time of sampling [day of the year] to control for any seasonality effect.

Cyanobacterial biomass was estimated from cell density data according

to the conversion model of Beaulieu, Pick, and Gregory-Eaves (2013).

Lake origin is a binary classification indicating whether water bodies

are natural lakes or human-made reservoirs, as determined by visual

inspection of maps by the NLA field technicians.

To test for the presence of multi-scale effects, we evaluated the

importance of regional explanatory variables. In particular, MCs were

found to frequently exceed the WHO drinking water provisional

guideline [1 mg L21] in agriculturally productive ecoregions of the

north-central United States (Beaver et al., 2014). This suggests that

differences in land use among ecoregions may have an overarching

effect on local-scale dynamics. To quantify this, we delineated ecore-

gion polygons [ArcGISVC ] (ESRI 2011) and measured land-cover percen-

tages in each using data from the 1992 U.S. Geological Survey

National Land Cover data set [USGS] (Homer, Huang, Yang, Wylie, &

Coan, 2004) to test for interactions among ecoregion land-cover and

local-scale variables [cross-scale interaction]. To control for unmeas-

ured heterogeneity across the landscape [e.g., due to geology or

climate], we also evaluated the importance of site location [latitude and

longitude] and random effects that grouped lakes according to ecore-

gions and/or major USGS hydrological unit [HUC-2 watershed]. The

ecoregion classification is as described above and the hydrological unit

consisted of large drainage basins that divided the conterminous

United States into 18 major geographical areas.

2.3 | Statistical analysis

2.3.1 | Hierarchical zero-altered model

Approximately two-thirds [68%] of the lakes sampled by the NLA in

2007 had MC concentrations below the detection limit [DL], resulting

in a strongly right-skewed distribution [Figure 1]. To develop predictive

models for a variable with this right-skewed distribution, we applied a

hierarchical two-stage model (Brilleman et al., 2016; Thorson, Shelton,

Ward, & Skaug, 2015; Zuur & Ieno, 2016) [Figure 2], which consisted

of two parts: (1) a binomial generalized linear mixed model [binomial

GLMM] based on the full data set modelling the “presence” [MC con-

centrations at or above the detection limit; n5362] and “absence”

[MC concentrations below the detection limit; n5787] of MC in lakes

and reservoirs; and (2) a DL-truncated log-link Gamma model or lognor-

mal model, where all observations with MC concentrations below the

detection limit were removed and MC concentrations in the remaining

sites [n5362] were modelled as a function of the selected environ-

mental variables. This two-part model is commonly referred to as a

“hurdle” model because, irrespective of the mechanisms causing an

increase in the response variable, a hurdle must first be crossed before

it is observed (Zuur & Ieno, 2016; Zuur, Ieno, Walker, Saveliev, &

Smith, 2009). Ecologically, it is relevant to consider these two proc-

esses separately because predictors that determine the presence–

absence of MCs can be different from those predicting its linear

dynamics once observed. Statistically, ignoring the large number of

observations below the detection limit is problematic as it could result

in exaggerated estimates of the variance [over-dispersed data]

and biased estimates of standard errors and other parameters

(Lachenbruch, 2001, 2002; Moulton, Curriero, & Barroso, 2002;

Moulton & Halsey, 1995, 1996; Zuur & Ieno, 2016).

It is important to note that we choose a zero-altered hurdle model

(Zuur & Ieno, 2016), as opposed to a zero-inflated mixture model, to

deal with the high occurrence of non-detections because we were

interested in the probability of not measuring any detectable quantity

of MCs versus measuring any quantity of MCs. In contrast, the aim of

the zero-inflated mixture model is to discriminate between false and

true zeros [i.e., the count process allows for zeros], which we feel is a

question better suited to studies interested in the efficacy of current

laboratory techniques and/or sampling designs. Furthermore, when

dealing with continuous biomass data that has too many zeros [or too

many non-detections], a distribution with inflated error such as the log-

normal or Gamma is needed. However, these distributions do not allow

for zero values [strictly positive]. Therefore, modelling the zeros sepa-

rately from the non-zeros in a binomial–lognormal [ZALN] or binomial–

Gamma [ZAG] hurdle model (e.g., Brilleman et al., 2016; Thorson et al.,

2015) is recommended.

For each part of the hurdle model, we tested the importance of

local, lake-specific variables and regional-level environmental variables

as fixed effect drivers of MCs across the conterminous United States

[see Appendix S1 for details on the model selection procedure]. To

account for non-independence among lakes from geographically similar

locations, we tested random effects [intercept and slope] for each level

of the ecoregion and hydrological unit, respectively. The significance of
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FIGURE 2 Schematic representation of the hierarchical zero-altered hurdle model. (a) Map of the sites where microcystin [MC] concentra-
tions are below [Absent; white] and above [Present; black] the detection limit. (b) Example of a logistic regression [binomial model] of prob-
ability of MC detection versus total nitrogen as the explanatory variable. (c) Map of the sites where MCs fell above the detection limit,
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the fixed and random effects was evaluated in each part of the hurdle

model by comparing nested fixed and random effect models [Appendix

S1]. Each part of the hurdle model was calculated separately in R using

the “lme4” package in R by applying a logistic regression to the full

data set and a lognormal or Gamma model to the DL-truncated data.

The ZALN and ZAG models were compared using information criteria

to determine which provided the better fit [Appendix S1]. Local models

without random effects were evaluated with a generalized linear model

[“base stats” package in R].

2.3.2 | Transformations and centring

Log or square-root transformations were applied to reduce the skew-

ness of most predictor variables [Table S1], with the exception of the

land-cover variables describing the proportion of agriculture at the

catchment and ecoregion scales; these variables could not be normal-

ized and therefore raw values were used. To establish a zero point on

all scales and help model convergence, all explanatory variables were

then standardized (subtracting the overall mean value from each indi-

vidual observation [Xij2�X] and dividing by the standard deviation) using

the scale base function in R. MC data above the detection limit were

log-transformed to reduce the skewness. This resulted in log-

transformed MC concentrations that were left-censored at 21.3 log10

mg MC L21 [i.e., the equivalent of 0.05 mg MC L21]. Thus, to support

the use of a Gamma or lognormal hurdle models [defined for a thresh-

old value of zero], we used an additive constant offset so that the value

of the detection limit became zero in the ZAG and ZALN models [i.e.,

we subtracted the log10 DL from the log10 MC concentrations, sensu

Brilleman et al. (2016)]. The response for the ZAG and ZALN models

therefore represents the amount by which the log10 MC exceeds the

log10 DL.

2.3.3 | Validation of the hurdle model

Once we fitted the final hurdle model we assessed whether any pat-

terns remained in the residuals by examining the diagnostic plots [i.e.,

QQ-plots, scatterplots of the randomized quantile residuals versus fit-

ted values, and scatterplots of the observed versus fitted values] for

both the presence–absence and the continuous distribution models.

We used randomized quantile residuals as opposed to Pearson resid-

uals because the former correct for the banding of zeros in the bino-

mial model and adjust for the mean–variance relationship assumed by

the Gamma distribution. The quantile residuals were calculated using

the qresiduals() function in the “statmod” package in R (Dunn & Smyth,

1996). In addition, to examine how well the model captured the large-

scale spatial patterns in the data, we plotted the quantile residuals and

fitted values for each part of the hurdle models versus ecoregion; any

substantive spatial patterns unaccounted for by the model would be

highlighted in these diagnostic plots.

Lastly, to test the strength of the model predictions across the

range of toxin concentrations, we explored how well the fitted hurdle

model was able to predict whether a given lake passed different provi-

sional MC guidelines. To do so, we multiplied the probability that a

given lake is above the detection limit [fitted probabilities of the bino-

mial component; pi5 probability of presence] (Zuur & Ieno, 2016)

times the probability that the lognormal or Gamma distribution [with

the fitted value and dispersion] is above each of the provisional

guidelines.

2.3.4 | Boosted regression trees

In addition to improving our understanding of the environmental deter-

minants of MCs, we were also interested in identifying predictors that

could be used as indicators of whether lakes and reservoirs were sus-

ceptible to surpassing management targets for MCs. Here, our goal

was to test which environmental conditions were associated with MC

concentrations above key drinking water or recreational guidelines;

namely, the U.S. EPA drinking water advisory for children [�0.3 lg

L21], the WHO drinking water advisory [�1 lg L21], the U.S. EPA

drinking water advisory for adults [�1.6 lg L21] and the WHO recrea-

tional, low probability of effect advisory [�2 lg L21] (Chorus & Bar-

tram, 1999; Hollister & Kreakie, 2016; U.S. EPA, 2015). From a

management perspective, we had an interest in what would split the

population of data above or below each threshold as greater resources

and energy are invested by governments to try to prevent lakes and

their watersheds from surpassing these limits. From a statistical stand-

point, however, it is a questionable practice to split a population of

data along a continuous response gradient and treat them separately.

As such, the rationale behind using the hurdle framework for non-

detection versus detection could not be applied for this second objec-

tive. We thus used boosted regression trees [BRTs; “gbm” package in

R] (Ridgeway, 2015) on the whole population of data to classify the tar-

get variable based on environmental variables and identify conditions

associated with toxin levels exceeding each provisional guidelines.

Briefly, BRTs optimize the predictive model performance by build-

ing and merging results from multiple models [i.e., trees] using a

stage-wise forward selection procedure that cumulatively combines

numerous simple regression trees (Elith, Leathwick, & Hastie, 2008).

The first tree maximally reduces the deviance in the response, and the

following tree fits the residuals of the first tree. The process continues

at each successive step, and the final model is a linear combination of

trees, each fitted to the residuals of the previous tree in the stage-wise

process. To improve accuracy and avoid over-fitting, randomness is

introduced at each stage by randomly selecting and fitting 50% of the

data without replacement [i.e., bag fraction50.5]. In addition, a regula-

tion step is implemented that optimizes the number of trees [nt], the

learning rate [lr; used to shrink the contribution of each tree added to

the model] and the tree complexity [tc; used to control the maximum

number of tree nodes]. Details on the procedure for selecting the opti-

mal nt, lr and tc parameters are provided in Appendix S2.

Once the optimal parameters are identified, the final step is to sim-

plify the BRT using an automatic rule that drops explanatory variables

until the average change in predictive deviance exceeds its original

standard error [gbm.simplify function]. To present the final model of

each provisional guideline BRT, we provide a graphical summary of the

relative influences of the explanatory variables as well as the marginal

effects of the most influential variables [on a logit scale]. To provide

information on tree complexity [number of nodes] we used the gbm.

interactions function to illustrate important interactions among
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explanatory variables. Lastly, the predictive performance of the BRTs

[deviance explained and area under the receiver operating characteris-

tic curve, ROC] is presented for each provisional guideline model.

3 | RESULTS

3.1 | Predicting the occurrence and concentration of

MCs across 1127 U.S. lakes and reservoirs

Although most of the data represent measurements from a single sam-

pling date per lake, our analyses showed that the repeated sampling of

c. 9% of 1127 lakes was highly consistent with the results from the first

sampling date and that there was no bias among ecoregions [or lati-

tudes] with respect to the timing of sampling [Figure S1(b)]. The pro-

portion of lakes with MC concentrations above the detection limit was

comparable between the two visits [28% and 37% of the lakes sampled

on the first and second visit, respectively] and comparable with the full

data set [32% of the 1127 lakes sampled]. Once detected, total con-

centrations were significantly correlated between the first and second

sampling dates [r50.85, p< .0001 on log-transformed data; r50.42,

p< .0001 on raw data].

The first part of our zero-altered model, which involved the appli-

cation of a binomial GLMM to the presence–absence MC data from all

NLA lakes, indicated that the probability of detecting MC depended on

both local and regional features. At the local scale, MCs were associ-

ated with deeper [maximum depth], more coloured [DOC] and produc-

tive lakes [TN, Chl a and cyanobacterial biomass; Table 1, Model 1].

However, substantial regional heterogeneity remained, and the model

with both fixed local effects and a random intercept testing for an ecor-

egion effect [Table 1, Model 3.1] showed that toxic blooms were more

likely to be detected in temperate and southern glaciated plains than

along the arid and mountainous western coast [Figure 3a]. When we

included geographical coordinates as fixed variables [Table 1, Model

3.2], we accounted for an additional 30% of the variance in random

intercepts [decrease in random effect variance from s0050.44 to

s0050.14; Figure 3b]. Considering the cross-scale interaction between

percentage agriculture at the ecoregion scale and local drivers brought

about further improvements. In particular, the best-fit CSI between

percentage ecoregion agriculture and Chl a concentrations accounted

for the remaining random intercept variance [from s0050.14 to

s0050.01; Table 1, Model 5.1]. The probability of detecting MCs

increased with percentage ecoregion agriculture, and the sign of the

CSI between Chl a and percentage ecoregion agriculture was negative,

indicating that high Chl a limited the effect of regional agriculture [i.e.,

when Chl a concentrations were very high, shading may limit algal

growth]. The importance of this cross-scale interaction is clearly evi-

dent in Figure 3(c, d), where the random effect intercepts of each ecor-

egion are plotted versus percentage ecoregion agriculture. Overall, our

best-fit binomial GLMM explained 55% of the variance in presence–

absence of MCs across the NLA sites and showed that the occurrence

of MCs was best explained by nitrogen enrichment, changes in the

phytoplankton community [total cyanobacterial biomass and Chl a con-

centration], light availability [DOC], maximum depth, latitude, longitude

and an overarching effect of ecoregion agriculture [Table 1, Model 5.2,

Figure S2].

For the second part of the hurdle model, we found that the ZAG

model systematically outperformed the ZALN model for all sub-models

tested [DAIC or DBIC�67.9, where AIC is the Akaike information cri-

terion and BIC the Bayes information criterion; Appendix S1]. The ZAG

model indicated that once the data set was restricted to sites where

MCs were detected, only local-scale variables were identified as signifi-

cant predictors of MC concentration. Specifically, we found that MC

was more abundant in natural lakes versus human-made reservoirs and

increased as total nitrogen, cyanobacterial biomass and turbidity

increased [Table 2, Model 1]. The best-fit model also included a nega-

tive relationship between MC concentration and surface water temper-

ature, although the amount of variance explained by temperature was

very weak and its effect bordered zero. The relationship between MC

concentration and local-scale variables was largely homogeneous

across the landscape of lakes where MCs were detected [i.e., random

effects did not vary among the different nutrient ecoregion classifica-

tions or the HUC-2 hydrological units]. In addition, we failed to detect

any effect of regional agriculture. Together, the best-fit local-scale vari-

ables explained 26% of the variance in MC concentration [Table 2; Fig-

ure S3].

The diagnostic plots of the final zero-altered Gamma hurdle model

did not show strong patterns in the quantile residuals [Figure S4a–d, g,

h]. We detected some pattern in the Gamma model fitted values,

where the model tended to underestimate concentrations at low pre-

dicted values and overestimate concentrations at high predicted values

[Figure S4f]. The plot of fitted Gamma values versus ecoregions

showed that certain regions, with higher fitted values, also had greater

variance in fitted values [Figure S4j].

To test how well the hurdle model fits the data across the range of

toxin concentrations, we plotted the probability that the fitted values

of the final hurdle model will fall above each provisional guideline. We

separated these probabilities by ecoregion to showcase the spatial het-

erogeneity in predicted values. For the subset of data above the detec-

tion limit, the probability that predicted MC concentrations fell above

the U.S. EPA drinking advisory for children [>0.3 mg L21], WHO drink-

ing water advisory [>1 mg L21], U.S. EPA drinking advisory for adults

[>1.6 mg L21] and U.S. EPA recreation advisory [>2 mg L21] were 77%,

22%, 6% and 2%, respectively. In comparison, the proportion of lakes

with observed MC concentrations above each guideline [excluding

lakes where MCs were not detected] were 63%, 35%, 27% and 22%;

the model thus had greater difficulty predicting extreme MC values.

The sites that were predicted to most likely fall below the U.S. EPA

child advisory guideline [>0.3 mg L21] are located in the intermountain

xeric ecoregions [Figure S5a], whereas sites predicted to exceed the

highest provisional guideline [>2 mg L21] are situated in the interior

agricultural plains [Figure S5d].

3.2 | Thresholds of severe lake impairment

Building on our hurdle model, which differentiated factors that restrict

the distribution of cyanotoxins across the conterminous United States,
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our BRT models further identified conditions that were associated with

toxin levels falling above or below the WHO and U.S. EPA drinking

water and recreational provisional guidelines. Elevated nitrogen con-

centrations and cyanobacterial biomass were consistently associated

with MC concentrations above guideline limits, whereas other variables

lost [latitude, longitude, percentage agricultural land use] or gained [tur-

bidity] importance along the gradient of minor to severe lake impair-

ment [Figures 4, S6–S9]. In particular, the probability of exceeding the

lower provisional limits [0.3–1 mg MC L21] increased sharply in meso-

trophic lakes [>350 mg TN L21; Figures S6 and S7], whereas more ele-

vated provisional limits [1.6–2.0 mg MC L21] were associated with

eutrophic to hypereutrophic conditions [>650 mg TN L21; Figures S8 &

S9]. The probability of exceeding higher MC guidelines also increased

with bloom size [cyanobacterial biomass above c. 160 mg L21], with

maximum MC values observed at very high cyanobacterial densities

[above c. 13,000 mg CBB L21]. Conditions of elevated percentage

ecoregion agriculture [>40%] and DOC [>6 mg DOC L21] were impor-

tant predictors of low to intermediate impairment [U.S. EPA children

and WHO drinking advisories; Figures S6–S8]. However, the influence

of both factors was much reduced when impairment was severe

[WHO recreational advisory limit of 2 mg MC L21; Figures 4f and S9].

The highest provisional limit also tended to correspond with more tur-

bid water columns [Figure 4f].

Tree complexity selected for each BRT was generally low [Table

3], whereby little to no interaction [number of nodes] was identified

among environmental drivers. However, we detected an important

interaction for the low impairment limit [U.S. EPA drinking advisory for

children], where lakes were more likely to exceed this guideline when

both TN and the catchment area [relative to lake area] were high [Fig-

ure S10]. Interestingly, our BRT on presence–absence data tracked the

importance of the cross-scale interaction between percentage ecore-

gion agriculture and Chl a as well as a spatial heterogeneity of the TN

effect [most pronounced for sites north of 40� latitude; Figure S11].

4 | DISCUSSION

Our application of a hierarchical zero-altered model to cyanotoxin data

from a large population of lakes and reservoirs showed that significant

advances could be made in understanding the impacts of local and

regional factors on a critical lake-water quality metric by quantifying

spatially structured environmental gradients. We showed that although

local-scale variables explained a substantial portion [38%] of the
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FIGURE 3 Ecoregion-level probability of detecting microcystins [MC]. (a), (b) Random intercepts derived from (a) the binomial generalized
linear mixed model [GLMM] with local-scale variables and an ecoregion-level random intercept versus respective ecoregion codes [Table 1,
Model 3.1] and (b) the binomial GLMM with local-scale variables, site coordinates and ecoregion-level random intercept versus ecoregion
codes [Table 1, Model 3.2]. Ecoregions with significantly higher or lower than average probabilities of detecting microcystins are shown in
colour and illustrated in the inset map. (c), (d) Partial regression of ecoregion-level random intercepts from the binomial GLMM shown in
panels (a) and (b) versus percentage ecoregion agriculture
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occurrence [presence–absence] of MCs in U.S. lakes and reservoirs,

geographical location and regional heterogeneity across the landscape

accounted for an additional 17% of the residual variance [Table 1; com-

parison of R2
marg of Models 1 and 5.2]. Furthermore, by modelling pres-

ence–absence and concentration data as a two-part hurdle model, we

identified which factors were associated with the occurrence of a toxic

bloom and its continued increase. We suggest that such a framework

could be applied to a wide variety of contaminants that are measured

in surface waters at continental to global scales [e.g., atrazine, arsenic

and benzene] and could provide valuable insights into the drivers of

such analytes in the presence of overarching spatial structures and a

large number of missing values.

Interestingly, the hurdle model showed that certain combinations

of variables helped explain the detection versus non-detection of MCs,

whereas others were identified as drivers of MC abundance once

detected. For instance, we noted an important relationship between

DOC and presence–absence of MCs, but failed to detect a relationship

between DOC and MC concentrations once above the detection limit.

Similarly, our BRT models identified a strong effect of DOC at lower

provisional limits, but its effect was weaker at higher management

thresholds. This is in line with the growing evidence that suggests that

DOC is beneficial for toxin-producing cyanobacteria as it allows them

to outcompete other algae under high UV radiation. Under stratified

conditions and higher UV radiation, DOC is photocatalysed into super-

oxide and hydrogen peroxide, but MC-producing cyanobacteria have

several unique strategies to deal with these reactive oxygen species,

including the formation of MC–protein complexes that prevent proteo-

lytic degradation within the cyanobacterial cell (Paerl & Otten, 2013).

Thus, MCs provide a competitive advantage to toxic cyanobacteria via

their protective role under oxidative stress (Pimentel & Giani, 2014).

We suggest that at higher MC limits, where algal concentrations are

much higher, UV penetration into the water column is greatly limited

and this effect is much diminished. At this extreme, MC production

may also increase several fold due to quorum sensing and stress from

nutrient limitation (Pereira & Giani, 2014; Pimentel & Giani, 2014; Van

de Waal et al., 2009; Wood et al., 2011).

In contrast to the effect of DOC, MC concentrations [measured

above the detection limit, not just presence–absence] differed between

lakes and reservoirs. This finding echoes previous work that demon-

strated significant differences in cyanobacterial biomass between lakes

and reservoirs from the same data set, where the predictive strength

of cyanobacterial biomass was consistently weaker in NLA reservoirs

than natural lakes (Beaulieu et al., 2013). These findings suggest that

differences between natural lakes and reservoirs play a key role in

determining cyanobacterial and cyanotoxin concentrations in surface

waters across the U.S. There are many known differences between

lakes and reservoirs, including hydrological variability and lake connec-

tivity (Read et al., 2015), as well as differences in their geographical dis-

tribution [reservoirs in the southern states; Figure S12]. These

differences could, in turn, influence the dominance of toxic cyanobac-

teria in surface waters of the conterminous United States. For example,

numerous authors have noted that water residence time is a significantT
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factor influencing cyanobacterial communities, where blooms do not

reach their full potential in systems that flush quickly, like reservoirs

(Carvalho et al., 2011; Rolland et al., 2013; Romo et al., 2013). Using

additional NLA lake and catchment data provided by Read et al. (2015),

we noted that in addition to having shorter water residence times, res-

ervoirs had higher catchment connectivity [i.e., typically stream or lake

drainage systems, rather that isolated and headwater; v2521.4,

p< .0001], and larger catchment to lake area ratios [drainage ratio;

F537.32, p< .0001] than lakes. Given that systems with large catch-

ments relative to lake area tend to have short water residence times

(Kalff, 2002), MC concentrations may be related indirectly to drainage

ratio via its effect on water residence times. The link between lake con-

nectivity and cyanotoxin concentration is a relatively new observation,

and will require further research. However, one might expect that, at

least in some low-connectivity lakes, the nutrients supplied are retained

for longer and may become more concentrated during drought events,

which together could ensure an increased availability of nutrients to

support cyanobacterial blooms and their toxins (O’Neil, Davis, Burford,

& Gobler, 2012).

The hurdle and BRT models also tracked a gradual decrease in the

effect of regional variables along the MC gradient. Local and regional

factors were strongly associated with MC values exceeding the lower

MC guidelines, whereas there was a gradual loss of regional-level

effects at higher impairment. Thus, multi-scale effects [percentage

ecoregion agriculture] were important in predicting the detection and

TABLE 3 Predictive performance of boosted regression tree
models for microcystin [MC] presence–absence [pa; above–below
the detection limit] data and for concentrations above-below each
provisional guideline

MC threshold
% Deviance
explained ROC lr nt tc

pa
(0.05 mg L21)

13.4
(0.97)

0.86
(0.01)

0.01 500 5

U.S. EPA child drinking
(0.3 mg L21)

28.1
(0.98)

0.86
(0.01)

0.05 900 3

WHO drinking
(1.0 mg L21)

50.2
(0.98)

0.87
(0.02)

0.005 2550 1

U.S. EPA adult drinking
(1.6 mg L21)

57.4
(0.99)

0.87
(0.01)

0.01 1750 1

WHO recreational
(2.0 mg L21)

62.1
(0.98)

0.86
(0.02)

0.01 750 2

ROC5area under the receiver operating characteristic curve; lr5optimal learn-
ing rate; nt5number of trees; tc5optimal tree complexity [number of nodes].
Standard errors of model statistics are shown in parenthesis.
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FIGURE 4 Summary of the relative contributions [%] of predictor variables for each boosted regression tree [BRT] model. (a) Histogram of
microcystin [MC] concentration [y-axis truncated] illustrating the cut-off of each World Health Organization [WHO] and U.S. Environmental
Protection Agency [EPA] provisional guidelines. Relative contributions of BRT predictor variables developed for MC occurrence above (b)
the detection limit, (c) the U.S. EPA drinking water advisory for children, (d) the WHO drinking water advisory, (e) the U.S. EPA drinking
water advisory for adults, and (f) the WHO recreational, low probability of effect advisory. Dashed lines in (b)–(f) indicate the most influen-
tial environmental variables [using an arbitrary cut-off of �5% relative influence]. Bold text and colour coding is used to highlight the grad-
ual loss [blue] and gain [red] in the relative importance of regional versus local variables across the different provisional guidelines. log10TN
= log10[total nitrogen], log10Chl a = log10[Chlorophyll a], [CBB]

0.25 = [cyanobacteria biomass]0.25, % agric = percent agricultural land cover,
log10DOC = log10[dissolved organic carbon], log10DR = log10[drainage ratio], log10ANC = log10[acid-neutralizing capacity], DOY = day of
the year, log10Cond = log10[conductivity], log10TP = log10[total phosphorus].

634 | TARANU ET AL.



initial rise in MC concentrations, but once they occurred, MCs tended

to increase in response to localized factors [e.g., higher turbidity]. The

loss of regional drivers may also have been due to an increasingly con-

strained and localized distribution of lakes.

5 | CONCLUSION

Our study highlights the importance of multi-scale processes and how

these represent sources of uncertainty and spatial dependence across

national data sets. The continent-wide analysis allowed us to synthe-

size the results across all ecoregions, which spanned wide gradients of

land use [e.g., agricultural land cover ranging from 0% to 75%], climate

[e.g., mean water temperature ranging from 16�C to 26�C] and water

quality [oligotrophic to hypereutrophic], thus providing generalizations

about the continent as a whole and identifying relatively problematic

regions where more severe mitigation is needed to curtail local water

quality impairment. The framework used here allowed us to overcome

major challenges in continental-scale analyses [e.g., high frequency of

non-detections and spatial aggregation] and to correctly expand and

analyse fine-scaled responses to broad-scale patterns. This approach

echoes the arguments raised by Heffernan et al. (2014), who made the

case that novel insights into environmental change will be acquired

through a macro-ecological perspective.

The prevalence of toxic algal blooms is emerging as one of the

most important water quality and health issues we face today. None-

theless, provisional guidelines on toxic blooms vary greatly among

countries, suggesting that more effort should be made to develop

a comprehensive risk management framework (Ibelings, Backer,

Kardinaal, & Chorus, 2014). Such a framework could help identify the

importance of overarching processes and how lakes filter regional

changes in land use or climate, both present and future, leading to het-

erogeneous patterns in algal response (Bleckner, 2005; Maheaux,

Leavitt, & Jackson, 2015; Pennock, 2003). These conceptual frame-

works, however, poorly apply to skewed distributions inherent to

broad-scale, empirical data, thus limiting their usefulness in predicting

bloom occurrence in other sites along heterogeneous landscapes. Here

we showed how zero-altered mixed models and BRTs provide a

broader representation of a potential health hazard by modelling zero

inflation, the lack of independence among lakes and how the relative

importance of predictors varied at different guideline limits, which thus

helped set endpoints better adapted to geographical and environmen-

tal context.
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