Abstract:Suspended particles (SPS) are ubiquitous in natural water bodies (ponds, rivers, lakes, etc.) and usually hot spots for denitrification, which tend to adsorb more microorganisms than overlying water and obtain more nitrates than sediments. SPS undergo a series of physical and chemical processes in water bodies, such as collision, flocculation, dissolution, ion exchange, adsorption, and desorption, which would result in changes in particle size and nutrient contents. The sedimentation and resuspension processes of SPS would cause material exchanges between overlying water and sediments, affect nitrogen transformation in the process of aerobic-anoxic transition, and correspondingly affect the denitrification rates of the whole water body directly and/or indirectly. This paper reviews and summarizes (the overseas and domestic) research advances and progresses in SPS' effects on water denitrification with focuses on the factors including concentrations, particle sizes, compositions, and types of SPS. The mechanism of SPS to denitrification through different environmental factors, including dissolved oxygen, functional microorganisms, inorganic nitrogen and organic carbon, has been analyzed. The measurement methods of denitrification with SPS have been compared. Based on the current progress of the research, we suggest that future research should extend into the field of understanding of denitrification with SPS through emerging suspended particles of pollutants, mechanism models, and measurement methods.