投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:黄晓龙,李松阳,李宽意.基于L系统的水生植物根系动态生长模型构建.湖泊科学,2022,34(6):2083-2094. DOI:10.18307/2022.0622
Huang Xiaolong,Li Songyang,Li Kuanyi.L-system based dynamic root growth model formulation of aquatic plants. J. Lake Sci.2022,34(6):2083-2094. DOI:10.18307/2022.0622
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1614次   下载 960 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于L系统的水生植物根系动态生长模型构建
黄晓龙1, 李松阳2, 李宽意1,3,4
1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;2.河南工程学院计算机学院, 郑州 451191;3.中国科学院大学中丹学院, 北京 100049;4.重庆三峡学院环境与化学工程学院, 万州 404000
摘要:
植物根系在地球生物圈物质循环中起到关键性作用.陆生植物中目前基于根系具有对称性和自相似性假设建立的L系统已经做了较好研究,但在水生植物中相关的研究较少,更缺乏根系动态生长模型的构建.本文拟通过发展L系统来模拟水生植物从初生结构到次生结构,从简单根系到复合根系的动态生长过程.根系动态生长模型主要包含根系伸长规则和根系分支规则,并包含由主根与侧根的夹角θ和径向角γ确定初始根系生长方向.特别地,系统建立了2种代表性水生植物——世界上入侵严重的水生植物凤眼莲(Eichhornia crassipes)和被研究较多的水生植物穗状狐尾藻(Myriophyllum spicatum)根系动态生长模型.结果表明凤眼莲成熟根系总长度可达到2042.78 m,可能有利于其占据较多的空间和资源,使得凤眼莲在与本地植物的竞争中占有优势.穗状狐尾藻的总根系长度为73.08 m,由于穗状狐尾藻表现出最为典型的叉状分支构型,表明其对沉水生长环境有较好的适应性.
关键词:  水生植物  生长模型  拓扑指数  凤眼莲  穗状狐尾藻
DOI:10.18307/2022.0622
分类号:
基金项目:国家自然科学基金项目(32001157,32171534,61501174)、中国科学院科研仪器设备研制项目(YJKYYQ20210016)、河南省高等学校重点科研项目(21A520005)、河南工程学院科研培育基金项目(PYXM202020)和中国科学院南京地理与湖泊研究所青年科学家小组项目(2021NIGLAS-CJH01)联合资助.
L-system based dynamic root growth model formulation of aquatic plants
Huang Xiaolong1, Li Songyang2, Li Kuanyi1,3,4
1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China;2.College of Computer, Henan University of Engineering, Zhengzhou 451191, P. R. China;3.Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;4.College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404000, P. R. China
Abstract:
Root systems play a vital role in material circulation in the biosphere. Based on the two hypotheses of symmetry and self-similarity in the root system, the L-system of terrestrial plants has been well established. However, related research in aquatic plants, particularly for the dynamic root growth model, is rare. This study simulated the dynamic growth processes of a primary to secondary root structure from simple roots to complex roots of aquatic plants. The dynamic root growth model mainly includes root elongation and branching rules and determines the initial root growth direction of the intersectional angle θ and radial angle γ between the main and lateral roots. Specifically, the dynamic root growth model formulations of two representative aquatic plants, the cosmopolitan invasive aquatic plant, water hyacinth (Eichhornia crassipes), and the relatively most studied aquatic plant, Eurasian watermilfoil (Myriophyllum spicatum), were established by applying the L-system. The total length of the root system of mature E. crassipes can reach 2042.78 m, indicating that the species has a high nutrient absorption capability. This may favor resource exploitation, facilitating its competitive ability with native plants. The total length of the M. spicatum root system is 73.08 m; owing to its typical dichotomous branching, this plant has a relatively high adaptation to the aquatic environment.
Key words:  Aquatic plants  root structure  topological index  Eichhornia crassipes  Myriophyllum spicatum
分享按钮