投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:秦宇,黄璜,李哲,鲁伦慧,汤琼,苏友恒,李欣芮.内陆水体好氧甲烷氧化过程研究进展.湖泊科学,2021,33(4):1004-1017. DOI:10.18307/2021.0404
Qin Yu,Huang Huang,Li Zhe,Lu Lunhui,Tang Qiong,Su Youheng,Li Xinrui.Research progress of aerobic methane oxidation process in inland waters. J. Lake Sci.2021,33(4):1004-1017. DOI:10.18307/2021.0404
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4809次   下载 3424 本文二维码信息
码上扫一扫!
分享到: 微信 更多
内陆水体好氧甲烷氧化过程研究进展
秦宇1, 黄璜1,2,3, 李哲2,3, 鲁伦慧2,3, 汤琼1,2,3, 苏友恒1,2,3, 李欣芮1,2,3
1.重庆交通大学水利水运工程教育部重点实验室, 重庆 400074;2.中国科学院重庆绿色智能技术研究院, 重庆 400714;3.中国科学院大学重庆学院, 重庆 400714
摘要:
内陆水体是全球碳循环的关键组成部分,是大气中甲烷(CH4)的重要来源,每年从内陆淡水与自然湿地排放进入大气的CH4约为185~357 Tg/a.通常,内陆水体中CH4主要由分布于水层底部的厌氧区或沉积层内的产甲烷菌介导产生,其向水层表面传输的过程中易被甲烷氧化菌所氧化.甲烷氧化菌可分为好氧甲烷氧化菌和厌氧甲烷氧化菌,有氧条件下,由好氧甲烷氧化菌介导的好氧甲烷氧化过程是水体中甲烷氧化过程的主要形式,湖泊底部产生的CH4总量中约有99%可以被上覆水体中的好氧甲烷氧化过程所消耗.本文收集文献综合分析阐明,好氧甲烷氧化过程是由水环境因子、水文条件以及不同内陆水体的生态系统特征共同调控,同时也表现在了好氧甲烷氧化菌的生境偏好上.复杂的调控过程构建了内陆水体向大气输送CH4的动态平衡,并最终反映在内陆水体对全球CH4循环、碳循环作出的贡献上.
关键词:  内陆水体  好氧甲烷氧化菌  好氧甲烷氧化速率  生境偏好  水体类型
DOI:10.18307/2021.0404
分类号:
基金项目:国家自然科学基金项目(51861125204)资助.
Research progress of aerobic methane oxidation process in inland waters
Qin Yu1, Huang Huang1,2,3, Li Zhe2,3, Lu Lunhui2,3, Tang Qiong1,2,3, Su Youheng1,2,3, Li Xinrui1,2,3
1.Key Laboratory of Water Conservancy and Water Transportatiom Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, P. R. China;2.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China;3.Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
Abstract:
Inland waters are important parts in global carbon biogeochemial cycles. It is also one of the main sources of methane. Annual emissions of CH4 from inland freshwaters and natural wetlands into the atmosphere is 185-357 Tg/a. Methane is mainly produced by the reactions between bottom organic sediments and methanogenic bacteria in anoxic zone of inland waters. Methane is then consumed by methane-oxidizing bacteria during its upsurge to surface water. Methane-oxidizing bacteria can be divided into aerobic methane-oxidizing bacteria and anaerobic methane-oxidizing bacteria. Under aerobic conditions, the aerobic methane oxidation process mediated by aerobic methane-oxidizing bacteria is the main form of methane oxidation process in water, and about 99% of the total CH4 produced at the bottom of the lake can be consumed by the aerobic methane oxidation process in the overlying water. According to the comprehensive analysis of literature collected in this paper, the process of aerobic methane oxidation is controlled by water environmental factors, hydrological conditions and ecosystem characteristics of different inland waters, and also reflected in the habitat preference of aerobic methane-oxidizing bacteria. The complex regulation process constructs the dynamic balance of the total amount of CH4 transported from inland waters to the atmosphere, which is reflected in the contribution of inland waters to the global CH4 cycle and carbon cycle.
Key words:  Inland waters  aerobic methane-oxidizing bacteria  aerobic methane oxidation rate  habitat preference  type of water
分享按钮