The effect of *Potamogeton crispus* decomposition on the dissolved concentrations and fluxes of greenhouse gases in Lake Dongping, Shandong Province*

DENG Huanguang¹**, LIU Tao¹, LU Changjuan², ZHANG Ju¹, CAO Qimeng¹ & YAO Xin¹

(1; School of Environment and Planning, Liaocheng University, Liaocheng 252000, P.R.China)

(2; Dezhou Natural Resources Bureau, Shandong Province, Dezhou 253073, P.R.China)

Abstract: In order to study the effect of *Potamogeton crispus* decomposition on the dissolved concentrations of greenhouse gases (GHGs) and their diffusion fluxes at the sediment-surface water-air interface in the Lake Dongping, surface water and sediment core samples were collected in situ seven times from May to July in 2016, and the decomposition experiment was also carried out by using the litterbag method to explore the dynamic of the dry mass loss of *P. crispus*. Dissolved concentrations of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) in the surface water and pore water were concurrently measured, and the diffusion fluxes at the sediment-surface water interface and the surface water-air interface were calculated by using the Fick’s first law and the two-layered model respectively. In addition, the physicochemical properties of surface water and sediment were also meas-

* 2019–11–04 收稿; 2020–01–01 收修改稿。
国家自然科学基金项目 (41401563, 41977322, 41807430) ; 山东省自然科学基金项目 (ZR2014JL028) 和聊城大学科技基金项目 (318011909) 联合资助。
** 通信作者; E-mail: ledger@lcu.edu.cn.
ured to explore the main factors that might affect the concentrations and diffusion fluxes of GHGs as well as their sources during the decomposition of *P. crispus*. The results showed that the dry mass loss of *P. crispus* could be described accurately by the double exponential model which suggested two stages (rapid and slow) of *P. crispus* decomposition. The pH and nitrite concentrations in the surface water decreased first and then increased, while the change of the dissolved oxygen, ammonia, nitrate and dissolved inorganic phosphorus concentrations was reversed. In sediment, the ammonium content first increased and then decreased, while the nitrate content first decreased and then significantly increased, the organic matter content and pH of the sediment fluctuated. Both the concentrations and diffusion fluxes of GHGs at the water-air interface were in the order of $\text{CO}_2 > \text{CH}_4 > \text{N}_2\text{O}$, and the average fluxes were $5862.9 \pm 5441.4, \ 31.15 \pm 41.3$ and 0.15 ± 0.57 μmol/(m²·h), respectively. Generally, the water body acted as the source of the GHGs to the air, dominated by the carbon emission. The concentrations of N_2O in surface water and its diffusion fluxes at the surface water-air interface first decreased and then increased, and N_2O concentrations in pore water presented maximum values of 22.7 and 55.6 nmo/L in the rapid and slow decomposition stage respectively, while its fluxes at the sediment-water interface increased slowly in the early stage and then decreased rapidly at the end of the decomposition. For CH_4, its concentrations in the surface water and pore water and interface diffusion fluxes all dropped slightly in the initial stage and then continued to rise. The concentrations of CO_2 in surface water and its diffusion fluxes at the surface water-air interface increased continually and then decreased significantly to lower levels at the end of the rapid decomposition and then remain stable; while the concentrations of CO_2 in pore water showed large fluctuations, which diffused to pore water at the initial stage of the decomposition and to surface water at the later stage. The correlation analysis between the concentrations and diffusion fluxes of GHGs as well as the physicochemical properties of surface water and sediment suggested that water temperature was the main factor that influenced the concentrations of GHGs in surface water and their fluxes at the water-air interface. N_2O and CH_4 in the water body mainly originated from sediment, and their concentrations in the pore water was the important factor that could control the sediment-water interface diffusion; while CO_2 in the surface water had multi sources, which were dominated by the mineralization of the organic matter in surface water.

Keywords: Greenhouse gases; dissolved concentrations; diffusion fluxes; *Potamogeton crispus*; decomposition; Lake Dongping

沉水植物作为湖泊生态系统的初级生产者，在维持生态系统结构和功能及生物多样性等方面具有重要作用[1]。沉水植物对水中营养物具有较好的吸收作用[2]，但其衰亡后腐烂分解，一方面消耗溶解氧，释放C、N、S、P等物质，改变水体理化性质[3-4]，另一方面，营养物质的释放可为微生物活动提供物质基础，也为CO_2、CH_4和N_2O等主要温室气体产生的底物需求提供了质量和数量保障，可影响温室气体的产生和排放[5-7]。但沉水植物衰亡后腐烂分解对水体温室气体产生和排放的影响鲜见报道。当前已有关于水生植物对温室气体影响的研究大多集中于植物生长对水体中温室气体含量和水-气界面间扩散通量的影响[8-12]，较少关注植物衰亡过程中温室气体的产生和排放，且已有部分主要基于室内模拟研究[10]，而缺乏现场研究结果。同时对沉积物-水界面间温室气体的扩散影响关注不广[13]，没有系统地对水体沉积物-水-气界面间温室气体的迁移进行探讨。因此，研究沉水植物衰亡腐烂过程中水体沉积物-水-气界面间温室气体产生和排放对于全面了解水体温室气体的来源和评估水体对大气温室气体的贡献具有重要的科学意义。

近年来，对富营养化水体具有较强适应能力和净化作用的沉水植物——菹草（*Potamogeton crispus*）已成为北方水体水生植物的优势种，菹草在每年6月初会发生集中衰亡，衰亡过程中伴随着营养元素的大量释放，易导致水体理化性质的变化和二次污染[13,15]，并促进微生物反应，影响水体中温室气体的产生、溶存和界面间的扩散。东平湖是山东省第二大湖泊，为典型草型湖泊，菹草是其优势种之一，5月份衰亡前覆盖面积可达水面的80％以上[16]。而关于菹草腐烂分解对东平湖温室气体产生和排放的影响还未见报道。因此，于2016年5-7月（菹草衰亡前后）分7次对东平湖上覆水和孔隙水中温室气体的溶存浓度进行现场采样监测，结合菹草腐烂分解规律和水体环境理化性质探讨上覆水和孔隙水中温室气体溶存的影响因素，并探究菹草腐烂过程中温室气体在沉积物-水-气界面间的扩散规律，以期为深入了解水生植物衰亡对水体温室气体排放的影响提供科学数据支撑和理论参考。

1 材料与方法

1.1 采样区域概况

东平湖地处山东省西南部，属暖温带大陆性半湿润季风气候区，常年有水面积为209 km²，平均水深为
2~3 m，是黄河下游仅存的天然湖泊和中国东部地区典型的浅水湖泊，也是南北水调东线工程的主要蓄水湖和山东省水文水体项目的水源地；1979~1999 年，东平湖生植物物种多样性减少，生物量下降，群落结构趋于简单，呈衰退现象，2003~2004 年菹草为伴生种，2008 年成为优势种群。据课题组 2016 年 5 月全湖现场调查数据，菹草衰亡前段生物量为 0.877~4.90 kg/m²，平均值为 2.63 kg/m²，略低于张金路等 2008 年 5 月的调查结果（平均值为 3.27 kg/m²，最大生物量达到 5.33 kg/m²）。

1.2 样品采集与分析

于 2016 年 5 月 17 日，在东平湖北部湖区的典型菹草区（水深 0.6 m）（图 1）采集即将衰亡的整株菹草样品（菹草形态见图 2a），带回实验室后，挑净杂物，用超纯水洗净，置于阴凉通风处自然风干后，整株装入 100 目尼龙分解袋中（图 2b），每袋 15 g，每组设 3 个平行，共设 9 组。于 2016 年 5 月 21 日（菹草即将大面积衰亡前）将分解袋随机投放到采样区域并固定（图 2c），并在投放后 1.5, 9, 13, 18, 23, 30, 36, 44 天各取回一组（3 个），带回实验室后用自来水和去离子水洗去表面附着物，70℃恒重后称重计算干物质残留率。

以 2016 年的 5 月 21 日为第 0 天，于第 4, 8, 14, 20, 37, 49 天上午 10 点在采样区现场测定湖水 pH、DO 和水温，并使用自制原状沉积物采样器采集 5 cm 深原状沉积物于有机玻璃采样管内，底部采用有机玻璃螺纹盖密封，并缓慢补充上覆水至顶部稍有溢出后采用螺纹盖密封，为防止漏水螺纹盖内采用硅胶垫做密封元件（图 2d）。用铝箔采气袋和 100 mL 有机玻璃采样管采集现场空气和水下 30 cm 水样，每次采集 3 个平行样品，另取现场水样 0.45 μm 膜滤后冷冻保存，用于硝态氮（NO₃⁻-,N）、亚硝态氮（NO₂⁻-,N）、氨氮（NH₄⁻-,N）和溶解态有机氮（DIN）浓度分析。回实验室后，立即采用顶空法测定采样管内水样温室内气体浓

气样中 N₂O、CO₂ 和 CH₄ 浓度采用 Agilent 7890A 型气相色谱仪（美国 Agilent）测定。DO 浓度和 pH 分别采用 HI9147 型 DO 仪和 IQU150 型 pH 计测定。过滤后水样分别采用紫外分光光度法，N-(1-萘基)-乙二胺光度法，纳氏试剂分光光度法和钼锑抗分光光度法测定 NO₃⁻-,N、NO₂⁻-,N、NH₄⁺ 和 DIN 浓度。沉积物中有机质（OM）含量采用重铬酸钾-外加热法测定，提取无机氮含量采用 1 mol/L KCl 浸提，NO₃⁻-,N 含量测定方法同水样，铵态氮（NH₄⁺) 含量采用次溴酸钠氧化法测定。

1.3 数据处理与统计

采用二次指数模型对菹草干物质残留率进行拟合：

$$
\frac{W(t)}{W_0} = A e^{-kt} + (1-A) e^{-kt/2}
$$

式中，$W(t)$ 为 t 时刻的残留干重(g)，W_0 为初始干重(g)，A 和 1-A 分别为初始干重和快速分解组分的分解常数(d^{-1})。

上覆水中温室气体溶定浓度(CO₂) 的计算公式为：

$$
C_{CO₂} = \left(\frac{C_{CO₂} - C_0}{V_{HA}} + \alpha \cdot C_{CO₂} \cdot V_{EA} \right) / V_s
$$

式中，$C_{CO₂}$ 为采样点大气中温室气体浓度(μmol/L) 或 10^{-6} v/v)，C_0 为采样点现场大气中温室气体浓度(μmol/L)，V_{HA} 和 V_{EA} 分别为采样管内顶空空气和水样体积(L)，α 为布
氏系数 (mol/L)。

水—气界面温室气体的扩散通量 (F) (μmol/(m²·h)) 采用双层模型计算 [8,9], 正值代表向空气扩散, 负值为进入上覆水, 计算公式为:

\[
F = k \cdot \Delta C = K(C_g - C_a)
\] (3)

式中, \(\Delta C\) 为水—气界面温室气体浓度差 (μmol/L); \(k\) 为扩散系数, 计算公式为: \(k = 1.91e^{0.38} (Sc/600)^{-1/2}\), \(\mu\) 为现场 10 m 高处风速 (m/s), \(Sc\) 为施密特数, 为水的运动黏度 (ν) 与气体分子扩散系数 (D) 之比。风速数据来源于东平县气象局观测站, 该观测站位于稻屯洼湿地公园南边界处 (35°56′N, 116°24′E), 距东平湖东岸仅为 13 km, 周围为种植小麦等低矮作物的农田, 地势开阔, 没有高大的植物及建筑物, 与东平湖开阔的下垫面相似, 基本能够代表湖面的风速状况, 风速观测高度为 10 m。

孔隙水中气体浓度根据泥水混合液中气体浓度, 喷气超纯水中气体浓度空白值及表层沉积物含水量计算获取, 沉积物—水界面扩散通量根据 0~1 cm 深度沉积物孔隙水和上覆水体中温室气体浓度差值, 应用 Fick 第一定律计算 (公式 (4)) 计算 [10], 正值代表向上覆水扩散, 负值代表进入孔隙水。

\[
F_{sw} = D_s \cdot \Delta C / \Delta Z = D_s (C_g - C_a) / \Delta Z
\] (4)

式中, \(F_{sw}\) 是沉积物—水界面的气体扩散通量 (μmol/(cm²·s)), \(D_s\) 是气的体扩散系数 (cm²/s), \(\Delta C\) 是界面间气体浓度差 (μmol/cm³), \(\Delta Z\) 是扩散距离 (cm); \(C_a\) 是沉积物孔隙水中气体浓度 (μmol/cm³); \(C_g\) 是水体中气体浓度 (μmol/cm³)。其中扩散系数 \(D_s\) 根据水体中气扩散系数和沉积物孔隙度进行校正, 公式为: \(D_s = D_{sw} \cdot \varphi^2, D_{sw}\) 是水体中气扩散系数 (cm²/s); \(\varphi\) 是沉积物孔隙度。\(D_{sw}\) 在环境温度为 0~35°C 范围内根据与温度相关的经验公式进行计算, 扩散通量单位最后都转化为 μmol/(m²·h)。

数据的统计分析采用软件 Excel 2013 和 SPSS 18.5 完成, 各参数间相关性分析采用 Pearson 相关进行分析检验, 图形采用软件 Origin 2015 绘制。

2 结果

2.1 东平湖菹草腐烂分解规律

菹草腐烂分解过程整体上呈现初期 (前 23 天) 为快速衰减阶段, 随后进入慢速分解阶段, 衰减速率变缓 (图 3)。菹草剩余的干物质在第 30 天有所上升, 然后趋于稳定, 这可能与在慢速分解阶段湖水中藻类、细
图 3 藻草分解过程中干物质残留率动态及其指数模拟
Fig.3 Dynamic of dry mass remained in Potamogeton crispus during its decomposition

图 4 藻草腐烂期间上水理化指标的变化
Fig.4 Changes of the physicochemical properties of surface water during the decomposition of Potamogeton crispus

表层沉积物中 NO$_2$-N, NH$_4$-N, OM 和 pH 分别在 8.58~15.3 mg/kg, 95.4~164.1 mg/kg, 62.2~69.8 g/kg 和 7.37~7.66 之间。如图 5 所示, 沉积物中 NO$_2$-N 含量在藻草腐烂分解开始后迅速降低, 这可能是由于藻草在初期快速腐烂分解释出易溶有机物, 增加了可利用性碳源, 促进了沉积物的反硝化作用和微生物活动, 导致其含量迅速降低[27], 第 8 天开始含量迅速上升, 试验结束时 (第 49 天) 为初始值的 1.3 倍; NH$_4$-N 含量在分解初期即出现显著上升, 在第 8 天达到最大值, 之后迅速下降, 试验结束时含量略高于腐烂前; OM

菌和有机碎屑等吸附在藻草残留物中使其质量增加有关[4]。二次指数模型对藻草残留率的拟合度高 ($R^2 = 0.991$), 由该拟合方程得 (图 3), 藻草易分解组分占比为 83.3%, 分解速率 k_1 为 0.054 d$^{-1}$, 慢分解组分比例为 16.7%, 分解速率 k_2 为 0.022 d$^{-1}$。

2.2 藻草腐烂分解过程中水体理化性状的变化

从图 4 可以看出, 在藻草腐烂过程中, 上覆水 pH 先下降后上升, 第 14 天达到最小值 (7.59), 至实验结束时 (第 49 天) 基本恢复至腐烂前水平 (腐烂前后分别为 8.3 和 8.2)。这是由于在藻草腐烂分解初期产生有机酸[23], 使上覆水 pH 下降, 随藻类的繁殖与生长, 消耗水中 HCO$_3$ 和 CO$_2$, 造成水体碱度升高, pH 值上升[24], 同时随着藻草残体中含氮有机物的释放, 在微生物作用下产生氨气和氨类物质[25], 也会导致 pH 值的上升。第 8 天前 DO 浓度无明显变化, 平均浓度为 4.9 mg/L, 接近地表水 III 类水标准 (5 mg/L), 腐烂影响不明显; 第 8 天后, DO 浓度明显上升, 至第 14 天水中其他生植物生长后可达到 7 mg/L 左右, 并趋于稳定。水温受气温影响经历了一次先下降后上升的变化, 第 8 天后持续上升至 27.5°C (第 49 天)。NH$_4$-N 浓度在 0.57~0.80 mg/L 之间, 平均值为 0.67 mg/L, 超过地表水 III 类水标准 (1.0 mg/L), 在腐烂初期随着藻草体内易释放氮的释放, NH$_4$-N 浓度迅速上升, 第 4 天后持续下降, 至实验结束时与腐烂初期无显著差异; NO$_2$-N 浓度在 0.50~1.17 mg/L 之间, 平均值为 0.83 mg/L, 在腐烂初期无明显变化, 第 4 天和第 37 天出现极大值 (P<0.05), 至实验结束时其浓度低于腐烂前; 上覆水中 NO$_2$-N 浓度较低, 其范围为 0.004~0.005 mg/L, 平均值为 0.005 mg/L, 变化不显著; DIP 浓度为 0.06~0.14 mg/L, 平均值为 0.10 mg/L, 随藻草体内磷的释放, DIP 浓度持续增加, 第 37 天出现极大值 (0.14 mg/L) 后下降, 但仍高于腐烂前, 这与其他研究结果[24,26]一致。
含量在分解初期略有下降后持续上升，至第 37 天时为初始值的 2.08 倍，试验结果时其含量与初始时无显著差异；pH 在藻草腐烂分解初期略有下降后显著上升，第 8 天达到最大值 7.65，随后持续下降，试验结束时和腐烂前基本相当（腐烂前后分别为 7.40 和 7.39）。

![图 5 藻草腐烂期间表层沉积物理化指标的变化](image)

图 5 藻草腐烂期间表层沉积物理化指标的变化

Fig. 5 Changes of the physicochemical properties of surface sediment during the decomposition of *Potamogeton crispus*

2.3 上覆水中温室气体溶存浓度与水一气界面扩散通量的变化

藻草腐烂分解期间上覆水中温室气体的溶存浓度与扩散通量的变化趋势较为一致（图 6）。N₂O 浓度和扩散通量均呈上升变化趋势，其中，上覆水 N₂O 浓度在 0~29.16 mmol/L 之间，平均浓度为 10.05 mmol/L，与夏季太湖水中浓度（11.18 mmol/L）[28] 基本相当，略低于鄱阳湖水体浓度（32.57±17.35 mmol/L）[29]，水一气界面 N₂O 扩散通量在 0.39~1.24 μmol/(m²·h) 之间，平均为 0.51 μmol/(m²·h)，第 8~14 天快速分解期间为负值，表现为从大气中吸收 N₂O，但值较低。CH₄ 浓度和扩散通量在藻草腐烂前期变化不显著，但在后期均有显著变化，其中，CH₄ 浓度在 0.23~2.23 μmol/L 之间，平均为 0.59 μmol/L，高于夏季太湖水体浓度（0.18 μmol/L）[28]，扩散通量在 10.71~123.29 μmol/(m²·h) 之间，平均值为 31.19 μmol/(m²·h)，均表现为扩散进入空气。CO₂ 浓度和扩散通量随着藻草腐烂分解持续升高，至第 8 天达到峰值后迅速降低，并于快速分解结束后趋于稳定；CO₂ 浓度在 22.09~307.87 μmol/L 之间，平均值为 134.21 μmol/L，高于夏季太湖水体中浓度（32.72 μmol/L）[28]，扩散通量在 469.2~13566.0 μmol/(m²·h) 之间，平均为 5862.9 μmol/(m²·h)，均表现为扩散进入空气。由此可见，藻草腐烂分解期间，上覆水中各温室气体的浓度和扩散通量均表现为 CO₂ > CH₄ > N₂O，整体表现为大气温室气体的“源”，并以碳排放为主，CO₂ 和 CH₄ 的排放分别集中在腐烂的前期和后期。

![图 6 藻草腐烂过程中上覆水中温室气体浓度及扩散通量的变化](image)

图 6 藻草腐烂过程中上覆水中温室气体浓度及扩散通量的变化

Fig. 6 Greenhouse gas concentrations in surface water and diffusion fluxes at water-air interface during the decomposition of *Potamogeton crispus*
2.4 沉积物孔隙水中温室气体溶存浓度及沉积物—水界面扩散墙面的变化

如图7所示，表层沉积物孔隙水中温室气体的浓度与扩散通量除 CH4外，变化趋势存在着一定的差异。
其中，N2O 浓度在 14.0～55.6 μmol/L 之间，在快速和慢速分解阶段分别出现极大值(22.7 和 55.6 μmol/L)，
呈现先升高后降低再快速升高然后降低的变化趋势，而沉积物—水界面 N2O 扩散通量在-0.20～0.59 μmol/(m²·h)之间，
呈前期缓慢增加后迅速降低的变化趋势，且主要表现为向上覆盖水中扩散。CH4 浓度和扩散通量
分别在 3.02～75.7 μmol/L 和 16.2～517.0 μmol/(m²·h)之间，两者变化特征较一致，表现为腐烂前期略有下降，
从第 8 天开始上升，第 37 天后迅速升高，为初始值的 6.0～10.0 倍，且均表现为向上覆盖水中扩散。CO2
浓度在 32.7～253.8 μmol/L 之间，表现为波动下降的变化趋势; 扩散通量在-12.345～1331.1 μmol/(m²·h)之间，
在藻类腐烂开始后迅速降低，表现为向孔隙水中扩散，直到腐烂后期(第 20 天)再次转变为向上覆盖水中
扩散。

![图7 藻类腐烂过程中表层沉积物孔隙水中温室气体浓度及沉积物—水界面通量的变化](image)

Fig.7 Greenhouse gas concentration in pore water and diffusion fluxes at sediment-water interface during the decomposition of Potamogeton crispus

2.5 环境因子、温室气体溶存浓度及各界面通量间的相关关系

在松平湖藻类腐烂期间，上覆盖水中 N2O 和 CH4 浓度及其水—气界面通量与水间均显著正相关关系
（P<0.05），而 CO2 与水温呈显著负相关关系（P<0.01）; 上覆盖水中 N2O 浓度与水体 DO 浓度呈显著负相关
关系; 上覆盖水中各温室气体浓度与其水—气界面通量均呈极显著正相关关系; N2O 和 CH4 浓度及其水—气
界面通量间具有显著正相关关系 (表 1)。沉积物孔隙水中仅 CH4 浓度和沉积物—水界面扩散通量与水间呈显
著正相关关系，且 CH4 浓度与沉积物—水界面扩散通量呈显著正相关关系 (表 2)。

表 1 上覆盖水中温室气体浓度和水—气界面通量与理化指标间的 Pearson 相关系数

| Tab.1 The Pearson correlation coefficients between the concentrations and water-air interface fluxes of greenhouse gases and the water physicochemical parameters |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | NH3-N | NO3-N | NO2-N | DIP | pH | DO | T | CH4 | CO2 | N2O | CH4 | CO2 |
| 上覆盖水 | N2O | -0.589 | -0.733 | -0.124 | -0.317 | 0.359 | -0.770 | 0.745* | 0.825* | -0.613 | 0.999* | 0.827* | -0.603 |
| 中浓度 | CH4 | -0.557 | -0.554 | -0.311 | 0.059 | 0.115 | 0.271 | 0.737* | 1 | -0.507 | 0.850* | 1.000** | -0.508 |
| CO2 | 0.416 | 0.214 | 0.437 | -0.407 | -0.376 | -0.389 | -0.895** | 1 | 1 | -0.623 | -0.512 | 0.998** | 1 |
| 水—气界面 | N2O | -0.599 | -0.729 | -0.131 | -0.281 | 0.340 | 0.014 | 0.760* | 0.852* | -0.614 | -0.503 | 1 | 1 |
| 面通量 | CH4 | -0.558 | -0.553 | -0.304 | 0.060 | 0.114 | 0.275 | 0.761* | 1 | -0.513 | 1 | 1 | 1 |
| CO2 | 0.435 | 0.229 | -0.408 | -0.424 | -0.388 | -0.383 | -0.883** | 1 | 1 | 1 | 1 | 1 | 1 |

** 表示 P < 0.01; * 表示 P < 0.05.
表2 孔隙水中温室气体浓度和沉积物-水界面通量与沉积物理化指标间的Pearson相关系数
Tab.2 The Pearson correlation coefficients between the pore water concentrations and the sediment-water interface fluxes of greenhouse gases and the sediment physicochemical parameters

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>NH₃-N</th>
<th>NO₃-N</th>
<th>OM</th>
<th>pH</th>
<th>CH₄</th>
<th>CO₂</th>
<th>N₂O</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔隙水中浓度</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>0.441</td>
<td>-0.515</td>
<td>-0.003</td>
<td>0.587</td>
<td>-0.067</td>
<td>0.047</td>
<td>-0.512</td>
<td>0.731</td>
<td>0.048</td>
<td>0.232</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.797*</td>
<td>-0.120</td>
<td>0.262</td>
<td>0.264</td>
<td>-0.709</td>
<td>1</td>
<td>-0.076</td>
<td>-0.480</td>
<td>1.000**</td>
<td>0.387</td>
</tr>
<tr>
<td>CO₂</td>
<td>-0.051</td>
<td>0.061</td>
<td>0.533</td>
<td>0.047</td>
<td>-0.050</td>
<td>1</td>
<td>-0.330</td>
<td>-0.076</td>
<td>0.609</td>
<td></td>
</tr>
<tr>
<td>沉积物-水界面通量</td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>0.010</td>
<td>-0.399</td>
<td>0.021</td>
<td>0.429</td>
<td>0.420</td>
<td>1</td>
<td>-0.478</td>
<td>-0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>0.796*</td>
<td>-0.126</td>
<td>0.271</td>
<td>0.269</td>
<td>-0.701</td>
<td>1</td>
<td>0.384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>0.654</td>
<td>-0.313</td>
<td>0.503</td>
<td>0.543</td>
<td>-0.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**表示P<0.01；*表示P<0.05。

3 讨论
3.1 苔藓腐烂过程中温室气体的产生与扩散

苔藓腐烂分解会导致水体物理化性质发生变化，如P H的变化及还原环境的发展，并释放出营养盐等物质[3]，同时也会促进微生物的生长[30]，加速碳氮转化，使温室气体浓度发生变化，从而影响其源汇效应[3,31]。

N₂O产生于微生物硝化和反硝化过程[32]，其浓度受到上覆水和沉积物中氮转化作用强弱的影响。通常上覆水中以硝化作用为主，沉积物中则以反硝化作用为主。东湖湖苔藓腐烂分解过程中，上覆水DO浓度均较高(> 4 mg/L)(图4)，因此上覆水中以硝化作用为主，反硝化作用难以发展，而湿地反硝化主要在沉积物中发生[33]，但在厌氧及低NO₃-N浓度下，N₂O会作为电子受体被反硝化细菌消耗[31]。上覆水中N₂O浓度和水气界面上通量出现先降低后上升的变化趋势，在快速分解阶段(第8 ～14 天)会从大气中吸收N₂O，这是因为水体分解过程以释放易分解有机质为主，碳氨比高，微生物从水体中吸收N₂O以满足其对氮素的需求，而在苔藓腐烂后期则以释放氮、磷为主[33]，增加了水体中氮密度，促进氮转化和N₂O的生成和扩散，同时也促进了沉积物反硝化作用，使N₂O产生速率增加，增加了其向上覆水的释放(图7)，使水气界面上扩散通量增加(图6)；随着苔藓腐烂分解过程的结束，氮释放减缓，水体中硝态氮浓度降低(图4)。而由沉积物表层的碳氮比降低，硝化作用增强[34]，沉积物中硝态氮含量增加(图5)，同时氧化水中N₂O被反硝化细菌作为电子受体所消耗，使其从上覆水到沉积水中少量扩散(图7)。

CH₄和CO₂分别是在厌氧和好氧下有机质矿化的最终产物。生物腐烂分解向水体中释放的大量有机物质在微生物作用下发生矿化，同时，降解沉积物表面的残体也在微生物作用下分解，产生CO₂和CH₄[5,14]。在生物体衰亡分解过程中，沉积物是CH₄的主要来源[35]，沉积物产生的CH₄并不是全部释放到大气中，部分在上覆水中向下转移的过程中被多种作用损耗，如被O₂氧化、厌氧氧化等[33]。本研究中上覆水中CH₄浓度和水气界面扩散通量在苔藓腐烂前期无显著变化，后期迅速上升，这是由于前期快速分解过程中释放的易分解有机质溶于上覆水中，DO浓度较高，不具备使CH₄的条件[36]，腐烂后期通量显著增加是由于降解有机物沉积到沉积物表面，既增加了沉积物的有机质含量又形成厌氧环境，在温度上升时微生物活性增加；由于在苔藓腐烂过程中CH₄沉积物-水界面通量均大于水气界面通量(图6，图7)，因此沉积物是CH₄的主要来源，并且在上覆水的扩散中存在着CH₄的损耗。上覆水中CO₂浓度和水气界面扩散通量在苔藓衰亡前由于其光合作用均较低，苔藓腐烂后快速分解过程中释放的易分解有机质氧化分解产生CO₂[36]，使上覆水中和水气界面通量快速上升，在第8天左右达到峰值，随着其他生态系统生物的生长，光合作用增强，导致水体CO₂溶存浓度降低并趋于稳定；在淡水湖泊中沉积物秸秆在CO₂受氧性营养体CH₄过程的影响而浓度降低[37]，使上覆水中CO₂向沉积物中扩散，而后期沉积的碳和有机物分解使CO₂再次扩散进入上覆水。在整个腐烂过程中水气界面扩散通量大于沉积物-水界面通量，说明上覆水中有机碳矿化
是 CO₂的主要来源之一(5)。

3.2 环境因子对藻草腐烂液水体温度及气体溶存浓度和界面通量的影响

温室气体的产生和扩散与上覆水和沉积物的理化性质有关(5,8,13),在本研究中,3 种温室气体的产生和扩散和水体大多数理化指标不存在显著相关关系,可能是藻草腐烂分解过程中物质的释放干扰导致的。

上覆水中 N₂O 浓度和水-气界面通量与水温显著正相关关系,水温可通过影响藻草分解速率使水体营养盐浓度升高和 DO 浓度降低,从而影响硝化、反硝化作用,进而影响 N₂O 的产生;还可通过影响微生物活性和气体溶解度,间接影响水中 N₂O 浓度(38)。N₂O 浓度与 DO 浓度显著正相关关系,这是因为随藻草腐烂分解,导致残体周围水中 DO 浓度降低,有利于沉积物反硝化作用发展,导致 N₂O 浓度增加,与其他研究一致(39)。沉积物-水界面通量与孔隙水中 N₂O 浓度呈非显著性正相关关系(表 2, R = 0.731),说明孔隙水中 N₂O 浓度是控制其界面扩散的主要因素之一。

上覆水中 CH₄浓度与水温呈显著正相关关系,温度上升时氯化镁会促进甲烷产生菌活性(40);另一方面温度上升也会加快藻草腐烂速率,导致水体中 DO 浓度降低,厌氧条件也会促进甲烷产生菌活性增强,从而导致浓度增加,同时使在水体中 CH₄浓度与 DO 浓度变化多表现出显著正相关关系(41),但在本研究中水体 CH₄浓度与 DO 浓度呈非显著正相关关系,相关性较低(表 1, R = 0.271),这可能与藻草腐烂分解和物质释放干扰有关。在碳、氮污染较为严重的水体中,N₂O 和 CH₄的溶存浓度呈正相关关系(42),本研究中二者浓度及其水-气界面扩散通量均显著正相关关系(表 1),可能与藻草腐烂过程中大量碳氮元素的释放促进了反硝化作用和厌甲烷作用的发展有关,说明 N₂O 和 CH₄可能具有同源性,均来源于藻草分解释放元素的转化;同时 CH₄与 N₂O 浓度及通量均与水温呈显著正相关关系(表 1),说明水温也是影响二者产生和扩散的共同因子。

湖水 COD 浓度与水温呈显著负相关关系(表 1)。在藻草腐烂过程中,湖水中 DO 浓度相对较高,有机质分解释放大量 CO₂(35),导致水中 CO₂浓度上升;水温上升降低了 CO₂在水中的溶解度,同时藻草残留物沉积在沉积物表面腐烂分解过程中会利用 CO₂产生 CH₄(43),这些都导致水中 CO₂浓度降低(44),从而使 CO₂浓度与水温呈负相关关系。孔隙水中 CO₂浓度与沉积物-水界面扩散通量呈正相关关系但不显著(表 2, R = 0.387),主要是由于沉积物-水界面扩散通量取决于其界面间两介质中的浓度梯度,孔隙水与上覆水中 CO₂浓度的变化规律不一致导致浓度梯度的变化,因此导致孔隙水中 CO₂浓度与沉积物-水界面扩散通量呈相关关系不显著;而湖水 COD 浓度与水-气界面扩散通量呈显著正相关关系(表 1),说明水体向空气中扩散的 COD 主要来源于上覆水中有机物氧化以及沉积物中有机物的矿化作用(44,45),但在藻草腐烂分解的过程中以上覆水中有机物的矿化作用为主。

4 结论

1) 东平湖藻草腐烂分解过程符合二次指数模型,前 23 天为快速衰减阶段解,后为慢速分解阶段。藻草腐烂过程中,上覆水 pH、NO₃-N 浓度和沉积物中 NO₃-N 含量先降低后升高,而上覆水中 DO、NH₄-N、NO₃-N 和 DIP 浓度以及沉积物中 NH₄-N 含量则先升高后降低;沉积物 OM 含量和 pH 呈下降-升高-下降的变化规律。

2) 藻草腐烂过程中,各温室气体的浓度和水-气界面扩散通量均表现为 CO₂> CH₄> N₂O,整体表现为大气温室气体的“源”,并以碳排放为主,CO₂和 CH₄的排放分别集中于腐烂的前期和后期;沉积物-水界面 N₂O 和 CH₄扩散通量均为向水体中扩散,CO₂在腐烂初期表现为向孔隙水中扩散,后期则相反。

3) 水温是影响藻草腐烂过程中水体温室气体浓度及其水-气界面通量的主要因子;孔隙水中 N₂O 和 CH₄浓度是控制其沉积物-水界面扩散通量的重要因素;上覆水中 CO₂具有多源性,但以上覆水中有机物的矿化为主,而 CH₄则主要来自于沉积物中有机物的矿化。

5 参考文献

hai; East China Normal University, 2014. [谭永洁. 上海市河流沉积物温室气体的排放与产生机制[学位论文]. 上海: 华东师范大学, 2014.]

