美人蕉 (*Canna indica*) 内生细菌促生能力及其强化水体的净化作用

王晓莹1,3, 张明珍1,3, 严攀1,3, 陈迪松1, 王亚芬2, 周巧红1, 吴振斌1, 徐栋1**

（1；中国科学院水生生物研究所淡水生态与生物技术国家重点实验室，武汉 430072）
（2；中国地质大学湖北省水环境污染物控制和治理工程技术研究中心，武汉 430074）
（3；中国科学院大学，北京 100049）

摘要：从美人蕉(*Canna indica*)植物体内分离内生细菌。通过接种内生细菌和培养基中营养物质的去除效果。结果表明：C01、C16、C20 促进了美人蕉种子的萌发、生长，C16 试验组萌发率为 83.3%，显著高于对照组 31.1%；C16 显著提高了植株的株高和根长，分别比对照组高 23.33%、40.44%。水质净化实验阶段，C16 试验组总磷、总氮的去除率分别为 88.4%、96.9%，分别比对照组高 26.4%、15.6%。最终，C01、C16 试验组生物量、根长都显著高于对照组。C16 试验组在体内可溶性糖含量、可溶性蛋白显著高于对照组 31.3%，97.8%。经鉴定，C01 为荧光假单胞菌（*Pseudomonas fluorescens*），C16 为肠杆菌（*Enterobacter* sp.），C20 为欧文氏菌（*Erwinia* sp.)。

关键词：美人蕉；内生细菌；促生能力；水体净化

Growth promoting ability and enhanced effects on water purification of endophytic bacteria from *Canna indica*

WANG Xiaoying1,3, ZHANG Mingzhen1,3, YAN Pan1,3, CHEN Disong1, WANG Yafen2, ZHOU Qiaohong1, WU Zhenbin1 & XU Dong1**

（1；State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China）
（2；Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, P.R. China）
（3；University of Chinese Academy of Sciences, Beijing 100049, P.R. China）

Abstract：Endophytic bacteria were isolated from *Canna indica*, and three strains C01, C16 and C20 were screened out regard to their abilities of producing indoleacetic acid (IAA) and siderophore and nitrogen fixation, as well as phosphate solubilization. The aim of this study is to evaluate the influence of inoculating endophytic bacteria on seed germination and seedling growth of *C. indica*, and to evaluate the removal rates of nutrients in water body by *C. indica* inoculated with endophytic bacteria in the pilot scale floating bed treatment system. The results showed that C01, C16 and C20 promoted the germination of seed and growth of plants. The germination rate of C16 treatment was 83.3%, significantly higher than that of the control, which was 31.1%. During the water purification experimental stage, the removal rates of total phosphorus and total nitrogen in the C16 treatment were 88.4% and 96.9%, respectively, which were 26.4% and 15.6% higher than the control. At the end of the experiment, the biomass and root length of the C01 and C16 treatment were significantly higher than the control, the soluble sugar content and soluble protein content in the
C16 treatment were 317.3% and 97.8% higher than those in the control respectively. C01, C16 and C20 were proved to be Pseudo-
monas fluorescens, Enterobacter sp., Erwinia sp. based on 16S rRNA sequence analysis.

Keywords: Canna indica; endophytic bacteria; growth promoting ability; water purification

近年来，随着我国工农业的迅猛发展以及城市规模的不断扩大，大量生活污水、生产废水以及不合理的
水产养殖尾水排入湖泊，严重污染湖泊水体，不仅加速了湖泊富营养化进程，而且严重影响湖泊生态功能。
人工浮床作为一种新型的水生态修复技术，具有直接从水体中去除污染物，无需占用土地，充分利用水面、
造价低廉、运行管理简便等优点[1]，然而人工浮床在净化过程中依赖植物的生长，植物同化氮、磷的速度较
慢，去污效率普遍偏低，限制了人工浮床技术的应用[1-3]。

从1876年，Pasteur从消毒的葡萄汁中分离出第一株内生细菌后，关于植物内生细菌的研究大量开
展[4]。植物内生细菌是存在于植物组织中、不易受外部环境影响的一类微生物，具有稳定的生态环境，可持
续对植物生理代谢特征产生稳定的影响[5]。植物体内的内生细菌主要是由根区进入植物组织，但是也能通过种子、表面气孔、伤口等进入植物[6]与植物建立共生关系，成为植物内生细菌。关于内生细菌，前
期研究主要集中在：内生细菌的多样性、分布及定殖[6-10]；探索植物内生细菌的多种生理学作用及对
植物的促生长作用，如溶磷[11]、分泌生长素[12]，形成铁载体以及提高植物抗逆境能力等功能[13]，这些功能能
够促进植物吸收营养物质，对其营养价值的代谢，促进植物的生长。研究内生细菌增强植物抗逆性、抗
病虫害的作用[14-16]。目前，许多研究人员正在从事植物-内生细菌共生净化系统的研究，多项研究揭示内生
细菌能够增强植物生长以及具备修复受到有机污染物和无机污染物污染的土壤和水体的能力，包括提高植物
对铁（Fe）、锰（Mn）、铜（Cu）、铅（Pb）、油（O）等重金属的吸收[17-21]，提高植物对土壤中碳氢化合物的降
解[22]，提高植物对纺织废水中化学需氧量（COD）、生化需氧量（BOD）、总溶解固体的去除率[23]，提高植物
t处理水中总氮（TN）、磷酸盐（PO₄³⁻）的去除率[24]。

水生植物美人蕉作为净化水质的植物在各类水生态修复工程中。生态浮床[25-26]和人工湿地[27]中广泛运
用。目前，对美人蕉内生细菌以及美人蕉作为宿主植物在内生细菌影响下修复环境污染的研究鲜有报道。因
此本研究以美人蕉及其内生细菌为对象，对美人蕉内生细菌进行提取-筛选-接种试验，验证以下两个假设：
内生细菌是否对美人蕉生长有促作用；内生细菌是否能强化美人蕉对水体中营养物质的吸收，预期对
水体的修复提供一种新思路。

1 材料与方法

1.1 内生细菌的分离纯化与筛选

2018年1月于武汉市光谷三路湿地公园采集生长良好的美人蕉6株，采用表面消毒法分离植物内生细
菌[28]。用无菌水冲洗美人蕉数次直至无明显浑浊后无菌滤纸吸干，切取茎、根、叶进行表面消毒：70%乙醇浸
泡（1 min）→无菌水冲洗→1%次氯酸钠浸泡（1.5 min）→0.1% 次氯水反复冲洗（5~10
t次）后将植物组织用无菌滤纸吸干转入灭菌研钵，加入 10 ml 无菌水研磨，研磨至匀浆状后静置 3~5 min，
将上清液适度稀释后取 0.1 ml 混合 Luria-Bertani (LB) 培养基，28℃培养 3~7 d 后，挑取菌落（表面消毒
effect检验：取最后一次冲洗植物的无菌 0.1 ml 水涂布于 LB 平板，培养后无微生物菌落生长表明样品消毒彻
底）对得到的菌种进行纯化培养单一种菌后保存为供试菌株。LB 培养基：胰蛋白胨 10 g, 酵母提取物
5 g, 氯化钠 10 g, 蒸馏水 100 ml, pH 7.0, 121℃灭菌 20 min。

对筛选出的内生细菌进行生理学特性的测定，分泌吲哚乙酸能力测定采用 Salkowski 比色法[29]；溶磷能
力测定采用无机磷固体溶液培养法[30]，用磷肥（磷酸氢钙）培养基称量 200 mg, 溶解于 100 ml 蒸馏水
t中, 上下振荡 30 s, 使培养基溶液变为透明状后，加入 10 ml 无菌水放置 1 h。接种 100 μl 的菌液于
经无菌处理的 LB 培养基平板上，37℃培养 2 d 后，观察溶磷圈的大小；产铁载体能力采用 CAS 平板法[31]；将
菌株连续 5 次接转于 NIH 无氮培养基[32]上，于 30℃恒温箱培养 12 h 后，测量铁载体形成直径。

选择同时具有 4 种生物功能的 3 株内生细菌 C01, C16, C20 测定其对美人蕉的促生作用。

1.2 内生细菌对美人蕉的促生作用

采购一批黄花美人蕉种子，剔除不饱满、表面有霉菌的种子。种子萌发前用浓硫酸浸泡 45 min[33]，无菌
水冲洗 15~20 次。菌株 C01, C16, C20 在 LB 培养基中生长 24 h 后离心（4℃, 8000 转/min, 20 min），倒
去培养基并用无菌水调节菌液浓度 OD_{600} 至 1.0. 将种子浸泡在菌液中 4 h, 对照组种子浸泡在无菌水中。

细砂洗净烘干装入塑料组培瓶 (100 g), 121℃灭菌 60 min, 再加入蒸馏水 40 ml 121℃灭菌 30 min 用于种子萌发。C01, C16, C20, 对照组试验组, 每个试验组种子 36 颗种子 (用 9 个组培瓶, 每个组培瓶放入 4 颗种子), 每试验组设置 3 个重复。放入培养箱 (28℃, 4000 lx) 育发生长 15 天后计算种子的萌发率。

将长势相同的荚状胚放入组培瓶中, 于光照培养箱中 (28℃, 4000 lx) 继续生长, 每个处理 9 个组培瓶, 每个组培瓶中 1 株幼苗, 每 7 天用 5 ml OD_{600} = 1.0 浓度的菌液浇灌, 对照组用 5 ml 无菌水浇灌, 并用 1/2 霍格兰作为植物的营养来源。28 d 后测量植物的株高、根长, 秤量植物的鲜重。

1.3 荚状胚对污染水体的净化

将已接种内生细菌且长势相同的植物移入实验装置, 实验装置模拟生态浮床, 将植物悬挂种植于水箱 (L×B×H = 400 mm×290 mm×260 mm), 盆中从下往上依次铺设两层纱网（孔径约为 2 mm）、10 mm 砾石（孔径约为 5 mm）、100 mm 石英砂（孔径约为 2 mm）。每个水箱中放入 1 个循环泵（每天定时循环 2 h, 流量 300 L/h), 可使水箱中的营养物质均匀分布, 同时也使水体充氧。每个实验装置中种植两株植物, 每个实验组设置 3 个平行。系统进水来自水稳定 1 个月后进 23 L 污水, 污水配方按照 Prochaska 等的方法配制 [31]。实验进水 1 次, 期间蒸发的水量用自来水补充。前 3 次每 3 天采 1 次样, 后 3 次每 5 天采 1 次样。根据 GB 11894—1989 测定水体总氮 (TN) 浓度, GB 11893—1989 测定水体中总磷 (TP) 浓度。

1.4 荚状胚生长、生理特性

水质净化化试验结束后收取装置中的植物, 测量植物的株高、根长, 海岸鲜重、海面鲜重; 105℃杀青 1 h 后75℃烘干至恒重称量地上、地下鲜重: 用马氏亮蓝 G-250 法测定可溶性蛋白, 谷丙转氨酶法测定可溶性糖 [31], 滤酶提取叶绿素并测定 a- 藻糖法测定根系活力参照张志良等的方法 [32]

1.5 内生细菌的鉴定

菌株基因提取, PCR 产物的纯化和测序均由武汉市天一辉远生物科技有限公司完成。使用 NCBI 网站对测定的序列与数据库中的各种细菌的 16S rDNA 序列进行对比。从 GenBank 中选择了与目标菌株的基因序列, 应用 Mega7 软件进行比对后构建系统发育树。

1.6 数据处理及统计分析

数据的初步整理用 Excel 软件完成, 所有数据用平均值±标准差表示。用 SPSS 22.0 软件对数据进行统计分析, 采用单因素方差分析对 3 株内生细菌的影响进行对比分析, 显著性水平设为 α = 0.05。用 Origin 2017 软件绘制相关图形。

2 结果

2.1 内生细菌的筛选与鉴定

从荚状胚内分离出内生细菌, 通过测定内生细菌的生理学特性筛选出 3 株具有代表性的菌株, 即 C01, C16, C20, 其生理学特性见表 1。

<table>
<thead>
<tr>
<th>内生细菌</th>
<th>OD_{600} = 1.0</th>
<th>产铁载体</th>
<th>固氮能力</th>
<th>溶磷能力</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>34.36</td>
<td>+</td>
<td>+</td>
<td>0.168</td>
</tr>
<tr>
<td>C16</td>
<td>4.77</td>
<td>+</td>
<td>+</td>
<td>18.201</td>
</tr>
<tr>
<td>C20</td>
<td>29.98</td>
<td>+</td>
<td>+</td>
<td>2.193</td>
</tr>
</tbody>
</table>

“+” 表示具有相应的生物学作用。

3 株内生细菌与 GenBank 数据库进行比对分析, 并使用 Mega 做出系统发育树 (图 1)。C01 (登录号为 MK 796436) 与其同源性较高的菌株均属于假单胞菌属, 其中与荧光假单胞菌 (Pseudomonas fluorescens) 同源
性最高(99%)。Ci6(登录号为MK 796534)、C20(登录号为MK 796533)与其同源性较高的菌株均属于肠杆菌科，其中Ci6与肠杆菌(Enterobacter sp.)同源性最高(99%)，C20与欧文氏菌(Enterobacter sp.)同源性最高(99%)。

图1 3株内生细菌的16S rDNA序列系统发育树

Fig.1 Phylogenetic tree of three endophytic bacteria based on the 16S rDNA sequence of endophytic bacteria

2.2 内生细菌对美人蕉的促生作用

内生细菌对美人蕉种子萌发率的影响见图2a，萌发15天后发现C01、Ci6、C20、对照组的萌发率分别为72.2%、83.3%、75.0%、31.1%，其中Ci6试验组的萌发率显著高于对照组(P<0.05)。

图2 内生细菌对美人蕉的促生作用(*表示试验组与对照组有显著性差异(P<0.05))

Fig.2 The promoting effect of endophytic bacteria on Canna indica

内生细菌对美人蕉株高、根长、鲜重的影响见图2b，其中接种C01、Ci6、C20内生细菌不同程度地增加了美人蕉的株高，比对照组分别增加了11.41%、23.33%、4.89%，其中接种Ci6内生细菌的美人蕉株高显著高于对照组(P<0.01)。在植物根长方面，接种Ci6内生细菌显著增加了美人蕉的根长，与对照组相比增加了40.44%(P<0.01)，接种C01、C20内生细菌对根长没有促进作用。接种Ci6、C20内生细菌增加了美人蕉的鲜重，相对于对照组分别增加了19.13%、10.69%，接种C01对鲜重没有促进作用。

2.3 接种内生细菌后的美人蕉对污染水体的净化

模拟生态浮床进水TN浓度为34.259±0.227 mg/L，TP浓度为6.971±0.019 mg/L，根据湖泊富营养状态
分类, 此进水为富营养类型。接种内生细菌的美人蕉对水质中营养物质的吸收, 可以看出 C01 和 C16 处理组水体中 TP 浓度明显低于对照组, C20 处理组水体浓度与对照组相比没有明显差异; 第 24 天, C01, C16, C20,对照组的水体 TP 去除率分别为 82.1%, 88.4%, 68.4%, 69.6% (图 3)。

图 3 接种不同内生细菌的美人蕉对水体中营养物质浓度的影响

Fig.3 Effects of Canna indica inoculated with different endophytic bacteria on the concentration of nutrients in water

C01 和 C16 处理组水体中 TN 浓度明显低于对照组, 在前 14 天 C20 处理组水体浓度与对照组相比没有明显差异, 在后 2 次采样中 TN 浓度明显低于对照组; 第 24 天, C01, C16, C20, 对照组试验组的水体 TN 去除率分别是 90.4%, 96.9%, 87.2%, 83.8% (图 3)。

2.4 接种内生细菌后美人蕉的生长、生理特性

接种不同内生细菌的美人蕉地上鲜重、地上干重、地下鲜重、地下干重, 株高, 根长见表 2, C01, C16 试验组的美人蕉地上鲜重、地上干重、地下鲜重、地下干重、根长都显著高于对照组。

表 2 接种不同内生细菌的美人蕉地上鲜重、地上干重、地下鲜重、地下干重、株高、根长

Tab.2 The aboveground fresh weight, dry weight, underground fresh weight, dry weight, plant height and root length of the Canna indica inoculated with different endophytic bacteria

<table>
<thead>
<tr>
<th>内生细菌</th>
<th>地上鲜重/g</th>
<th>地上干重/g</th>
<th>地下鲜重/g</th>
<th>地下干重/g</th>
<th>株高/cm</th>
<th>根长/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>138.50±23.12 *</td>
<td>10.82±2.00 *</td>
<td>16.65±6.71 *</td>
<td>1.03±0.63 *</td>
<td>112.38±15.06</td>
<td>25.25±2.68 *</td>
</tr>
<tr>
<td>C16</td>
<td>162.02±39.09 *</td>
<td>14.35±2.47 *</td>
<td>36.12±8.51 *</td>
<td>2.98±0.90 *</td>
<td>111.87±21.90</td>
<td>39.30±3.83 *</td>
</tr>
<tr>
<td>C20</td>
<td>102.98±43.44</td>
<td>8.69±3.50</td>
<td>9.20±5.88</td>
<td>0.49±0.47</td>
<td>103.03±22.12</td>
<td>17.07±6.43</td>
</tr>
<tr>
<td>对照组</td>
<td>76.42±38.81</td>
<td>5.91±2.94</td>
<td>5.82±3.18</td>
<td>0.27±0.25</td>
<td>87.43±29.10</td>
<td>13.08±5.63</td>
</tr>
</tbody>
</table>

* 表示同一列与对照组有显著性差异 (P<0.05)。

接种内生细菌的美人蕉叶绿素含量 (图 4a), C01、C16、C20、CK 试验组中美人蕉叶绿素 a 含量分别为 1.217, 1.214, 1.199, 1.090 mg/g；叶绿素 b 含量分别为 0.457, 0.434, 0.345, 0.386 mg/g；总叶绿素含量分别为 1.720, 1.695, 1.638, 1.526 mg/g。

接种 C01, C16, C20 内生细菌和对照组中美人蕉根系活力分别为 89.20, 98.20, 62.59 和 62.76 ug/ (g·h), 接种 C01, C16 内生细菌可使美人蕉根系活力分别提高 42.1%, 56.5%；C20 对美人蕉根系活力的影响并不明显 (图 4b)。

接种 C01, C16, C20 内生细菌以及对照组中美人蕉可溶性糖含量分别为 0.332%, 1.185%, 0.580%, 0.284%, 其中接种 C16 的美人蕉可溶性糖含量显著高于对照组 (P<0.05), 与对照组相比提高了 317.3%, 接种 C01, C20 内生细菌的美人蕉可溶性糖含量与对照组相比分别提高了 16.9%, 104.2% (图 5a)。

接种 C01, C16, C20 内生细菌以及对照组中美人蕉可溶性蛋白鲜重含量分别为 2.846, 4.752, 2.523, 2.403 mg/g, 其中接种 C16 的美人蕉可溶性蛋白含量显著高于对照组 (P<0.01), 与对照组相比提高了
97.8%，接种C01的美人蕉可溶性蛋白含量与对照组相比提高了18.4%，接种C20对美人蕉可溶性蛋白含量的影响并不明显。

图5 接种不同内生细菌的美人蕉可溶性糖(a)和可溶性蛋白(b)含量
（*表示试验组与对照组有显著性差异(P<0.05)）
Fig.5 The soluble sugar (a) and soluble protein (b) content of the Canna indica inoculated with different endophytic bacteria

3 讨论
研究表明，高等植物中广泛存在着内生细菌，从单子叶植物到多子叶植物，从木本科植物到禾本科植物，同时对于同一物种一般能够分离出数十至数百种不同的内生细菌[17]。本试验采用表面消毒法对美人蕉根、茎、叶表面进行消毒，全程在无菌条件下进行分离纯化，得到美人蕉内生细菌。通常内生细菌可以通过各种机制增强植物生长并提高植物对污染物质的吸收，这些机制包括固氮、溶解磷酸盐、产生吲哚乙酸和铁载体[18-20]。经过测定内生细菌的以上几种有益生理学特性，筛选C01、C16、C20作为试验的供试菌株，接种供试菌株可使美人蕉种子的萌发率和幼苗的生物量有不同程度地增加。目前研究已证明将种子浸泡在细菌悬浮液中，将细菌接种到植物根部，将细菌菌液喷洒到植物叶面可使细菌重新定殖在植物体内[18,22,23]。该试验中内生细菌在植物体内的分布及浓度并没有展示，但是从宏观上观察内生细菌对美人蕉具有促生作用的，吲哚乙酸作为研究最多的生长素，能够促进植物细胞伸长生长，有效促进植物根系伸长[21]，产铁载体的内生细菌能够向寄主植物提供铁元素，或者减少环境中病原菌可利用的铁而降低病原菌的竞争力，达到促进植
物生长的目的[42]；固氮内生细菌与植物共生能够提高宿主植物的氮吸收与氮代谢水平[43]；溶磷内生细菌具有溶解矿物磷酸盐的能力，能够增强植物对磷的吸收，从而提高植物的营养促进生长[44]。内生细菌 C16 具有产吲哚乙酸、产铁载体、固氮、溶磷能力，其中溶磷能力相对较高，接种 C16 显著增加了美人蕉种子萌发率、株高和根长，说明 C16 对美人蕉具有促生作用。内生细菌的促生能力机制较为复杂，在目前的研究中具体哪一种促生机制占据主导地位还没有得到证实。

在吴建强的试验中已证明美人蕉体内氮磷积累量差异主要来自于生物量的差异，美人蕉氮磷吸收量与植物生物量呈现显著相关性[45]。接地内生细菌促进了美人蕉的生长，接种内生细菌后的美人蕉是否增强美人蕉对水体中营养物质的吸收？在水质净化试验中发现，接种内生细菌 C16 试验组大幅度提高了 TN, TP 的去除率，C01 试验组也提高了 TP, TN 的去除率。Hurek 等研究发现固氮弧菌 (Azotobacter sp.) BH72 能够分泌生长素并能定植在水稻根部并提高宿主植物营养物质的摄人量[46]。Shehuzi 等分别从香蒲茎和浮萍根中分离得到 Microbacterium arborescens TYS04 和 Bacillus pumilus PIPR30，并在种植香蒲的人工湿地中将两株内生细菌液接种于纺织废水中，结果在香蒲的根、芽中检测到内生细菌，表明内生细菌能够通过根部在植物体内定殖，同时也证明了接种内生细菌能够提高香蒲的生物量和对废水的净化效果[23]。Ashraf 等将 3 种内生细菌的混合菌液接种于种植双花草 (Leptochloa fusca) 的人工湿地中治理制革厂废水，结果在接种内生细菌的根际，根内、根内检测到内生细菌的存在，且内生细菌增加了双花草的根长、鲜重和干重，同时与对照组 (未接种双花草和未接种内生细菌) 相比有植物组人工湿地中化学需氧量 (COD)、生化需氧量 (BOD)、油脂的去除率分别提高了 36%、55%、40%；有植物和接种内生细菌人工湿地中化学需氧量、生化需氧量、油脂的去除率分别提高了 97.5%、98%、97.9%[47]。这些试验也证明了接种内生细菌能够促进植物的生长和提高污染水质的吸收。以植物为主的水体修复技术，关键在于植物生长吸收去除水体中的污染负荷，起到净化水体的效果，所以植物生长状况直接影响修复效率的高低。接种内生细菌 C16 试验组起初增加美人蕉种子的萌发率和幼苗的株高和根长，试验结束时该组美人蕉地上、地下、地上干重以及根长都显著高于对照组，证明美人蕉生物量有所增长。与此同时，根系活力作为植物生长发育的重要生理指标，根系发育程度不同，对污染物质的吸收和吸附作用强度不同[48]。接种 C16 没有显著增加单位重量的根系活力，但是美人蕉的根系根长和地下鲜重显著高于对照组，可溶性糖和可溶性蛋白是植物体内重要的物质，可溶性糖能够以类似植物激素的方式作为一种信号分子调控植物的生长、发育、成熟和衰老，可溶性蛋白直接影响植物对生物胁迫的响应以及植株的生长[49]。C16 试验组可溶性糖，可溶性蛋白含量显著高于对照组。由此可见接种内生细菌 C16 的美人蕉的生长状况优于对照组，进一步解释了接种 C16 的美人蕉 TN, TP 的去除率高于对照组这一试验结果。

从“植物内生细菌”概念提出，内生细菌不断在植物体内分离出来。宋歌等从杨柳种分离筛选出能够降解多氯联苯的内生细菌并经鉴定为肠杆菌属[50]。刘辉等从杨枝中分离出—株荧光假单胞菌，经过实验证明其有溶磷能力并能促进柳树的生长[51]。本文根据 16S rDNA 序列分析，C01 菌株为荧光假单胞菌，C16 菌株为肠杆菌，C20 菌株为欧文氏菌。美人蕉体内分离出的内生细菌的种群具有广泛的分布性。

根据试验报道感染内生细菌的植物比不感染内生细菌的植物竞争能力强[52]。内生细菌的几种有益生理学特性对植物的生长和发育有着积极的贡献。本试验中证明了接种内生细菌的美人蕉生长状况更好，对氮磷的吸收能力更强，但是存在两个不足之处：(1) 试验根据前人的方法将内生细菌接种到美人蕉种子和幼苗根部，通过美人蕉的生长状况推测内生细菌侵染了美人蕉，并未测定内生细菌在植物体内的分布情况；(2) 试验只与未接种内生细菌的美人蕉作为比较，缺乏与自然状态下生长的美人蕉的比较。因此，在今后的试验中笔者会进一步探讨不同接种方式下内生细菌在美人蕉体内的分布情况以及接种内生细菌的美人蕉在实际工程中的应用前景。

4 结论

美人蕉体内分离出内生细菌，经过筛选并用接种 C01, C16, C20 于美人蕉的种子、幼苗，通过小型浮床试验，表明内生细菌 C16 为肠杆菌，具有促进美人蕉生长的作用，并在水质净化中接种内生细菌 C16 的美人蕉具有较强的 TN, TP 去除率。内生细菌和美人蕉协同作用有为人工浮床技术修复富营养化水体提供一种新
思路。

5 参考文献

王晓莹等；美人蕉（Canna indica）内生细菌促生能力及其强化学水体的净化作用

[38] Verma SC, Ladhia JK, Tripathi A. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs

