三峡库区水体和底泥中多环芳烃和邻苯二甲酸酯类分布和来源

林莉1,2, 姜磊1,2, 李青云1,2, 黄菊1,2, 唐明1,2, 邹会1,2, 杨文俊3**

(1: 长江科学院流域水环境研究所, 武汉 430010)
(2: 长江科学院流域水环境与生态研究所湖北省重点实验室, 武汉 430010)
(3: 长江科学院院长办公室, 武汉 430010)

摘要: 通过对 2016 年三峡库区干支流 18 个采样点水体和底泥中 16 种多环芳烃 (PAHs) 和 6 种邻苯二甲酸酯类 (PAEs) 污染物浓度的时空分布特征和来源进行分析, 得出如下结论: 三峡库区 2016 年水体和底泥中 ΣPAHs 分别为 3.9～107.6 ng/L (平均值为 39.9 ng/L) 和 267.9～1018.1 ng/g (平均值为 490.9 ng/g), ΣPAEs 分别为 122.4～2884.7 ng/L (平均值为 848.1 ng/L) 和 192.9～3473.4 ng/g (平均值为 1253.35 ng/g). 水库水体和底泥中 PAHs 和 PAEs 均表现出显著的时空分布特征. 干支流水体 ΣPAHs 平均浓度高于水期 (6 月) 高于蓄水期 (12 月), 干支流水体 ΣPAEs 平均含量在蓄水期高于水期. 库区水体中 ΣPAHs 平均浓度在蓄水期显著高于水期. 库区水体中 PAHs 以 2～3 环和 4 环为主, 底泥中以 4 环和 5～6 环为主. 水体和底泥中 PAEs 均以邻苯二甲酸 (2-乙基已基) 酯和邻苯二甲酸乙二醇酯为主. 库区水体中 PAHs 的主要来源为焦化或炼焦油挥发. 石油沥青燃料的中高温燃烧; 底泥中 PAHs 主要来源为煤和生物质燃烧以及石油. 水体和底泥中的 PAEs 主要来源于塑料和重化工工业以及生活垃圾.

关键词: 三峡水库; 多环芳烃 (PAHs); 邻苯二甲酸酯类 (PAEs); 分布; 污染来源

Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir

LIN Li1,2, DONG Lei1,2, LI Qingyun1,2, HUANG Zhe1,2, LI Chao1,2, LI Rui1,2 & YANG Wenjun3**

(1: Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, P.R. China)
(2: Hubei Provincial Key Lab of Basin Water Resource and Eco-Environmental Science, Changjiang River Scientific Research Institute, Wuhan 430010, P.R. China)
(3: Administration Office, Changjiang River Scientific Research Institute, Wuhan 430010, P.R. China)

Abstract: Distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) at 18 sampling sites during water drawdown and impoundment period were investigated in surface water and sediment from the Three Gorges Reservoir (TGR) in 2016. In surface water, the ΣPAHs concentrations in the TGR were 3.9～107.6 ng/L (mean value was 39.9 ng/L) and 267.9～1018.1 ng/g (mean value was 490.9 ng/g) in water and sediment, respectively. The ΣPAEs concentrations were 122.4～2884.7 ng/L (mean value was 848.1 ng/L) and 192.9～3473.4 ng/g (mean value was 1253.35 ng/g) in water and sediment, respectively. PAHs and PAEs show significant spatial variations in the TGR. The mean ΣPAHs concentration in water during water drawdown period (June) was higher than that during water impoundment period (December) in mainstream and tributaries, and the mean ΣPAEs concentration in sediment during water impoundment period was higher than that during water drawdown period in mainstream. The mean ΣPAEs concentration in sediment during water impoundment period was higher than that during water drawdown period in mainstream. Whereas, the mean ΣPAEs concentration in sediment during water drawdown period was higher than that during water impoundment period in mainstream. PAH monomers with (2+3)-ring and 4-ring were

** 水利部公益性行业专项经费项目(201501042)、中国科协青年人才托举工程项目(2015QNRC001)和中央级公益性科研院所基本科研业务费项目(CKSF2017062/SH, CKSF2015014/SH)联合资助。2017-06-27收稿; 2017-08-22收修改稿。林莉(1983 -), 女, 博士, 高级工程师; E-mail: linli1229@hotmail.com.
** 通信作者: E-mail: yangwj@mail.crsri.cn.
dominant in water, and with 4-ring and (5+6)-ring were dominant in sediment. Di-n-butyl phthalate and di-2-ethylhexyl phthalate were the dominant PAE pollutants in the TGR. The main source of PAHs in water is a mixture of creosote or coal tar volatilizations, petroleum sources and low temperature combustions of fuels. Whereas, the main source of PAHs in sediments is a mixture of coal and biomass combustions and petroleum sources, and petroleum combustions. The main sources of PAEs in the TGR was plastics and heavy chemical industries, and domestic wastes.

Keywords: Three Georges Reservoir; polycyclic aromatic hydrocarbons (PAHs); phthalic acid esters (PAEs); distribution; source of pollution

多环芳烃 (PAHs) 和邻苯二甲酸酯类 (PAEs) 是环境中广泛存在的持久性有毒污染物[14]。PAHs 具有毒性和致癌作用，主要来源于含碳物质的不完全燃烧[7]。PAEs 作为塑料剂被广泛使用[8]，属于内分泌干扰物[15]。我国《地表水环境质量标准》（GB 3838—2002）对地表水中 PAHs 和 PAEs 浓度均有限制要求[10]。

三峡工程是世界上最大的水利枢纽工程，在防洪、发电、航运和供水方面发挥了显著的效益[11]。三峡水库的水质对于人类和生态系统健康具有重要意义。从天然状态至 175 m 蓄水，三峡水库水文情势发生了巨大变化，水流转减显著降低了水中污染物的扩散和自净能力，污染物的沉降和迁移规律也相应改变[12]。三峡水库的水质问题日益引起广泛关注。

PAHs 被认为是三峡库区首要的有毒污染物[12-14]。目前三峡库区水体和底泥中 PAHs 的浓度和来源虽然已有研究[15-20]，但长期跟踪监测和分析对于库区水质管理十分必要。据统计 PAEs 是三峡工程 175 m 蓄水前库区水体中的主要污染物之一[20]。2005 年，邻苯二甲酸二乙酯 (DEP) 和邻苯二甲酸 (2-乙基己基) 酯 (DEHP) 浓度分别为 0.83-2.21 和 0.66-3.60 μg/L[19]。关于三峡工程 175 m 蓄水后库区水体和底泥中 PAEs 浓度和污染来源的报道极少，开展三峡工程蓄水后库区主要持久性有机污染物 PAHs 和 PAEs 在水体和底泥中的含量、分布与来源研究，对于三峡库区生态健康安全具有重要意义。

本文系统研究了三峡水库水体和底泥中 PAHs 和 PAEs 的浓度、分布和主要来源。采集了 2016 年三峡水库水位期 (6 月) 和蓄水期 (12 月) 干支流 18 个采样点的水样和底泥样品，分析了不同水期下污染物的时空分布和来源特征。调查的污染物包括美国环境保护局 (EPA) 先优污染物名单中所列的 16 种 PAHs 和 6 种 PAEs。本研究结果可为三峡库区未来开展水质监测和污染控制提供理论依据。

1 材料和方法

1.1 化学品和试剂

16 种 PAHs 包括萘 (Nap)、苊 (Ace)、二氢苊 (Acy)、芴 (Flu)、菲 (Phe)、芘 (Py)、苯并 a 萘 (BaA)、茚 (Ind)、苯并 [a] 焦苯 (BbF)、苯并 [k] 焦苯 (BkF)、苯并 [a] 萘 (BaP)、茚并 [g,h,i] 萘 (BghiP)。6 种 PAEs 包括邻苯二甲酸二乙酯 (DEP)、邻苯二甲酸二乙酯 (DEP)、邻苯二甲酸二乙酯 (DEP)、邻苯二甲酸 (2-乙基己基) 酯 (DEHP) 和邻苯二甲酸 (2-乙基己基) 酯 (DEHP) 和邻苯二甲酸 (2-乙基己基) 酯 (DEHP)。PAHs 混合标准储备液 (Lot 214011426, 99%) 和 PAEs 混合标准储备液 (Lot 214031130, 99%) 均由 AccuStandard 公司提供。二氯甲烷、丙酮和乙酸乙酯均为色谱纯，由美国 Fisher Chemical 公司提供。正己烷为色谱纯，由美国 TEDA 公司提供。

1.2 样品采集

本研究共设置三峡库区干流 14 个采样点 (M1~M14) 和支流 4 个采样点 (T1~T4) (图 1)。水样和底泥样品分别采集于 2016 年 6 月 (放水期) 和 12 月 (蓄水期)。4 条支流包括乌江、渠溪河、梅西河和青干河。采用 4 L 不锈钢小桶采集 0~50 cm 表层水样，采集后过 0.45 μm 滤膜并保存于 4 L 棕色瓶中。采用抓斗式采泥器采集表层底泥，采集后保存于密封袋中。所有的水样和底泥样品尽快运回实验室，并于 4℃保存待分析。

1.3 预处理和分析方法

采用 C18 固相萃取柱 (ENV-18 DISK, 47 mm 直径, Sigma-Aldrich, USA) 萃取水体样品中的 PAHs 和 PAEs[18-20]。萃取后固相萃取柱采用 10 ml 乙酸乙酯洗脱 1 次，加 10 ml 乙酸乙酯重复洗脱 1 次，再采用 10 ml (1+1) 二氯甲烷–乙酸乙酯洗脱 1 次，以上脱除步骤重复 2 次。将所有洗涤液收集后，除水并浓缩至近干，用正己烷定容至 1.0 ml，上机分析。
图1 三峡库区采样点分布
Fig.1 Distribution of sampling sites in the Three Georges Reservoir

底泥样品经真空冷冻干燥,研磨,过筛,取约 2 g(精确到 0.0001 g)加入 25 ml(1+1)乙醇-丙酮混合溶剂,采用微波萃取。微波萃取条件为:自室温(30 ℃)以 10 ℃/min 的速度升温至 120 ℃,保持 20 min。硅胶-氧化铝复合柱采用湿法填充,自下而上依次填入 0.5 cm 无水硫酸钠,1 cm 中性氧化铝,3 cm 中性硅胶和 1 cm 无水硫酸钠。净化柱用 10 ml 正已烷,10 ml(7+3)正已烷与二氯甲烷混合溶剂预冲洗。将萃取液通过硅胶-氧化铝复合柱,然后采用 20 ml 正己烷,20 ml(7+3)正已烷与二氯甲烷混合溶剂淋洗柱子。将所有洗脱液收集后,出水并浓缩至近干,用正己烷定容至 1.0 ml,上机分析。

16 种 PAHs 和 6 种 PAEs 采用 GC-MS(7890B/5977A, Agilent, USA)检测。采用 DB-5MS 色谱柱,质谱条件为 EI 模式,离子源温度为 250 ℃;扫描方式为 SIM,载气均为高纯氮气(≥99.999%),不分流进样,进样体积 1 μl。PAHs 检测色谱条件为:进样口温度 250 ℃,传输线温度 300 ℃,速流 1 ml/min;升温程序为:80℃保持 2 min,以 20℃/min 升温至 220℃,保持 10 min,再以 2℃/min 升温至 300℃,保持 5 min。PAEs 检测色谱条件为:进样口温度 250 ℃,传输线温度 300 ℃,速流 1.2 ml/min;升温程序为:70℃保持 2 min,以 20℃/min 升温至 130℃,再以 5℃/min 升温至 200℃,15℃/min 升温至 300℃,保持 5 min。

1.4 质量控制

16 种 PAHs 和 6 种 PAEs 采用外标法进行质量控制。为避免分析过程中引起的污染,每分析 10 个样品做一个样品空白。样品上机分析测试时按 10%比例抽取样品开展平行试验。所有样品均上机测试 3 次并取平均值。所有标准曲线的相关系数均大于 0.994。底泥样品中 PAHs 和 PAEs 含量均以干重法计算(ng/g(dw)。水体样品中 16 种 PAHs 的方法检出限为 0.04~0.39 ng/L,底泥样品中 16 种 PAHs 的方法检出限为 0.08~0.78 ng/g。水样中 6 种 PAEs 的方法检出限为 0.12~0.92 ng/L,底泥样品中 6 种 PAEs 的方法检出限为 0.25~1.85 ng/g。水体和底泥样品中 16 种 PAHs 的加标回收率分别为 80.34%~112.06% 和 59.87%~80.75%,6 种 PAEs 的加标回收率分别为 86.90%~110.12% 和 63.93%~75.54%。

1.5 数据分析

采用主成分分析法(PCA)研究三峡库区水体和底泥中 PAHs 和 PAEs 可能的来源。采用 IBM SPSS Statistics 20 软件进行主成分分析。

2 结果与讨论

2.1 水体和底泥中 PAHs 的分布及来源

2.1.1 PAHs 的分布 从表 1 可以看出,2016 年三峡库区水体中 ΣPAHs 浓度范围为 3.9~107.6 ng/L(均值为 39.9 ng/L),低于 2011 年(范围为 18~159 ng/L,均值为 44.1 ng/L) [12],以及 2012 年(范围为 131~228 ng/L,
均值为155 ng/L[14]。水体中ΣPAHs平均浓度在秋高于干流，且干流和支流均为水体期高于蓄水期。2016年三峡库区底泥中ΣPAHs含量范围为267.9～1018.1 ng/g（均值为490.9 ng/g），远低于2005年长江汉口段底泥中ΣPAHs含量均值（1334.5 ng/g）[20]，高于2010～2011年长江口底泥中ΣPAHs含量（138.5～307.8 ng/g）[7]。干流和支流底泥中ΣPAHs平均含量差异不大，干流中底泥ΣPAHs平均含量在水期高于水期时，可能由于蓄水期水体中PAHs的沉积作用所致[12]。

表1 三峡库区水体和底泥中的ΣPAHs分布

<table>
<thead>
<tr>
<th></th>
<th>水体ΣPAHs/(ng/L)</th>
<th>底泥ΣPAHs/(ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6月</td>
<td>12月</td>
</tr>
<tr>
<td>所有样点</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M1-M14,</td>
<td>最小值</td>
<td>5.2</td>
</tr>
<tr>
<td>T1-T4)</td>
<td>107.6</td>
<td>52.1</td>
</tr>
<tr>
<td></td>
<td>平均值</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>64.3</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>25.3</td>
</tr>
<tr>
<td>干流</td>
<td>最小值</td>
<td>5.2</td>
</tr>
<tr>
<td>(M1-M14)</td>
<td>最大值</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>平均值</td>
<td>58.1</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>61.3</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>23.0</td>
</tr>
<tr>
<td>支流</td>
<td>最小值</td>
<td>43.1</td>
</tr>
<tr>
<td>(T1-T4)</td>
<td>最大值</td>
<td>107.6</td>
</tr>
<tr>
<td></td>
<td>平均值</td>
<td>82.3</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>89.3</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>24.0</td>
</tr>
</tbody>
</table>

16种PAHs可根据含有的苯环数被划分为2~3环、4环和5~6环，分别代表低分子、中分子和高分子PAHs[21]。水期水体中主要的PAH单体是2~3环、4环和5环。不论蓄水期还是水期，Nap均为水体中浓度最高的PAH。长江干流汉口段水体中主要的PAH单体为2～3环和4环[20]，与三峡库区较相似。各采样断面检出的BaP含量范围为0~0.64 ng/L，未超过我国《地表水环境质量标准》限值2.8 ng/L[19]。底泥中，水期水体比水期PAH单体浓度变化幅度大，PAH单体除了Phe含量较高外，其余均以4环和5~6环为主（图2）。综合分析，三峡库区水体中PAH以2～3环和4环为主，底泥中以4环和5~6环为主，可能是由于环数较小的PAHs溶解度较大，容易沉积到底部；而环数大的PAHs疏水性强，更容易被底泥吸附。

2.1.2 PAHs的来源

辨识水体和底泥中PAHs的来源对于水质管理十分重要。主成分分析常被用于分析PAHs的来源[7,22]。三峡库区水体中的PAHs共提取了3种主成分（PC），主成分的提取以特征根大于1为标准。由于6月和12月水样中PC3的方差贡献率较低，分别仅为6.10%和9.52%，而PC1和PC2的累积方差分别达到了87.41%和82.88%，可以代表水体和底泥中PAHs的大多数信息（图3）。因此图3中未展示PC3的结果，仅显示PC1和PC2的结果。底泥样品在6和12月均只提取出1个主成分，PC1的方差贡献率分别达到88.90%和86.28%。

水体中Nap在两个水期均为PC1的主要贡献者。Flu和Ant分别是在水期和蓄水期样品中PC2的主要贡献者（图3）。由于Nap是焦化或煤焦油挥发的特征标志物[23]，通常代表大气传输[21]。Nap、Flu和Ant均为2~3环的PAHs，通常来自石油燃及燃料的中低温燃烧[23]。因此，水体中PAHs的主要来源是焦化或煤焦油挥发，石油燃及燃料的中低温燃烧。6月底泥中Phe对PC1的贡献率最高，12月以Flu贡献率最高。Phe与煤和生物质燃烧排放有关，同时与原油和石油的泄漏有关[7]。这表明6月底泥中PC1主要贡献为煤和生物质燃烧以及石油。Flu主要来源于工业燃煤和民用燃热[23]。因此，三峡库区底泥中PAHs的主要来源为煤和生物质燃烧以及石油。
图 2 2016 年 6 月和 12 月三峡库区水体(a 和 b)和底泥(c 和 d)中 16 种 PAH 单体分布
Fig.2 Distribution of 16 PAH monomers in water (a, b) and sediment (c, d) of the TGR in June and December of 2016

图 3 2016 年 6 月和 12 月三峡库区水体中 16 种 PAHs 的主成分析
Fig.3 Rotated principal components of 16 PAHs in water of the TGR in June and December of 2016

2.2 水体和底泥中 PAEs 的分布及来源
2.2.1 PAEs 的分布 三峡库区 18 个采样点中均检测到 PAEs, 说明 PAEs 在三峡库区广泛存在。水体中 ΣPAEs 浓度范围为 122.4~2884.7 ng/L(均值为 848.1 ng/L), 低于长江武汉段(范围为 34~91220 ng/L, 均值为 23613 ng/L) [24] 以及长江口(范围为 61~28550 ng/L, 均值为 4536 ng/L) [22]。干流与支流水体中 ΣPAEs 平均浓度差异不大。干流水体中 ΣPAEs 的平均浓度在蓄水期显著高于放水期, 可能是蓄水期干流水体流速慢, 自净能力弱造成的[24]。支流水体中 ΣPAEs 浓度在蓄水期和放水期无显著差异, 但放水期水体 ΣPAEs 浓度变化幅度大于蓄水期, 可能与外源污染物的汇入有关。三峡库区底泥中 ΣPAE 浓度范围在放水期和蓄水期分别为 436.9~3127.7 ng/g(均值为 1800.4 ng/g) 和 192.9~3473.4 ng/g(均值为 706.3 ng/g), 显著低于长
江武汉段 (76300～450000 ng/g) [24]。同时，各 PAE 单体浓度也显著低于广州城市某湖泊底泥中各 PAE 单体浓度 [23]。底泥中 ΣPAEs 平均浓度在干流高于支流，放水期显著高于蓄水期 (表 2)。

表 2 三峡库区水体和底泥中 ΣPAEs 分布

<table>
<thead>
<tr>
<th></th>
<th>水体 ΣPAEs/(ng/L)</th>
<th>底泥 ΣPAEs/(ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 月</td>
<td>12 月</td>
</tr>
<tr>
<td>所有样点</td>
<td>最小值</td>
<td>122.4</td>
</tr>
<tr>
<td>(M1～M14)</td>
<td>最大值</td>
<td>1577.0</td>
</tr>
<tr>
<td>T1～T4</td>
<td>平均值</td>
<td>740.7</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>709.8</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>345.5</td>
</tr>
<tr>
<td>干流</td>
<td>最小值</td>
<td>122.4</td>
</tr>
<tr>
<td>(M1～M14)</td>
<td>最大值</td>
<td>1246.9</td>
</tr>
<tr>
<td></td>
<td>平均值</td>
<td>710.3</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>709.8</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>294.5</td>
</tr>
<tr>
<td>支流</td>
<td>最小值</td>
<td>359.6</td>
</tr>
<tr>
<td>(T1～T4)</td>
<td>最大值</td>
<td>1577.0</td>
</tr>
<tr>
<td></td>
<td>平均值</td>
<td>846.9</td>
</tr>
<tr>
<td></td>
<td>中值</td>
<td>725.4</td>
</tr>
<tr>
<td></td>
<td>标准偏差</td>
<td>468.1</td>
</tr>
</tbody>
</table>

三峡库区水体中 DEHP 和 DBP 是主要污染物，浓度范围分别为 41.0～2425.6 和 75.6～722.5 ng/L。所有采样点水体中 DEHP 和 DBP 浓度均低于国家《地表水环境质量标准》的限值 (8000 和 3000 ng/L) [25]。底泥中主要污染物仍然为 DEHP 和 DBP，含量分别为 201.8～3278.46 和 35.6～1796.3 ng/g。不论是水体还是底泥，DEHP 均为浓度最高的 PAE 类污染物 (图 4)。

图 4 2016 年 6 月和 12 月三峡库区水体 (a 和 b) 和底泥 (c 和 d) 中 6 种 PAE 单体分布

Fig.4 Distribution of 6 PAE monomers in water (a, b) and sediment (c, d) of the TGR in June and December of 2016
2.2.2 PAEs 的来源 采用主成分分析法来分析三峡库区水体和底泥中 PAEs 的来源，结果如图 5 所示。对于 6 月水体和底泥样品，均提取出 2 个主成分，每个主成分的特征根均大于 1。6 月水体样品前两个主成分的方向贡献率分别为 92.60% 和 7.28%，底泥样品分别为 89.52% 和 10.33%。对于 12 月的水体和底泥样品，均提取出 1 个主成分，PC1 的方差贡献率分别达到 97.63% 和 96.94%。

6 月水体样品 PC1 中 DBP 和 DEHP 贡献最高，PC2 中 DBP 和 DEHP 贡献最高；12 月水体样品 PC1 中 DEHP 贡献最高，6 月底泥 PC1 中 DEHP 贡献最高，PC2 中 DBP 贡献最高；12 月底泥样品 PC1 中 DEHP 贡献最高。总体而言，水体和底泥样品中，贡献最高的均为 DEHP，其次为 DBP（图 5）。DEHP 主要来源于塑料和重化工产业，同时也是家庭垃圾滤出液中主要的 PAE 类污染物。DBP 被广泛应用于化妆品和个人护理品中，是生活垃圾中的主要 PAE 类污染物。可见，三峡库区水体和底泥中 PAEs 的主要来源于塑料和重化工工业以及生活垃圾。

图 5 2016 年 6 月三峡库区水体（a）和底泥（b）中 6 种 PAE 的主成分分析

3 参考文献

