The change of δ^{13}C and δ^{15}N values in Cultrichthys erythropterus from three typical areas within Lake Taihu

WANG Xiaoling1, XU Dongpo2, LIU Kai2, DUAN Jinrong2 & SHI Weigang1,2

1: Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, P. R. China
2: Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Wuxi 214081, P. R. China

Abstract: The aim of this study was to explore the feeding habits of Cultrichthys erythropterus by analyzing the changes and regularity of δ^{13}C and δ^{15}N in Gonghu Bay, Lishan Bay, and east Lake Taihu, using the stable isotope technology. The results showed that the values of δ^{13}C and δ^{15}N were positively correlated with the body length, and the δ^{13}C and δ^{15}N values. The trophic level in large C. erythropterus (> 138 mm) individuals was significantly higher than that in the smaller ones (< 138 mm), which indicated that C. erythropterus underwent size-related diet shift switching from small zooplankton to fish due to predation ability strengthening and mouth crack increasing. Obvious spatial heterogeneity could be observed in the δ^{13}C and δ^{15}N values of C. erythropterus in the three areas. C. erythropterus in east Lake Taihu ($-25.17\% \pm 2.56\%$), affected by aquaculture, presented lower values of δ^{13}C than those in Gonghu Bay ($-23.11\% \pm 1.05\%$) and Lishan Bay ($-22.73\% \pm 1.31\%$), and were generally smaller in body sizes, revealing that there were certain correlations between the population distributions and geographic locations. The C. erythropterus was fed on diets according to different habits, and preferred to large animal bait under the environment of high concentrations of blue-green algae in order to reduce the feeding pressure of zooplankton, and indirectly controlled the development of eutrophication. Furthermore, we also studied the influence of C. erythropterus on ecosystem. The results of this study can provide the theoretic basis for the protection and rational allocation of resources of the region.

* 中央级公益性科研院所基本科研业务费专项资金项目(2013JBFT03)资助. 2014-10-12 收稿; 2014-12-05 收修改稿. 王晓玲(1986 -), 女, 硕士研究生; E-mail: sdwfwang1109@163.com.
** 通信作者; E-mail: shiwg@ffrc.cn.
红鳍原鮰（*Cultrichthys erythropterus*）属于鲤形目（Cypriniformes）、鲤科（Cyprinidae）、鲌亚科（Culterinae），原鮰属（*Cultrichthys*) [1-2]。头部较小，头后部显著隆起，背鳍起点距尾柄基部距离近于吻端，口上位，多栖息于水生植物较多的湖泊中 [3]。鲌鱼作为湖泊，水库的重要顶级消费者，对鱼类和其他生物群落具有重要调控作用，特别是近年来，红鳍原鮰的种群和数量随着许多湖泊、河流水体中鱼类区系的改变而发生了极大的变化，其生物学特性和在渔业中的作用也越来越受到关注 [4]。

太湖是典型的大型浅水富营养湖泊 [15]，红鳍原鮰作为太湖的传统经济鱼类具有一定的捕捞量，鱼类相对重要性指数值（JRI）排第 8 位（40.4） [16]。到目前为止，红鳍原鮰食性研究仅见传统消化道分析的分析 [17]，被证明是杂食性鱼类，红鳍原鮰食性空间异质性研究还未见报道。本文运用稳定性同位素技术对太湖洞山湾保护区、东太湖养殖区和贡湖湾饮用水开放区 3 个典型水域的红鳍原鮰 δ13C 和 δ15N 值进行分析，比较红鳍原鮰食性在这 3 个水域的差异性，探讨红鳍原鮰种群结构变化对湖泊生态系统的影响，为其资源保护和合理配置利用提供理论依据。

1 材料和方法

1.1 研究水域概况

本研究依据不同的水质环境和地理位置，在太湖 3 个不同的典型生境选取采样点 (图 1)。贡湖湾是太湖东北部的湖湾，为饮用水开放区，面积 150 km²，水深 1.8 m，水生植物贫乏，属半草型生态系统，为轻度富营养 [18]。东太湖位于东山半岛的东南面，有大面积的围网养殖，是草型生态系统，水体富营养化程度较轻 [19]。洞山湾作为保护区，水生植物丰富，水质较好，3 个典型水域能较好地反映红鳍原鮰在不同生存环境中的食性特征。

1.2 样品采集及实验处理

2013 年 6-7 月在 3 个水域利用刺网采集红鳍原鮰。在鲜活状态下进行生物学测量，简化不同体长范围的红鳍原鮰进行解剖，取背部白肌，白肌中脂肪含量极低，去脂与否对 δ13C 和 δ15N 值富集度影响不大 [20]。每个地点利用地笼网采集锈镜红鳃（*Bel-lamya aeruginosa*），取腹足肌肉，并用蒸馏水冲洗干净。全部样品放入培养皿中在 60°C 下烘干 48 h 至恒重，用研钵把各种样品研磨成均一粉末，放入离心管中，置入干燥机保存待测。
用于统计分析的红鳍原鲱标本共计 344 尾, 其中用于稳定性同位素分析的标本共 67 尾。

1.3 稳定同位素分析

所有样品的稳定同位素 δ^{13}C, δ^{15}N 均在国家海洋局第三海洋研究所测定, 由同位素比率质谱仪 (Delta V advantage) 与元素分析仪 (Flash EA 1112 HT) 搭配而成。δ^{13}C 和 δ^{15}N 的值比公式为:

$$\delta X(%) = \left(\frac{R_{sample}}{R_{standard}} - 1 \right) \times 1000$$ \hspace{1cm} (1)

式中, X 为 δ^{13}C 或 δ^{15}N, R 为同位素比值 $^{13}C/^{12}C$ 或 $^{15}N/^{14}N$, R_{sample} 为所测的同位素比值, $R_{standard}$ 为标准物质的同位素比值。C 的同位素比值参考的标准物质为国际标准美洲箭石 VPDB (Vienna Pee Dee Belemnite) 的 C 同位素丰度, N 的同位素比值参考的标准物质为标准大气 N 同位素丰度。测定 10 个样品植入 1 个标准样品, 并随机挑 1~2 个样品进行复测, δ^{13}C 和 δ^{15}N 值重复测量的标准误差分别小于 0.2% 和 0.3%。

Post 等确认了 2 种初级消费者——滤食贝类和螺类的稳定性同位素含量能够在水生生态系统中作为基线值, 准确估算更高级别消费者的营养位置 [8-24]。本试验用初级消费者铜锈环梭螺作为基线生物, 其δ^{15}N 作为基线值。根据生物对基线生物 N 稳定同位素比值的相对值计算该生物的营养级, 公式为:

$$Tl_{consumer} = \lambda + \left(\delta^{15}N_{consumer} - \delta^{15}N_{baseline} \right) / \Delta \delta^{15}N$$ \hspace{1cm} (2)

式中, $Tl_{consumer}$ 为消费者的营养级; $\lambda = 2; \delta^{15}N_{consumer}$ 为红鳍原鲱 N 稳定同位素比值; $\delta^{15}N_{baseline}$ 为铜锈环梭螺 N 稳定同位素比值; $\Delta \delta^{15}N$ 为一个营养级的 N 稳定同位素富集度, 通常取值 3.4%[15]。

1.4 统计分析

采用 Excel 2013 和 SPSS 19.0 软件进行统计分析。偏相关分析方法对红鳍原鲱肌肉中 δ^{13}C 和 δ^{15}N 与体长的关系进行相关性分析, 通过单因子方差分析方法对红鳍原鲱肌肉中 δ^{13}C 和 δ^{15}N 值在不同水域的差异性进行分析 [22], 具体作为因子, 肌肉中 δ^{13}C 和 δ^{15}N 值作为因变量, 对红鳍原鲱时间序列和空间位置上的分布特征与食性进行相关分析, 可以探究食性在季节和空间上的变化规律。

2 结果与分析

2.1 红鳍原鲱体长与体重的关系

对 344 条红鳍原鲱进行生物学测量, 红鳍原鲱体长范围为 51.8~570.00 mm, 体重范围为 1.4~1079.5 g。红鳍原鲱体长与体重之间呈现幂函数增长关系 (图 2), 用$W = aL^b$ 表示 [23], 其中 a 和 b 为每条红鳍原鲱的体长和相应体重求得关系式:$W = 5 \times 10^{-6} L^{1.901}$ ($R^2 = 0.9795, P < 0.01$)。

2.2 红鳍原鲱 δ^{13}C 和 δ^{15}N 与体长的关系

结合偏相关分析方法对 67 个红鳍原鲱肌肉样品 δ^{13}C, δ^{15}N 值与体长进行分析 (图 3), 可知红鳍原鲱 δ^{13}C 值与体长呈极显著正相关 ($P < 0.01$); 红鳍原鲱 δ^{15}N 值与体长呈显著正相关 ($P < 0.05$); 红鳍原鲱 δ^{13}C 与 δ^{15}N 值相关性显著 ($P < 0.05$)。

以 20 mm 为体长间隔, 将 38.00~257.00 mm 体长范围的红鳍原鲱分为 11 组, 体长 > 258.00 mm 的红鳍原鲱作为 1 组。图 4a 可知, 鲟湖湾红鳍原鲱 δ^{13}C 值与体长呈显著正相关 ($R^2 = 0.518, P < 0.05$), 体长 < 138 mm 的个体 δ^{13}C 值明显偏低, 平均值为 -23.91%, 体长 > 138 mm 的个体 δ^{13}C 平均值为 -22.55%, 两者差异极显著 ($P < 0.01$); δ^{15}N 值随着体长变化, 体长 < 138 mm 的个体 δ^{15}N 平均值为 18.18%, 体长 > 138 mm 的个体 δ^{15}N 平均值为 18.71%, 两者差异不显著 ($P > 0.05$)。

图 2. 红鳍原鲱体长与体重的关系 (n=344)
Fig. 3 Relationships between δ^{13}C, δ^{15}N values and length of *Cultrichthys erythropterus* based on 67 samples

体长 > 138 mm 的个体 δ^{13}C 平均值为 -22.22‰, 两者之间差异显著 (P < 0.05), 体长为 459.00 mm 的个体 δ^{13}C 平均值为 -24.27‰, 明显低于其他个体的 δ^{13}C 平均值; δ^{15}N 值与体长呈正相关, 体长 < 138 mm 个体制的 δ^{15}N 平均值为 18.18‰, 体长 > 138 mm 个体制的 δ^{15}N 平均值为 18.71‰, 两者之间差异不显著 (P > 0.05), 体长为 459.00 mm 个体制的 δ^{15}N 值为 17.53‰(图 4b).

东太湖红鳍原鲌 δ^{13}C 值与体长呈极显著正相关 (R^2 = 0.580, P < 0.01), 体长 < 138 mm 个体制的 δ^{13}C 平均值为 -25.71‰, 体长 > 138 mm 个体制的 δ^{13}C 平均值为 -22.47‰, 两者之间差异显著 (P < 0.05); δ^{15}N 值随着体长变化趋势不明显, 体长 < 138 mm 的个体 δ^{15}N 平均值为 14.62‰, 体长 > 138 mm 的个体 δ^{15}N 平均值为 15.26‰(图 4c), 两者差异不显著 (P > 0.05).

2.3 红鳍原鲌 δ^{13}C 和 δ^{15}N 的空间分布特征

贡湖湾红鳍原鲌的 δ^{13}C 平均值为 -23.11‰ ± 1.05‰, 鲤鱼湾红鳍原鲌 δ^{13}C 平均值为 -22.73‰ ± 1.31‰; 东太湖红鳍原鲌 δ^{13}C 平均值为 -25.17‰ ± 2.56‰, 3 个水域 δ^{13}C 值差异极显著 (P < 0.01). 在相同体长范围内, 鲤鱼湾和贡湖湾红鳍原鲌 δ^{15}N 值无明显差异, 东太湖最低; 贡湖湾红鳍原鲌的 δ^{15}N 值明显偏高, 鲤鱼湾次之, 东太湖最低 (图 4).

2.4 红鳍原鲌营养级

贡湖湾钢锈环棱螂 δ^{15}N 值最高 (15.49‰), 鲤鱼湾 (11.43‰) 和东太湖 (11.50‰) 的 δ^{15}N 值相近. 根据样本红鳍原鲌 δ^{15}N 值以及营养级的计算公式, 计算得出贡湖湾红鳍原鲌营养级为 2.65 ~ 3.20, 平均值为 2.93; 鲤鱼湾红鳍原鲌营养级为 3.00 ~ 3.79, 平均值为 3.34; 东太湖红鳍原鲌营养级为 2.69 ~ 3.14, 平均值为 2.95. 3 个水域红鳍原鲌的营养级基本随着体长的增加而增大 (图 5). 在相同体长范围内, 鲤鱼湾红鳍原鲌营养级与其他水域呈显著差异 (P < 0.01), 明显偏高, 东太湖和贡湖湾无显著差异 (P > 0.05).

3 讨论

3.1 红鳍原鲌 δ^{13}C 和 δ^{15}N 随体长的变化规律

在同一水域, 红鳍原鲌 δ^{13}C 值随着体长的增加而变大 (图 3, 4), 大个体 (体长 > 138 mm) 的 δ^{13}C 和 δ^{15}N 值与小个体 (体长 < 138 mm) 的差异显著 (P < 0.05), 说明红鳍原鲌的食物来源发生了转变. 周德勇等和陈均瑞等分别对太湖梅梁湾和云南滇池的红鳍原鲌消化道进行分析, 发现红鳍原鲌的食物组成随体长增加变化明显, 体长 < 130 mm 的红鳍原鲌主要摄食枝角类和虾, 体长 > 130 mm 的红鳍原鲌主要摄食小型鱼类和虾, 食物来源由小型浮游动物向鱼类转移. 稳定性同位素法和消化道分析法相结合, 进一步证明红鳍原鲌是杂食性鱼类, 舟属鱼类的成鱼一般生活在深水区的中上层, 幼鱼一般在水流缓慢的浅水区生活, 红鳍原鲌种群分布也有可能存在这种现象, 成鱼和幼鱼会根据栖息环境选择食物来源. 另外, 个体在不同发育阶段的食物组成和摄食量存在很大差异, 红鳍原鲌摄食强度在产卵繁殖期 6 ~ 7 月减弱, 食性发生转换. 红
鳃原虾口裂随着体长的增加而相应增大\[^{17}\]，在激烈的种间竞争和较弱的种内竞争双重作用下，其捕食能力也逐渐增强，会选择较大的浮游动物或者小型鱼虾等大个体的食物以获得更多的净能量来满足生长需求。对不同体长范围红鳍原虾进食进行研究可以加深了解其种群结构变化对湖泊食物链结构和生态系统的影响，同时为其生物调控提供参考。

3.2 不同水域红鳍原虾营养级的变化规律

大型底栖动物螺、贝类因生命周期较长，迁移能力差，机体组织周转率低\[^{25-28}\]，在水生生态系统中常做基线物。研究结果显示，酸性环梭螺δ\(^{14}\)N 值在 3 个区域间有空间差异性，贡湖湾的酸性环梭螺δ\(^{14}\)N 值远大于鲤山湾和东太湖，鲤山湾与东太湖的δ\(^{14}\)N 值较低而且无显著差异。这种差异性可能是贡湖湾较其他 2 个水域接纳了较多人类活动所产生的高 δ\(^{14}\)N 值污染物所致\[^{20}\]，另外也有可能与酸性环梭螺摄取的食物有关，贡湖湾已由草型生态系统向藻型生态系统转变，鲤山湾和东太湖都属于草型生态系统，酸性环梭螺可能因栖息环境选择摄食了较多的水生植物碎屑。3 个水域的研究结果显示，红鳍原虾的营养级基本随着体长的增加而增加，大个体与小个体相差 0.79 个营养级，说明大个体偏向摄食较大的动物性饵料，或者较大的动物性饵料在食物组成中所占的比例较大，反映出大个体捕食能力的增强。鲤山湾红鳍原虾的营养级最高，说明饵料资源丰富，食物网复杂程度显著高于其他水域。3 个水域红鳍原虾营养级具有明显的空间异质性。

3.3 不同水域红鳍原虾δ\(^{13}\)C 的变化规律

贡湖湾和鲤山湾红鳍原虾δ\(^{13}\)C 差异不显著，说明红鳍原虾的食物组成相似，食物来源接近。鲤山湾保护区红鳍原虾种群个体分布比较均匀，种群资源保护成效显著。东太湖捕获的红鳍原虾个体偏小，种群资源明显趋于小型化，这可能与东太湖水域中网养殖或者渔船作业影响其摄食有关；另一方面，红鳍原虾的种群分布可能存在一定的区域性，小个体的红鳍原虾可能在此区域面临的生存压力较小。东太湖红鳍原虾的δ\(^{13}\)C 值明显偏低，表明此区红鳍原虾碳源与其他区域差异较大，反映出生存环境中的食物组成很可能不同，红鳍原虾摄食在此生存环境的优势群级或更易捕食的群体以更好地适应生存环境；也可能因网养殖区域人工投饵补食被红鳍原虾或其饵料鱼所摄食，进而影响同位素比值。红鳍原虾的食性与其捕食能力有关，另外也与不同生境中饵料的种类有密切关系\[^{17,30}\]。

图 4 贡湖湾 (a)，鲤山湾 (b) 和东太湖 (c) 红鳍原虾 δ\(^{13}\)C 和 δ\(^{14}\)N 值与体长的变化关系

Fig. 4 Variation in δ\(^{13}\)C and δ\(^{14}\)N values and length of *Callichthys erythrophalus* in Gonghu Bay (a)，Lishan Bay (b) and east Lake Taihu (c)
图 5 贡湖湾、鲤山湾和东太湖红鳍原鲌营养级的空间变化
Fig. 5 Spatial variations in trophic level of *Cultrichthys erythropterus* in Gonghu Bay, Lishan Bay and east Lake Taihu

大型鲌类是太湖的主要肉食性鱼类，随着翘嘴鲌（*Culter alburnus*）、蒙古鲌（*C. mongolicus*）等大型凶猛鱼类的过度捕捞和产卵场破坏[16]，红鳍原鲌种群发展迅速，在数量和分布上发生了很大的变化。红鳍原鲌的人工繁殖技术已逐渐成熟[37]，其粗蛋白含量和必须氨基酸含量显著高于翘嘴鲌[38]，属于高蛋白低脂肪营养价值高的优质鱼类，因此对红鳍原鲌的深度开发利用不仅有较高的经济价值，而且能充分发挥其调整鱼类种间关系的生态功能。积极采取增殖保护措施，通过合理的驯化和选育，可以减小捕捞压力，进一步开发红鳍原鲌资源。

致谢：感谢江苏省太湖渔业管理委员会办公室及渔政大队同志在采样过程中的协助，感谢南京农业大学2011级本科生在样品处理过程中的帮助，感谢徐东坡副研究员对实验的帮助和指导。

4 参考文献

王晓玲等：太湖3个典型水域红鳍原鲌(Cultrichthys erythropterus)δ13C和δ15N值的变化规律

97-104.

