浅水湖泊湖泛(黑水团)中的微生物生态学研究进展

邢鹏1, 胡万华1,2, 吴瑜凡3,4, 吴庆龙1
(1: 中国科学院南京地理与湖泊研究所湖泊与环境国家重实验室, 南京 210008)
(2: 南京师范大学生命科学学院, 南京 210023)
(3: 中国科学院微生物研究所, 北京 100101)
(4: 中国科学院大学, 北京 100049)

摘要: “湖泛”是指湖泊水体中(包括沉积物)富含氨氮性或草酸性)的微生物,在微生物的分解作用下, 大量消耗氧气, 出现厌氧分解, 微生物在还原条件下, 促进许多“黑臭”物质的形成, 进而影响水质和湖泊生态系统的结构与功能乃至造成环境灾难。湖泛受湖的环境特征(如低溶解氧, 低pH, 高有机质, 高总磷, 总氮)相适应的植物物网络和特殊的微生物关系, 本文将主要针对湖泛中的微生物群落及其在物质循环中的作用展开综述, 研究显示湖泛水体中主要微生物群落, 如硫细菌、硝化细菌等, 以及产甲烷菌类等, 在有氧条件下快速分解和厌氧氧化过程中发挥着重要作用; 沉积物中的主要微生物功能群, 如硫酸盐还原细菌、铁还原细菌、铁硫氧化细菌和反硝化细菌等, 是湖泛致臭物质形成的关键, 缺氧及厌氧条件下硫、硫和铁等元素生物地球化学过程的相互关联以及多种微生物之间的相互作用是否可能与湖泛过程中的功能微生物的重要特征。湖泛中微生物功能的进一步研究, 将需借鉴海洋低氧区及沉积物的实验, 引用先进研究手段和设备, 以提高生物地球化学证据。浅水湖泊湖泛(黑水团)中的微生物生态学研究将有助于从机理上揭示湖泛臭物质的成因。

关键词: 湖泛; 微生物; 功能; 物质循环; 硫; 碳; 互养共生

Major progress in microbial ecology of hypoxia in the shallow eutrophic lakes

XING Peng1, HU Wanting1,2, WU Yufan3,4 & WU Qinglong1
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(2: School of Biological Sciences, Nanjing Normal University, Nanjing 210023, P. R. China)
(3: Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China)
(4: University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract: “Algae derived hypoxia” was caused by the rapid decomposition of massive algae biomass in the water column and the surface sediments, which consuming a large amount of dissolved oxygen. The oxygen depletion condition promotes the formation of substantial “black and odor” compounds, which then destroy the water quality and the structure and function of the lake ecosystem. Thus, “algae derived hypoxia” becomes one of the severe environmental secondary disasters caused by the frequent algae (mainly cyanobacteria) blooms, especially under high temperature. Corresponding to the environmental characteristics of algae derived hypoxia, such as low dissolved oxygen, low pH, high organic matter, high total phosphorus, and high total nitrogen, is the simplified food web and the distinctive microbial communities in the lake ecosystem. This paper will focus on microbial communities and their diverse functions in the material circulation in the lake hypoxia. Based on the accumulative studies, the main microbial groups participating in the rapid breakdown of organic matters in the lake water are Clostridiales of Firmicute, Actinomycetales of Actinobacteria, methanogenic achaeta etc., while in the anoxic sediments the main functional groups are sulfate reducing bacteria, iron reducing bacteria, anaerobic oxidation of methane bacteria, demining bacteria, etc. The interconnected biogeochemical
process of carbon, sulfur and iron elements as well as the syntyphy of various microorganisms is one important characteristics of these microbial functional groups. To compare with the researches in marine and the deep-sea hypoxia, there still needs a large amount of biogeochemical evidence for the microbial functions in the algae derived hypoxia, which relying on the introduction of new research methods. The exploration of microbial process will be helpful to reveal the mechanisms of the hypoxia formed in the shallow eutrophic lakes.

Keywords: Hypoxia; microorganism; function; material recycling; sulfur; carbon; syntyphy

水体缺氧区(hypoxia, dead zone, oxygen minimum zone)广泛存在于大洋[1],海岸带[2,3],河口[4],深水湖泊[5],水库[6]以及浅水湖泊[7]，在不同的水体被赋予不同的名称。尽管浅水湖泊理论上不存在溶解氧扩散的限制，但特定时空条件下有机质的好氧分解以及复氧的限制极易导致局部水体处于缺氧甚至完全厌氧状态。与海洋和深水湖泊不同的是，通常浅水湖泊水体缺氧区极易发生在春末夏初富营养化湖泊的远离岸区，维持时间较短(一般持续24小时至2周)[8]。我国长江中下游的大型富营养化浅水湖泊太湖[9]近年来不断有湖泛发生的相关报道。

湖泊中的微生物在水生生态系统的生物地球化学循环和能量流动过程中具有重要作用。大量研究显示，微生物在藻类性(或草食性)有机质的快速分解、异味物质的产生、碳硫元素的转化，甚至湖泛后期的生态系统恢复等等方面都具有关键作用。因此，开展湖泛过程中微生物的群落和其在物质循环中作用的研究，成为揭示湖泛致黑致臭机制的核心问题之一。浅水湖泊的湖泛过程具有持续时间短、发生地点多变等特点，在野外实时跟踪调查的基础上，开展原位控制实验以及室内模拟研究成为认识湖泛过程中微生物结构和功能的主要方法。与湖泛过程相关的细菌等微生物较难在实验室被分离培养，而且自身缺少比较明确的形态特征用于种群鉴定，因此不断创新的分子生物学技术成为推动湖泛微生物研究不断深入的基础。本文将参考日照及深水湖泊缺氧区的相关研究成果，重点归纳和分析富营养化浅水湖泊湖泛发生过程中，关键微生物类群及其在C、S、N等元素循环中的作用。

1 湖泛形成中的关键微生物类群

1.1 主要真菌

水生真菌是水生态系统中极为重要的一部分生态类群，是重要的分解者，同时也为水体中的多种动物提供食物，是食物链中的重要一环[17]。2012年5月16日，荡湖湾泻湖近岸水域的“湖泛”发生现场，仅有大量沉水植物死亡，无蓝藻水华或聚集现象发生，表现为草源性“湖泛”。与单细胞的浮游藻类相比，水生植物富含木质素、纤维素和半纤维素等“较难”分解的成分，难分解有机质的快速转化是如此在缺氧甚至厌氧的条件下发生的呢？具有较强分解纤维素能力且适合无氧条件的腐生真菌可能参与了草源性有机质的前期分解。郑九文等[18]通过在沉积物和上覆水的完整体系中加入植物残体，分析体类中和表层沉积物中真菌群落结构。结果证实了上述推测，水体中优势真菌主要是担子菌(Basidiomycota)，而表层沉积物中主要是壶菌(Chytridiomycota)。不仅如此，Chen等研究蓝藻水华原位分解过程中微型真核生物群落的动态变化，发现其中占优势的微型真核生物仍主要是真菌[19]。系统发育分析显示，担子菌的 Bannoa habajinensis 是主要优势种。因此水生真菌在草源性和藻源性有机物质的前期分解以及促进其他腐生微生物的分解中可能发挥着重
要作用。
1.2 细菌群落
1.2.1 梭菌 梭菌属（Clostridium），归于厚壁菌门（Firmicutes）棱菌纲（Clostridia），是一类能产生内生孢子的厌氧荚状性菌属，广泛存在于厌氧富含有机质的环境中，具有丰富的有机质代谢功能。在对环境性细菌的
现场监测以及模拟藻水华分解过程的原位实验中，体中检测到了大量的梭菌群落。Li 等针对太湖微囊
藻水华诱发的湖泛区分析了水柱中的细菌（包括浮游细菌和颗粒附着细菌）群落结构[[13,20]]，结果显示梭菌是
低氧区主要的优势群落。不仅如此，模拟实验显示条件下，梭菌在低氧有氧分解过程中的作用，梭菌不仅在丰度
上占绝对优势（～75% 显著性），而且在多个分析的系统发育类群（Cluster CLOS，CLOS）[[21]]，各梭
菌类群在湖泛的分解过程中表现出交互优势的动态变化。不仅如此，沉积物中的梭菌对藻水华水体添加也
产生强烈的响应。Wu Yufan 等通过对微生物多样性分析，添加藻粉的沉积物中梭菌门比例大幅上升，从空白
对照的 2% 提高到处理组的 49%。中国主要的细菌类群也包括菌（未发表的实验结果），体沉和沉积物中微
生物群落研究的结果无疑都强烈地指示梭菌在湖泛环境有氧分解过程中的作用。
1.2.2 硫酸盐还原菌 在厌氧条件下硫磺酸还原菌（sulfate-reducing bacteria，SRB）还原硫酸盐产生硫化氢
和硫离子。Li 等在湖泛区获得的样品中，还发现了大量的脱硫弧菌（Desulfubrio）群落，其中在整个湖泛的
维持和水质恢复过程中均是优势种[[15]]。Feng 等在太湖湖泛区的沉积物中也发现大量的 SRB 群
落，系统发育分析显示，这些序列主要可以归于脱硫弧菌属（Desulfubrio）、脱硫杆菌属（Desulfomani）和脱
硫硫壁菌属（Desulfuromana）[[22]]。硫酸盐还原过程是一种专性厌氧过程，SRB 以硫酸盐中的结合性氧作为电子
接受体，氧化性有机碳化物，将 S^{2-} 还原为 S^{3-}。这一反应可能是导致湖泛水体发黑的关键过程，具体反应
机制和功能微生物的作用将在微生物与硫环链部分做详细的介绍。
1.2.3 湖泛中其他常见的细菌类群 不论水体还是沉积物中，变形菌门的 alpha 变形菌（Alphaproteobacteria）
beta 变形菌（Betaproteobacteria），拟杆菌门（Bacteroidetes）和放线菌门（Actinobacteria）等也是常见的湖
泛微生物群类。Li 等发现微囊藻水华的分解过程中存在大量的 alpha 变形菌的根瘤菌目（Rhizobiales）和红
外菌目（Rhodobacterales）beta-变形菌的伯克氏菌（Burkholderiales），放线菌门的微球菌目（Micrococccine-
ae）[[20]]。湖泛水体中还发现大量的 LD12-1（freshwater SAR11）和 beta 变形菌丛毛囊菌科（Compona-
daceae）的序列[[15]]。在 Wu Yufan 等的研究中，藻粉的添加促进沉积物中拟杆菌门和梭杆菌门（Fusobacteria）
细菌丰度的提高，从 1% 提高到 17% 和不足 1% 提高到 5%（未发表的研究结果）。Xing 等在蓝藻厌氧分
解过程的研究中发现，除占绝对优势的梭菌外，还存在一些来自 beta 变形菌和拟杆菌群的序列[[22]]。通过
对相关系统发育类群培养株的文献查阅，上述常见的湖泛细菌类群均具有较强的有机物分解能力，和
且适应缺氧甚至完全厌氧的环境条件。另外，湖泛过程中微生物群落结构的研究峰会不少与数据库中
已知序列相似度低的新序列。随着测序技术的不断发展，我们有理由相信在未来的湖泛微生物研究中可
能会获得更多的湖泛特征微生物信息。

细菌群落结构与典型环境因子的多元统计分析结果都指示，重要细菌类群对于湖泛区低溶解氧、低
pH，高有机质等典型环境特征的适应性。蓝藻水华分解过程中的叶绿素 a（Chl. a）溶解性有机碳（DOC）、溶
解氧和 pH 的变化与浮游和附着细菌群落结构的动态变化具有显著相关性[[20]]。与湖水体或沉积物底部
的微生物群相比，湖泛分解过程中细菌群落的多样性明显下降，反映了这一“扰动”过程对生态系统结构
的显著影响。不过，在添加大量蓝藻水华的围隔实验中，$12 d$ 后浮游细菌群落可以基本恢复到未添加前的状
态，体现了水体生态系统对于水华分解引起的有机质脉冲以及黑水团过程仍具有较强的恢复力[[23]]。
1.3 古菌群落
1.3.1 产甲烷古菌 湖泊生态系统中，厌氧条件下有机碳的矿化作用对整个湖泊有机碳无机化的贡献率为
20% ～60%，其中生成甲烷的矿化作用占厌氧有机碳矿化作用的 30% ～80%。前期的研究显示，水华容易被
湖滨地带的挺水植物从捕获，而且很难再被释放出来，可能更加剧了水体环境中甲烷的释放量[[22]]。自然界中
的产甲烷过程主要由产甲烷古菌完成。Xing 等研究显示，蓝藻水华的厌氧分解能够产生甲烷。产甲烷古菌
中主要的优势类群是甲烷微菌（Methanomicrobiales）和甲烷杆菌（Methanobacteriaceae），而且甲烷杆菌在较高
温度下的优势度更为明显[[25]]。Fan 等通过室内模拟实验探讨沉积物中的古菌群落对蓝藻水华沉降的响应,
结果显示产甲烷菌主要属于甲烷杆菌目，而且湖泊沉积物还存在着大量的与产甲烷无关的古菌类群，例如Miscellaneous Crenarchaeotal Group (MCG，原crenarchaeotal Group I.3)，据此推测甲烷杆菌和MCG可能直接存在竞争关系，而这种关系同时也受到温度的影响[26]。

1.3.2 甲烷厌氧氧化古菌 水体和沉积物中甲烷的消耗通常有好氧和厌氧2个过程。湖泊发生时，甲烷厌氧氧化古菌 (Anaerobic methanotrophic archaea, ANME) 利用甲烷作为电子体，再将电子体（例如SO42-, MnO2-，Fe3+，NO3-) 存在时，可以将CH4氧化为CO2。通过不同种生境中甲烷厌氧氧化古菌的系统发育分析，通常将其分为3类；ANME-1 (与产甲烷菌目 Methanomicrobiales 和生产甲烷八叠球菌目 Methanosarcinales 有较远的亲缘关系)，ANME-2 (与产甲烷菌八叠球菌目) 和 ANME-3 (与拟甲烷菌属 Methanococcoides 亲缘关系较近) [27]。目前针对湖泊过程中甲烷厌氧氧化古菌的研究较少。Xing 等曾在蓝藻水华的厌氮分解研究中，获得了部分来自甲烷八叠球菌目 METHANOSARCINA 的序列，而且在35°C条件下该类群的比例明显增加[28]。系统发育分析表明，甲烷八叠球菌属于甲烷厌氧氧化古菌的 ANME-2。

2 湖泊微生物与生物地球化学循环

黑水团的种种表征特征以及变黑发臭过程，实际涉及 C, S 等关键元素的地球化学循环的转化，而这些过程和转化都有微生物的作用有着直接或者间接关系。本文将在上述群落结构研究的基础上，结合相关微生物功能的研究进展展开综述。

2.1 黑水团微生物与碳循环

2.1.1 甲烷等类群在复杂有机制分解中的作用 溶源性或者草源性有机质分解伴随的碳素转换过程是湖泊物质转化的核心。以有机质分解过程中水生细菌为例，其广泛存在于厌氧微生物分解过程和动物消化系统，以及土壤、海洋、水体等环境中。通过对纯培养菌株的生理生化分析，细菌发酵的产物不仅包括简单和复杂的碳水化合物，而且包括蛋白质、氨基酸和部分其他的简单和复杂有机分子[29]，甚至有些类群具有多种营养方式，既可以利用H2/CO2或C2O完成专性自养固定，也可以利用复杂有机物完全进行化能有机合成[29]。不仅如此，细菌还通过产生各类胞外酶将环境中的大分子（例如纤维素、木聚糖、蛋白质等）降解为其他细菌可以利用的成分[30]。某些细菌分解的底物和产生的化合物都具有毒性。

在湖泊微生物的研究中，Wu 等[31]采用多种培养基，针对溶源性有机质分解过程的微生物进行分离培养，获得的菌株主要表现为灰色菌质（Proteobacteria），厚壁菌门，梭杆菌门，其中4 株细菌 (R22, G22, M1, MB9-7) 的16S rDNA 基因序列与已知模式菌株（strain）相似性低于97%，其中MB9-7 经鉴定为 Clostridium algicola spec. nov[31]。生理生化特征分析显示，R22, R28, M1 都具有较强的兼性厌氧发酵能力，有研究报告[32]在有机营养丰富，环境恶劣的情况下，细菌具有较强的厌氧耐受能力从而具有较强的环境适应性。G22 具有较强的氧化酶和氧化酶活性，蓝藻细胞壁主要由纤维素和果胶组成，因此G22 具有潜在的氧化蓝藻细胞壁的能量（后续研究还在进行中）。另外，G22, R28, M1 和 MB9-7 菌可以利用有机硫化物产生H2S，从侧面为湖泊水华产生异变性硫化物提供了证据。

2.1.2 沉积物中的产甲烷与甲烷消耗过程（1）产甲烷过程

自然界的产甲烷过程主要由两类产甲烷古菌完成：利用乙酸的乙酸型产甲烷菌（表1, 反应(1))和利用H2和CO2的氢氧化型产甲烷菌（反应(3)）。通过对湖泊水华分解过程中产甲烷功能基因甲基-辅酶M还原酶(in methylcoenzyme M reductase, merA) 多态性分析，甲烷微菌和甲烷杆菌是主要的产甲烷类群[33]。这表明印迹该反应过程中产甲烷菌16S rDNA 系统发育分析的结果[33]。另一方面，也从功能基因的角度见证了湖泊过程中氢氧化型(hydrogenotrophic)是甲烷生成的主要途径。Fan 等通过室内模拟实验探讨沉积物中产甲烷古菌群落对湖泊水华沉降的影响，结果显示：沉积物中的微囊藻生物可以被微生物快速地转化为甲烷，而30°C微囊藻添加对对甲烷产生有促进作用最大；沉积物中微囊藻生物转化为甲烷的过程主要是通过H2/CO2途径，由嗜氢产甲烷菌来驱动完成的[34]。

氢型产甲烷过程（表1, 反应(1))的吉布斯自由能最低，是自然条件下优先发生的反应，但是H2分压的下降会导致反应由于缺少底物而无法进行。此时，如果存在乙酸，利用乙酸生成 CH4的反应(1)由于少量放
能 \((\Delta G^{\circ} = -31.0 \text{ kJ/mol})\) 仍可进行。但是，如前所述，在蓝藻水华生物矿化过程中古菌群中未发现乙酸型产甲烷菌，因此在研究的深入，生态学上一种称为“互营共生（syntrophy）”的关系被发现：甲酸菌的甲酸发酵、乙酸型产甲烷菌消耗和乙酸型产甲烷菌发酵、乙酸型产甲烷菌消耗于合成甲烷，从而造成乙酸的积累，乙酸的积累可以诱导乙酸氧化细菌作用，将积累的乙酸重新转化为 \(\text{H}_2\)、

表 1 产甲烷相关过程反应和能量
Tab. 1 The relative reactions and energy in methane production

<table>
<thead>
<tr>
<th>过程</th>
<th>反应式</th>
<th>(\Delta G^{\circ}/(\text{kJ/mol}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 乙酸型产甲烷</td>
<td>(\text{CH}_3\text{COO}^- + \text{H}_2\text{O} \rightarrow \text{CH}_4 + \text{HCO}_3^-)</td>
<td>-31.0</td>
</tr>
<tr>
<td>2. 互养乙酸氧化</td>
<td>(\text{CH}_3\text{COO}^- + 4\text{H}_2\text{O} \rightarrow \text{H}^+ \text{CO}_3^- + 4\text{H}_2 + \text{HCO}_3^- + \text{H}^+)</td>
<td>+104.6</td>
</tr>
<tr>
<td>3. 氢型产甲烷</td>
<td>(4\text{H}_2 + \text{HCO}_3^- + \text{H}^+ \rightarrow \text{CH}_4 + 3\text{H}_2\text{O})</td>
<td>-135.6</td>
</tr>
<tr>
<td>4. 综合(2) + (3)</td>
<td>(\text{CH}_3\text{COO}^- + \text{H}_2\text{O} + \text{H}^+ \text{CO}_3^- + \text{CH}_4)</td>
<td>-31.0</td>
</tr>
</tbody>
</table>

* 指示乙酸中的甲基基团的归趋；\(\Delta G^{\circ}\) 为 \(\text{pH} = 7.0\) 时的吉布斯自由能。

(2) 甲烷的厌氧氧化。

甲烷的厌氧氧化（anaerobic oxidation of methane, AOM）过程需要电子受体的参与，在海洋的研究中发现了以 \(\text{SO}_4^{2-}\) \(^{[35]}\) 和 \(\text{NO}_3^-\) \(^{[36-37]}\)，甚至 \(\text{Mn}^{4+}\)（水钠锰矿）和 \(\text{Fe}^{3+}\)（水铁矿） \(^{[38]}\) 为电子受体的甲烷厌氧氧化过程。Hu 等最近在湿地中发现了以 \(\text{NO}_3^-\) 为电子受体的甲烷厌氧氧化 \(^{[39]}\)。这一厌氧的甲烷消耗过程对于海洋以及湿地温室气体排放的估算可能潜在的影响。而在湖泛过程中，以甲烷为电子供体的硫氧化还原过程是影响官浸的反应，即含硫有机质分解硫磺的还原。另一方面有机质分解产生的大量甲烷为硫磺还原提供电子，另一方面含硫产物 \(\text{H}_{2}\text{S}\) 为 \(\text{FeS}\) 等发黑物质的产生提供条件，因此这一过程可能是成为整个湖泛微生物作用的核心。如前所述，针对 SRB 的研究已有报道，而针对甲烷氧化细菌的研究较少，特别针对湖泛过程中参与甲烷氧化的 \(\text{NO}_3^-\)（或 \(\text{NO}_2^-\)）还原过程中参与的微生物类群尚无报道。

Boetius 等 \(^{[40]}\) 借助 \(16S\) rRNA 为靶序列的荧光探针技术，首先在海洋沉积物中观察到甲烷氧化古菌和 SRB 所组成的互营聚群体。它们是由古菌中的甲烷八端球菌属（Methanosarcina）和古细菌 δ-proteobacteria 的脱硫链球菌属（Desulfurococcus）组成的一种共生结构。进一步研究发现，以 \(\text{NO}_3^-\)（或 \(\text{NO}_2^-\)）为电子受体的甲烷厌氧氧化更具有实际意义，以甲烷为电子体的硫氧化还原过程，有助于沉积物中营养盐的消耗（表 2 中的反应 (2) 和 (3)）。而且沉积物中的微生物在缺乏 \(\text{SO}_4^{2-}\) 的条件下，能利用 \(\text{Mn}^{4+}\)（水钠锰矿）和 \(\text{Fe}^{3+}\)（水铁矿）来氧化甲烷，其具体反应机理见表 2 中的公式 (4) 和 (5)。综上，甲烷的厌氧氧化与沉积物中的多种电子受体的还原反应相关，可能是驱动沉积物中多种反应和化学平衡的关键过程。随着对古菌研究的不断深入，人们越来越意识到其在生物地球化学循环中可能发挥着更为重要的作用。33. 相对于细菌的研究，目前对湖泛过程中的古菌，特别是与 C、N、S 等关键元素循环有关的古菌研究亟待进一步深入。

表 2 利用不同电子受体进行甲烷氧化时可提供的吉布斯自由能
Tab. 2 The theoretical energy in methane oxidation by using different electron acceptors

<table>
<thead>
<tr>
<th>电子受体</th>
<th>反应式</th>
<th>(\Delta G^{\circ}/(\text{kJ/mol}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\text{SO}_4^{2-})</td>
<td>(\text{CH}_4 + \text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + \text{HS}^- + \text{H}_2\text{O})</td>
<td>-14</td>
</tr>
<tr>
<td>2. (\text{NO}_3^-)</td>
<td>(5\text{CH}_4 + 8\text{NO}_3^- + 8\text{H}^+ \rightarrow 5\text{CO}_2 + 4\text{N}_2 + 14\text{H}_2\text{O})</td>
<td>-765</td>
</tr>
<tr>
<td>3. (\text{NO}_2^-)</td>
<td>(3\text{CH}_4 + 8\text{NO}_2^- + 8\text{H}^+ \rightarrow 3\text{CO}_2 + 4\text{N}_2 + 10\text{H}_2\text{O})</td>
<td>-928</td>
</tr>
<tr>
<td>4. (\text{Fe}^{3+})</td>
<td>(\text{CH}_4 + 8\text{Fe}^{3+} (\text{OH})_2 + 15\text{H}^+ \rightarrow 8\text{HCO}_3^- + 8\text{Fe}^{2+} + 21\text{H}_2\text{O})</td>
<td>-270.3</td>
</tr>
<tr>
<td>5. (\text{Mn}^{4+})</td>
<td>(\text{CH}_4 + 4\text{MnO}_2 + 7\text{H}^+ \rightarrow 4\text{HCO}_3^- + 4\text{Mn}^{2+} + 5\text{H}_2\text{O})</td>
<td>-556</td>
</tr>
</tbody>
</table>
2.2 黑水团微生物与硫循环

硫酸盐还原是控制河口海岸带沉积物中硫、碳和铁等元素生物地球化学循环的关键过程。诸多研究证实，在沉积物早期成岩过程中，硫酸盐还原作用主要是通过2种途径来完成，即有机质还原硫酸盐途径和厌氧条件下甲烷还原硫酸盐途径，即甲烷厌氧氧化作用。

硫酸盐还原反应是最重要的氧化有机质的反应，也是沉积物中硫化作用的主要方式。硫酸盐还原的驱动者，可以是结合氧化有机化合物或分子硫和硫酸盐还原，将电子供给高价金属离子（Fe$^{3+}$），Fe$^{3+}$还原成Fe$^{2+}$，铁还原细菌也可以将Fe$^{3+}$还原成Fe$^{2+}$。高价硫被还原成多种含硫有机物和无机硫化物（H$_2$S, HS$^-$, S2）、S2会与Fe$^{2+}$发生化学反应生成FeS。沉积物中SRB群落的丰度显著高于上覆水，沉积物SRB和有机质的反应导致黑水团的形成。不仅在沉积物中，硫酸盐为电子受体的甲烷氧化反应同样也可以在一些冷泉水体中$^{[1]}$。硫酸盐还原菌类群种的系统发育和生理生化特征使其可以利用不同类型的有机物质$^{[2]}$。由于有机质浓度随着深度的增加而逐渐降低，可能导致表层沉积物SRB种群密度较高，且随着深度的增加而降低。

如2.1节所述，硫酸盐还原与甲烷氧化作用之间存在耦合关系。因此，硫酸盐的还原过程可能受到有机碳氧化和AOM双重作用的控制。岩层内的硫酸盐还原作用可能通过调控2种途径的直接或间接的因素，当有机质为一些活性较大的物质时，硫酸盐通过氧化有机质被消耗，当有有机质活性较低无法被硫酸盐还原菌直接利用时，产甲烷菌却能够利用这些有机质，生产甲烷，为AOM过程提供充足的甲烷来源$^{[3]}$。后者则强烈地体现了硫酸盐还原与甲烷氧化作用的耦联。甲烷氧化过程，离不开有机物和硫酸盐的循环，黑水团中硫酸盐还原过程被大大加强，可能成为沉积物有机质转化的主要途径。与海洋相比，湖泊黑水团中硫酸盐还原作用的发生还缺少地球化学方面的证据。

3 结论与展望

综上所述，通过对湖泊过程中微生物结构和功能的研究，取得的主要成果体现在：首先，通过各种原位监测和实验室内模拟，对湖泊发生过程期关键作用的微生物类群的认识不断完善，如发现甲烷菌门的梭菌、硫酸盐还原菌、产甲烷古菌以及甲烷厌氧氧化古菌在湖泊性有机质的分解和发黑物质产生过程中具有重要作用。其次，根据微生物的结构变化和相关功能基因的研究，逐渐梳理出湖泊发生过程中一些关键反应的反应过程，如厌氧水体和沉积物中存在活跃的甲烷甲烷和甲烷氧化过程，不仅如此，甲烷作为电子供体可以参与多种物质的还原过程；复杂或者简单有机质（如甲烷）触媒的硫酸盐还原过程是水体发黑的主要机制。湖泊作为一种极端的生态过程，通过对其中微生物的研究，为进一步证实生物的物质网络结构和还原条件下的水质快速转化成为湖泊生态系统的主要特征。

目前针对湖泊微生物的研究主要通过原位监测和实验室模拟的方法，由于缺少分离纯培养的微生物，因此无法开展针对性的生理生化特征研究，通过微生物群落结构的研究，对于强还原条件下水体和沉积物在的反应过程和营养成分较多的推测，尚缺少功能微生物类群与关键代谢过程的直接证据。现代分子生物学技术和技术的不断发展，高通量微生物分离与纯培养技术的持续提升以及稳定同位素技术和高精度化学分析技术的突破等为研究自然系统状态湖泊微生物的结构和环境生态功能提供了可能。Diaz等在Science上撰文，综述了海洋沿岸带低氧区严峻的发展形势和对生态系统的影响$^{[4]}$。同样，富营养化湖泊面对持续的外源输入以及全球变化引起的升温，湖泊发生的频率和强度都有可能超过以往的记录，有关湖泊的预测预警和治理方案需要依赖于更深层次和针对性更强的研究成果。在现有基础上，湖泊过程的微生物生态学研究需要注重：(1) 加强对湖泊过程中关键微生物功能群的分离培养；(2) 应用稳定同位素示踪分析湖泊过程中关键微生物反应过程；(3) 通过基因组和后基因组学研究分析湖泊过程中微生物功能群；(4) 针对关键的微生物类群，开发快速微生物检测方法，对湖泊的预测预警提供微生物依据。

4 参考文献

Reviews Microbiology, 2005, 3(12); 969-978.

[29] Liu JSC, Balkwill DL, Drake GR et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5); 2085-2091.

[34] Sieber JR, McInerney MJ, Gansalus RP. Genomic insights into syntrophy; the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology, 2012, 66; 429-452.

[42] Leloup J, Fissing H, Kohls K et al. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark); abundance and diversity related to geochemical zonation. Environmental Microbiology, 2009, 11(5); 1278-1291.

[43] Thauer RK. Anaerobic oxidation of methane with sulfate; on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Current Opinion in Microbiology, 2011, 14; 292-299.