The changes of sedimentation rates and the environmental significance based on high resolution cores in Shilianghe Reservoir, Jiangsu Province

ZHANG Yunfeng, ZHANG Zhenke, WANG Wanfang, ZHANG Linghua, CHEN Yingying & XU Huaxia

(Key Laboratory of Coast and Island Development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, P. R. China)

Abstract: Shilianghe Reservoir is the largest artificial lake in Jiangsu Province. It is very important to study the sedimentary rates of the reservoir in order to understand the environmental change in the river basin. 137Cs technique is used to date a sediment core collected from Shilianghe Reservoir. Two distinct 137Cs peaks are identified in the core, which are ascribed to the abundant fallout occurring in 1963 and 1986. The grain size analysis indicates that clayey silt and silty clay are the main sedimentary types with a trend of gradually fining from the bottom to the top, and revealed a heavy rainfall event in 1970. Sedimentary rates of the core can be divided into several distinctive stages: 10.85 cm/a from 1963 to 1970, 3.81 cm/a from 1970 to 1986, and 1.32 cm/a from 1986 to 2005. Furthermore, the environment significances were explained by using the sedimentary records. Through the comparison between grain size characteristics and historical precipitation records, the changes of coarse sediments contents and rainfall are of the similar trend, which directly reflects the information such as the intensities of rainfall and hydrodynamic transportation. Sedimentary environment of the Shilianghe Reservoir is typical deltaic under the controls of runoff and sediment transport, variations of water level and local terrain. Therefore, sedimentary rates are becoming low gradually following the general law of reservoir siltation. Furthermore, human activities have influenced the changes of sedimentary rates, such as construction of large reservoirs in the upstream of the river.

Keywords: Shilianghe Reservoir; sedimentation rates; 137Cs dating; environmental change

水库是开发利用水资源和防治水害的综合工程措施之一，具有防洪、灌溉、发电、供水、航运、养殖、旅游等综合效益。自1950s以来，我国水库建设突飞猛进，水库数量跃居世界之首，在城镇上修建水库会破环河流。
水沙条件和河床形态的平衡状态，由于水位抬高，流速减小，必然造成泥沙在水库中的淤积。田海涛等
根据115座代表性水库的淤积统计资料，推算出我国水库的平均淤积比例高达20%。水库泥沙淤积物作为
流域物质迁移的“汇”，可以通过连续、高分辨率地记录流域环境演变和人类活动的信息，对科学认识水库的环境
变化过程具有重要的作用，已成为短尺度环境沉积学和流域土壤侵蚀、地表物质输送过程研究的重要
对象。Annable[4]从河流水力学、河床形态、流域产沙和泥沙库藏、泥沙输运动力机制、泥沙淤积分布特征、水
库泥沙和水库淤积治理等多方面对水库淤积做了系统阐述，为水库淤积的科学研究奠定了基础。近
年来，国内外水库环境变化研究领域正从现状特征分析向过程演演转变，将水库淤积过程与流域环境变化
结合起来，涉及水库淤积速率的定量研究[5-7]、事件沉积[8]、沉积环境变化过程[9-11]以及沉积物移动的数值模
拟[12-16]等。

利用沉积物指标反映过去环境变化的首要问题是找到沉积物样品对应的深度的年代表。环境中存在的
放射性核素，因其特定的来源和地球化学特征，依据某些年份的沉积通量峰值和沉积物中检测的比活度峰值，
可应用于沉积物的年代划分。Krishnaswamy等于1999年发表的“ verification of 137Cs 作为年代表方法[17]，为短时
间尺度（近50年）的湖泊和水库沉积物的年代表定和沉积率研究提供了数据[18]，同时结合沉积岩芯不同深度的多种环
境指标可以反映出湖泊和水库自身的周围环境的变迁过程，从而研究环境的变化与人类活动对湖库及流域的
影响[19]。

石梁河水库是江苏省最大的水库，自1962年建成以来，在调蓄洪、灌溉农田及促进社会经济发展中
发挥了重要作用，取得了较好的经济效益和社会效益。然而，石梁河水库上游沂沭河流域多低山丘陵，植被稀少，加上不合理的人类活动，使得该流域土壤侵蚀加剧，水土流失极为严重，造成石梁
河水库泥沙淤积严重。本文结合137Cs 计年法和粒度特征来测定石梁河水库沉积物的年龄和沉积速率，对沉积
速率的环境变化行为解释，进而水库淤积过程和环境变化的关系，为石梁河水库的资源开发和环境保护
提供了科学依据。

1 材料与方法

1.1 研究区概况

石梁河水库作为江苏省最大的人工水库，于1958年12月开工兴建，1962年12月建成并投入运行，位
于淮河流域沂沭泗水系新沂河中游，江苏东海、赣榆及山东临沂三县交界处，是一座具有防洪、灌溉、供水、
发电、水产养殖、旅游等综合功能的大（二）型水库。石梁河水库的人库流量主要控制站是新沂市大徐镇水文
站，多年平均径流量为20.77×10^8 m³。水库集水面积为5573 km²，水库容积为5.31×10^10 m³，其中防洪库容为
3.23×10^10 m³，兴利库容为2.34×10^10 m³。石梁河水库既是沂沭涝区洪水调蓄工程的重要组成部分，又是连云港
市的防洪保安工程和备用水源[20]，承载上游沂沭冲洪涝的洪水，直接经新沂河排入黄海，减轻南四湖、骆马湖的防洪压力及下游周边地区的防洪压力，减轻洪水对东部地区的威胁，提高防洪标准。防洪保护范围2000 多 km²，主要涵盖连云港市区、陇海铁路、淮北盐场、田湾核电站、赣榆和东海两县
二十余乡镇约6×10^8 m²耕地，近150 万人口。

1.2 样品采集与实验处理

2005年6月29日-7月2日在石梁河水库进行了为期4天的水上作业，为保证沉积物能够真实反映水库
环境的变化，选择远离河间滩区时可动范围和当地民众挖沙区之外进行样品的采集（图1）。在距水库泄
洪大坝1 km 处，利用自制的内径70 mm、外径75 mm 的 PVC 管重力采样器采集200 cm 长的柱状岩芯 SL8 和
SL9（34°46′N，118°52′E），两个柱状岩芯水平相距4 m。为防止样品受到损失和污染，样品采集后立即在现场
密封保存并返回实验室低温保存。SL8 岩芯以 4 cm 间隔分得50 个样品，用于 137Cs 比活度测定；SL9 岩芯以
2 cm 间隔分得，用于粒度测定。

SL8 沉积物样品经过真空冷冻干燥器冷冻干燥和玛钢研钵研磨等前期处理后，采用美国 Cambera 公司生
产的 GMX5034 同轴高纯锗探测器及多道能谱仪 S-100 进行 137Cs 比活度的测试，该实验在南京师范大学同位素地球化学
137Cs 实验室完成。SL9 沉积物样品在除去钙质胶结物和有机质等前期处理后，采用英国 Malvern 公司生产的 Mastersizer 2000 激光粒度分析仪进行粒度测试，粒径测量范围为 0.02 ~ 2000 μm，重复测量
误差小于2%。该实验在南京大学海岸与海岛开发教育部重点实验室完成。

2 结果与分析

2.1 沉积物粒度变化特征

观察石梁河水库沉积物岩芯，肉眼看不出明显的粒度变化，只有底部可以感觉少量的细砂，0 cm(岩芯顶部)到 56 cm 处呈深橄榄色；56 ~ 185 cm 呈橄榄灰色；185 cm 向下呈浅橄榄色。粒度分析结果表明，石梁河水库岩芯沉积物以黏土质粉砂和粉砂质黏土为主，砂含量很少(图2)。岩芯平均粒径为 7.3 Φ，中值粒径为 7.1 Φ，两者变化较为一致，分选系数在 1.2 ~ 2.0 之间，与平均粒径呈正相关，粒径越大，分选系数就越大，沉积物分选性就越差；反之，粒径越小，沉积物分选性越好。

图2 石梁河水库岩芯粒度参数变化曲线

Fig. 2 The curves of grain size parameters in Shilianghe Reservoir core
总体上看,从岩芯底部向上沉积物呈明显的变细趋势,在 185 cm 处向下粒径较小;从 185 cm 向上到 86 cm 处,粒径较大,分选系数波动性大,分选性较差;在 86 cm 处有一个粒径峰值,砾石的含量也很大,颗粒较粗的沉积物能够被搬运;80 cm 处向上粒径趋于平稳,有变细的趋势,分选性波动也较小。

2.2 沉积物137Cs 时标与沉积速率

石梁河水库岩芯沉积物样品的137Cs 分析结果表明,137Cs 放射性比活度随深度变化出现了两个明显的积聚峰,最大积聚峰出现在深度 158 cm 处,137Cs 比活度为 64 Bq/kg,另一个积聚峰出现在深度 25 cm 处,137Cs 比活度为 41.6 Bq/kg (图 3)。根据137Cs 在北半球 50 年来的积聚规律和衰变周期 (30.2 a),可以初步判定,158 cm 处的积聚峰为 1963 年,25 cm 处的积聚峰可能为 1986 年。全球范围的137Cs 沉降始于 1950s 初,北半球沉积物中最早可检测到的 1954 年积聚峰,经过衰变,至今已难以辨识;1963 年前大气137Cs 沉降量最大,沉积物137Cs 最大峰值对应于 1963 年时标;1986 年前苏联的切尔诺贝利核泄漏事件对北半球湖泊沉积物记录存在一定的影响,具有同样的时标意义(21)。这与石梁河水库较近区域的固城湖、阳山湖、南四湖等地区的定年研究结果一致,沉积柱芯剖面具有 1963 年和 1986 年的明显双积聚峰特征(22-23),原因可能是该区域位于太平洋季风区,地形以平原为主,所以有较为明显的 1963 年积聚峰;北面没有青藏高原的阻挡,所以能够在沉积剖面中出现明显的 1986 年积聚峰。

3 讨论

3.1 泥沙来源与水库淤积

水库的来水来自沙坝前水位的变化及地形条件等,决定了泥沙运动,因而也决定了水库淤积形态。已有研究资料表明,在水库淤积的三角洲、锥体、带状淤积体等 3 种剖面形态中,三角洲淤积体是最普通的,也是水库在淤积过程中的基本倾向(25-26)。
山、丘陵和岗地；中部、东部和东南部是大面积的冲积平原。由于水区植被覆盖率低、质松散及降水集中等环境特点，导致碎屑沉积物抗蚀性差，河流夹砂和冲刷力强，使得水土流失相当严重。利用 DEM 数字高程模型进行估算的结果表明，石梁河水库平均侵蚀量约为 1166175 m³，平均侵蚀模数为 603 ~ 724 t/(km²·a)。多年平均输沙量为 4 × 10^4 t。石梁河水库库底有 2 条原河道的槽沟，入库的水沙基本上沿着原河道流向库首，且粗颗粒物质的沉积先于细颗粒物质，致使河水携带的泥沙在库尾不断淤积。北支流的流量小，比降缓和，多年泥沙淤积厚度在 0.1 ~ 0.5 m 之间。从大兴镇入库的淤积河床沙量较大，在洪水季节河流携带大量推移质的粗砂、极粗砂和砾石，当水流携沙处于超饱和状时，推移质首先落淤，沿着老的新沭河库底河道，由库尾逐步向库首移动发展，形成水下三角洲（图 4）。在库底老河道两岸，不断淤积加厚，扩大三角洲的规模；同时在重力的作用下，新的三角洲又迭加于老三角洲前坡上[28]。沿原河道两岸，库内泥沙淤积厚度最厚处已达 4.3 m，从库尾到库首淤积厚度峰值有：3.4, 4.0, 4.3, 4.0, 3.3 和 3.0 m，都是一个个三角洲沿老河道迭瓦状向库首推进，而形成的每个三角洲平面淤积的高度值。

图 4 石梁河水库淤积厚度等值线（单位：m）

Fig. 4 Silt thickness contour of Shilianghe Reservoir

石梁河水库的淤积，除了丰富的泥沙来源，还与人库河流的流量、流速和比降等水动力条件有关。石梁河水库沉积物以黏土质粉砂和粉砂质黏土为主，砂含量很少。在 185 cm 处向下为库底以前的河漫滩—河床相沉积，粒径较小；从 185 cm 向下到 86 cm 处为库底一段时期的水库沉积，粒径较大，分选系数波动性大，分选性较差；在 86 cm 处左右有 1 个粒径峰值，砂的含量也很大，说明该时期水动力很强，能够搬运较粗的沉积物；80 cm 处向上粒径趋于平稳。有变细的趋势，分选性波动也较小。泥沙在水库中淤积的过程是，当水沙进入库尾时，粗沙首先沉积下来，逐渐形成三角洲；同时又重力挟带着细沙向坝前推进，并沿途不断扩散，这样细沙将沉积在整个水库范围内，其中大部分沉积在坝前，由于水库回水的影响，在水库库尾以上的河道内也会发生泥沙淤积。

3.2 水库沉积与流域降水的关系

沉积物粒度组成特点是直接反映了沉积时的降水、水动力搬运强度以及水位高低变化等信息[29]。在长尺度、低分辨率（百年、千年的）沉积环境中，粗粒沉积物反映低水位时期的干旱气候，细粒沉积物反映高水位时期的湿润气候[30]。然而对于中短尺度、高分辨率（年际、几十年）的湖泊或水库来说，在过去几十年间可能存在不存在水位的大幅度涨落，水位变化对粒度分布的影响很小，流域降雨量的变化通过影响地表径流强度

石梁河水库上游区域属暖温带半湿润季风气候区，春季（3, 4, 5月），夏季（6, 7, 8月），秋季（9, 10, 11月）和冬季（12, 1, 2月）降雨量分别占全年降雨量的15%、33%、17%和5%，汛期降雨量占全年的73%，年内降水分配不均[16]。在夏季的高温期，如遇北方冷气团的托起，极易形成暴雨，且该区域的土层疏松，岩石破碎，植被的覆盖度低，暴雨出现后水土流失严重，导致入库泥沙量剧增。将石梁河水库的粒度沉积记录和流域降水记录进行对比发现（图5），在1980s之前，石梁河水库沉积的粒级物质和降雨量的变化趋势基本相同，1980s至今，虽然降水变化波动很大，但沉积物粒径变化幅度较小；粒径大于15和32 μm的沉积物含量出现明显的峰值，且含量变化与降雨量的变化趋势基本相同。

![图5 石梁河水库沉积物粒径含量变化和临沂市降水、气温变化](image)

Fig. 5 The grain composition in Shilianghe Reservoir core, precipitation and temperature changes in Linyi City

沉积物粒径的变化主要受水动力条件制约，而水动力条件往往受气候环境变化的影响，气候变化最直接的反映就是气温和降水。因而，气温和降水变化必然影响到入库补给水动力的大小和水位高低，进而影响沉积物粒径分布。在我国东部季风区，一般冬季低温少雨，夏季高温多雨，由降水形成的洪水和地表径流直接影响沉积物的颗粒大小，占主导地位。根据临沂市降水变化的历史记录可知[17]，1970s前中期为多雨期，1970年发生特大暴雨，地表径流增强，水体剥蚀和搬运能力强，大量陆源粗颗粒物质被带至库区沉积，形成了岩芯86 cm左右处粒度与其它沉积层显著不同的洪水事件沉积层，颗粒较粗，以粉砂为主。但是，根据石梁河水库沉积岩芯130 ~ 90 cm段泥沙组分含量的阶段性变化特征，说明沉积水动力波动复杂，不仅受到强降雨因素的影响，还可能与上游修建的大官庄水利枢纽等工程定期的溢洪排沙有关，需要根据上游水库可持续管理的历史资料和实验数据进一步深入分析。为保持水库的长期使用，充分利用水库的泄洪排沙，将淤积的泥沙冲到下游，是加强水库管理的重要措施。1980s至今，虽然降水变化波动很大，但沉积物粒径变化幅度
很小。原因可能是上游修建的水库有效拦截了粗颗粒沉积物。石梁河水库上游分河，河生均为山洪河道。流域上游大型水库的总控制流域面积为4316 km²，总库容为18.4×10⁶ m³。河大中型水库由于有沙洲、凸岸、凹岸、唐村等，水库的总控制流域面积为1482 km²，总库容为9.2×10⁶ m³。流域中上游大量修建的水库能够有效拦截河流输沙量，使得河流入海泥沙呈减少趋势。37-38。中国黄河流域平均输沙量的70%被三门峡和小浪底水库所拦截。39。石梁河上游修建的众多水库，形成水动力较弱的低能沉积环境，粗颗粒泥沙优先于细颗粒泥沙沉积，经过层层筛选，使得进入石梁河水库的泥沙分选性较好，沉积物颗粒大小均匀一致。

4 结论

5 参考文献

(1－5)；407-414.
[34] 陈铁军，陈璐. 江苏省水库50a气候变化与水资源特征分析. 第六届长三角气象科技论坛论文集，2009,44-49.