鄱阳湖国家级自然保护区食块茎鸟类种群数量与水位的关系

陈冰1,2,崔鹏3,刘光华3,李凤山4,伍旭东4,吴建东5,曾南5,赵娜5,徐海根2
(1:南京师范大学生命科学学院,南京210046)
(2:环境保护部南京环境科学研究所,南京210042)
(3:江西鄱阳湖国家级自然保护区管理局,南昌330038)
(4:国际鹤类基金会,华盛顿53913)
(5:水利部中国科学院水工程生态研究所水利部水工程生态效益与生态修复重点实验室,武汉430079)

关键词: 水鸟; 种群数量; 鄱阳湖; 水位

Relationships between changing water levels and numbers of wintering tuber-eating birds in Poyang Lake National Nature Reserve

CHEN Bing1,2, CUI Peng2, LIU Guanhua3, LI Fengshan4, WU Xudong5, WU Jiandong3, ZENG Nanjing3, ZHAO Na3 & XU Haigen2
(1: College of Life Sciences, Nanjing Normal University, Nanjing 210046, P. R. China)
(2: Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, P. R. China)
(3: Jiangxi Poyang Lake National Nature Reserve, Nanchang 330038, P. R. China)
(4: International Crane Foundation, Wisconsin 53913, USA)
(5: Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, P. R. China)

Abstract: Population numbers of four tuber-eating bird species (Grus leucogeranus, Grus vipio, Anser cygnoides and Cygnus columbianus) were surveyed and water levels were recorded to analyze the relationships between changing water levels and bird population numbers in Poyang Lake National Nature Reserve. During the winters (from October to next March) of 2003—2007, the population

* 国家自然科学基金项目(31101651)资助。2013—04—07 收稿; 2013—08—12 收修改稿。陈冰(1987—), 女,硕士学位研究生; E-mail: yishan2007123@126.com.
** 通信作者; E-mail: cuipeng1126@163.com.
水鸟是湿地生态系统的重要组成部分，其种群多样性与分布受多种因素的共同影响，包括食物资源丰富度、湿地面积大小、人为干扰程度、水深等。其中水深是影响水鸟生境选择的主要因子，水鸟在喙长、腿长、体型大小等方面的差异决定了它们对食物类型和觅食水深的需求。通常水鸟主要选择水陆交错带的浅水区、泥滩和草洲作为觅食地，并且水深的变化对水鸟种群的多样性有重要影响。以往关于水深与水鸟多样性关系的研究主要集中于鸟类物种利用水深方面，如某个物种利用的最适宜水深，可以利用的水深范围等。部分报道在在一定的水深范围内，水深与水鸟多度呈负相关关系。Bancroft等对4种鹭鹳类涉禽的种群数量与水位和植被关系的研究表明，其研究区域水鹭鹳类水位的利用存在一个极值水位，在低于这个水位时，鹭鹳类的种群数量与水位呈显著的正线性相关关系。Boettmann等研究了5种游禽种群数量与水位的关系，在其研究区域的水位范围内，5种游禽种群数量与水位呈正相关关系，该研究还通过曲线模拟计算了5种游禽的最适宜水位，为合理调控水位提出了建议。Holm等研究发现食底栖动物类群的鸟类和植食性鸟类对水位变化有不同的反应，随着水位上升，食底栖类鸟类种群数量减少，而植食性鸟类种群数量增加。可以看出，在不同类型湿地，不同生活史类型的物种类群对水位变化具有不同的反应。

鄱阳湖是国际重要湿地，同时也是我国长江中下游地区乃至东亚地区最大和最重要的候鸟越冬地。每年在鄱阳湖越冬的水鸟总数在50万只以上，世界上近98%的白鹅（*Anser albifrons*），50%的白枕鹤（*Grus vipio*）和60%的鸿雁（*Anser cygnoides*）在鄱阳湖越冬。此外，鄱阳湖也是长江流域最大的通江性湖泊，受长江和江西境内五河（赣江、抚河、信江、饶河和修河）相互作用，鄱阳湖水位变化非常显著，年内变幅超过10 m。鄱阳湖湖边到湖心，随水深的变化，水生植被形成湿生、挺水、浮叶、沉水4个植被带。在冬季，水位下降，形成众多的浅水洼地（浅水湖）和洲滩以及出露滩地上存留的大量水生生物残体，为越冬候鸟提供了广泛的觅食条件。夏少霞等对鄱阳湖不同水位情景下的越冬水鸟适宜生境面积变化情况的研究表明，随着水位的升高，栖息地面积呈现出先微弱上升后显著下降的过程，持续的低水位和高水位都会对在浅水区和泥滩地生存的候鸟造成负面影响，从而影响水鸟的种群数量。

为了合理调控鄱阳湖国家自然保护区内部湖的水位，为越冬候鸟提供充足的食物资源，保护鄱阳湖众多的珍稀濒危鸟类，本文以鄱阳湖区域以植物块茎为主要食物的白鹤、白枕鹤、鸿雁和小天鹅为研究对象，分析了鄱阳湖国家级自然保护区大湖池、沙湖和梅湖水位变化与这4种鸟类种群数量的关系。

1 研究地点与方法

1.1 研究地点概况

鄱阳湖（28°22′～29°45′N, 115°47′～116°45′E）是中国面积最大的淡水湖，地处江西省的北部，长江中下游南岸。盛水期湖面水位约21 m，在雨季最高水位期（4～9月，降雨多集中在4～6月），当湖口（鄱阳湖与长江交汇处）水位为21.80 m时，则蓄积面积为3955 km²。随着鄱阳湖水位的不断下降，江河逐渐显露，星罗棋
布的子湖泊与鄱阳湖主湖泊分离，各子湖泊由浅水湖、泥滩、草洲等组成，丰富的湿地资源为雁鸭类、鸥类等水鸟提供了良好的栖息环境，吸引了大量的越冬候鸟[27]。鄱阳湖国家级自然保护区面积为 224 km²，由大湖池、沙湖等 9 个子湖泊组成。本次研究的地点为保护区 9 个湖泊中的 3 个：大湖池（29°6′N, 115°56′E）、沙湖（29°11′N, 115°55′E）和梅西湖（29°13′N, 116°03′E）（图 1）。其中大湖池和沙湖受到良好保护，人为干扰小，能真实地表达自然状况下的鸟类种群数量状况，但梅西湖为渔业养殖水体，且不受保护区直接管辖，人为干扰较大。3 个湖泊水位变化差异明显，各具代表性。

图 1 鄱阳湖国家级自然保护区大湖池（A）、沙湖（B）、梅西湖（C）示意图（左图：鄱阳湖主湖面；右图：鄱阳湖国家级自然保护区 9 个主要湖泊）

Fig. 1 Location of Dahuchi (A), Shahu (B) and Meixihu (C) in Poyang Lake National Nature Reserve

1.2 野外调查
1.2.1 水位记录 鄱阳湖国家级自然保护区核心区的大湖池、沙湖和梅西湖 3 个湖泊在闸口位置都设有水位标志杆。2003—2007 年 5 个越冬季节，每年的 10 月至次年 3 月间，每月的 8、18 和 28 日对鄱阳湖国家级自然保护区核心区的大湖池、沙湖和梅西湖闸口水位进行记录（本文记录的水位采用基准均为吴淞高程）。2007—2008 年度越冬季节，由于梅西湖标江杆损坏，未能记录该年度水位。
1.2.2 鸟类调查 2003—2007 年 5 个越冬季节，每年的 10 月至次年 3 月间，每月的 8 日、18 日和 28 日对白鹳、鸿雁和小天鹅的种群数量进行调查。调查在能见度高的时间进行，一般在 10:00 至 16:00。若遇调查日的能见度很差（例如雨天），则顺延往后进行调查。调查采用直接计数法进行，每个湖泊选择 1-2 个固定的样点，利用 60×单筒和 10×双筒望远镜进行观测。对集群较大（＞1000 只）的鸟类种类，将大的集群分为 10、20 或 50 只的小群体，分别计数。
1.2.3 数据分析 在 Excel 中采用多元回归模拟了 5 年平均水位的变化趋势及鸟类种群数量在各湖泊的变化趋势。在 SAS 软件中采用非参数回归（Non-parametric regression）分析水位与鸟类种群密度的关系。回归分析在 PROC LOESS 模块中进行[38-41]。每个湖泊从最低水位至最高水位，以 2 cm 为间隔划分等级，对每个等级内水位对应的鸟类种群数量进行单值化，将种群数量平均值进行后续水位与种群数量关系的分析。在进行按年度和按湖泊的分析时，由于数量量变小，直接采用调查数据进行分析，没有按 2 cm 水位等级进行处理。非参数回归的分析中，软件自动选择最优模型。由于鄱阳湖越冬水鸟种群数量自迁徙到达至迁徙离开，种群数量呈现先逐渐增多，后逐步减少的趋势，呈抛物线分布，因此，分析中设置 option DEGREE = 2（阶数 = 2）[39-40]。
2 结果

2.1 水位变化特征

在本研究时间范围内，最高记录水位为梅西湖的 17.16 m，最低水位也出现在梅西湖，为 13.56 m。3 个湖泊水位的平均值差异较小，大湖池最低，为 15.07 m，梅西湖最高，为 15.18 m。大湖池和沙湖的年度间水位变化较小，大湖池基本保持稳定，沙湖平均水位逐年增高。梅西湖年度间水位差异较大（图 2A）。大湖池和沙湖 18 个调查日的水位变化均较小，尤其是 12 月至次年 3 月，水位稳定在 15.00 m 左右。梅西湖水位变化大，尤其是 1～3 月的 9 个调查日水位差异达到近 2 m（图 2B）。

![图 2 大湖池、沙湖和梅西湖年度间（A）和年度内（B）的水位变化](image)

Fig. 2 Intra-year (A) and inter-year (B) changes of water levels of Dahuchi, Shalu and Meixihu

2.2 鸟类种群数量变化特征

4 种鸟类种群数量总体上都呈现先增多后减少的趋势。其中白鸟和白枕鹤在大湖池种群数量峰值与沙湖中出现峰值的时间基本一致，而鸿雁与小天鹅的种群数量峰值在大湖池出现较早，出现在 11 月，在沙湖的峰值出现在 12 月。大湖池的鸟类种群数量最高峰主要集中在 11 月上旬 12 月上中旬。沙湖白鸟主要集中出现在 12 月上旬及 1 月中旬；白枕鹤主要集中出现在 11 月上旬至 12 月上旬和 1 月中旬，鸿雁与小天鹅的种群数量峰值主要集中出现在 12 月上旬。梅西湖中鸿雁与小天鹅种群数量峰值出现在 11 月上中旬，其他时间种群数量均较低，白鸟与白枕鹤种群数量变化未呈现出明显的规律（图 3）。

2.3 水鸟种群数量与湖泊水位的关系

4 种食块茎水鸟种群数量呈单峰分布（图 4A）。当保护区湖泊水位为 16 m 时，种群数量接近 0。随着水位逐渐下降至 15.5 m，水鸟种群数量开始急剧增多，在水位约为 14.8 m 时达到数量峰值。随着水位进一步下降，水鸟种群数量也呈现逐渐下降趋势，降至水位约为 14.0 m 时，种群数量又趋于 0。较高种群数量对应
图3 2003—2007年鄱阳湖国家级自然保护区3个湖泊中4种食块茎鸟类种群数量的变化特征
Fig. 3 Changes of populations of four tuber-eating bird species at three lakes from 2003 to 2007 in Poyang Lake National Nature Reserve

的水位为14.5~15.0 m之间。本研究所选4种水鸟的种群数量变化趋势呈现一致性，均呈单峰分布，高种群数量集中在湖泊水位14.5~15.5 m之间（图4B~E）。两种鹧鸪主要分布在14.5~15.5 m之间，鸿雁和小天鹅主要分布在14.7~15.7 m之间，峰值数量均出现在约14.8 m，鸿雁和小天鹅的分布水位区间和峰值水位均略高于两种鹧鸪。

2.4 水鸟种群数量与不同年份水位变化的关系

2.5 水鸟种群数量与不同湖泊水位变化的关系
大湖池的鸟类主要集中在水位为14.5~15.0 m之间，两种鹧鸪峰值数量出现在14.8 m左右，鸿雁和小天鹅峰值数量出现在约15.2 m。沙湖4种鸟类主要分布在水位14.7~15.5 m之间，鸟类种群数量变化
无明显规律。梅西湖鸟类种群数量少，变化没有明显规律（图6）。

图4 鄱阳湖国家级自然保护区4种食块茎
水鸟种群数量与水位变化的关系
Fig. 4 Relationships between changing water levels and populations of four tuber-eating bird species in Poyang Lake National Nature Reserve

3 讨论

湿地生态系统对水环境因子有着独特的依赖性，水文变化过程直接影响着湿地生态系统的湿地类型、结构和组成，决定着湿地生物的生长和分布。水鸟栖息地的选择主要受到食物来源的影响，栖息地面积和水位变化是影响水鸟多样性和丰富度的重要因素[31]。由于水鸟取食受到鸟的腿长、喙长、颈长以及取食地的限制，湿地水深低于1 m的区域如水陆过渡带鸟类的多样性和丰富度尤为重要[32]。

本文对水位和鸟类种群数量关系的分析主要是在鄱阳湖国家级自然保护区内大湖池、沙湖和梅西湖3个湖泊展开，由于国家级自然保护区在地势上与鄱阳湖其他区域不尽相同，本文的分析结果并不能用于指导整个鄱阳湖区域的水位管控，但由于鄱阳湖国家级自然保护区是鄱阳湖区域最重要的候鸟集中分布地[22]，因此，本文的分析结果对于鄱阳湖国家级保护区的水位管控具有重要的指导意义。
3.1 水位-生境面积-种群数量

鄱阳湖是典型的过水性沼泽型湖泊，水位有明显的季节性变化。刘成林等对鄱阳湖的水位变化对候鸟栖息地的影响做了系统的观测和分析，发现水位越高陆过渡带面积越小，鸟类的生境空间越小[24]。每年10月初，即水鸟迁徙前期，一方面许多越冬水鸟仍留在迁徙途中，尚未到达保护区，导致湖区内观测到水鸟数量稀少；另一方面水位在保护区内部水位较高，在16.0 m左右波动，适宜鸟类觅食的草场尚未出露，浅水区的面积也相对较小[25]，由于这些到达的水鸟提供良好的觅食和栖息环境，因此表现在这3个湖泊中的种群数量接近于0，在10月底和11月初，各湖泊水位开始逐步下降至15.5 m以下，碟形湖与主湖区逐渐断开，流域连系，形成独立的水域，碟形湖周边更多的泥滩被外露，水陆过渡带面积越来越大，泥滩和草场逐渐出现[26]，各种越冬水鸟纷纷到此觅食和栖息，水鸟数量急剧增加。1～3月份，各湖泊水位逐步下降并稳定在14.5 m左右，此时，以苦草（Vallisneria spiralis）、黑藻（Hydrilla verticillata）、马来眼子菜（Potamogeton malacianus）为主的沉水植被带达到白鹤等食叶鸟的适宜觅食区深范围，大量鸟类集中觅食[27]。随着水位进一步下降，即3月份以后，部分碟形洼地内湖逐渐干涸，适宜栖息地面积减少，栖息地资源竞争激烈，部分候鸟开始逐渐离开鄱阳湖区往繁殖地迁徙。
3.2 水位-食物资源-种群数量

鄱阳湖湖底较平坦，水陆过渡带随着枯水期水位下降而移动，稀疏草滩向沼泽，泥滩向浅水依次转移，不断形成新的食物丰富的候鸟栖息地。各种植物都有其特定的水分生态位，由此决定植物群落沿水分梯度分布格局^{[15]}。16 m 的高水位下，鄱阳湖呈现的主要湿地类型为高滩地，植被以芦苇群落和苔草群落为主^{[21]}。4 种食块茎鸟类的食物资源稀少，鸟类数量很低；随着水位逐渐下降，出现了更多的水陆过渡带，适合觅食的栖息地面积增大，并且浅滩形洼地逐渐与主湖体分离，出现了大面积的以苦草、马来眼子菜等块根茎为主要食物的鸟类的适宜觅食生境。此时保护区内的食块茎水鸟数量达到峰值；随着水位进一步下降，由于候鸟大规模集中采食，食物资源减少，鸟类种群数量下降。

本研究所选的 4 种鸟类，食物来源均为沉水植物的块状根茎。白鹤与白枕鹤属于鹤类，鸿雁与小天鹅属于雁鸭类，在食物喜好与选择上有一定差别，如鸿雁虽然也以莎草/禾本科草种类为主要食物，但苦草
的根据仍然是鸿雁越冬的首选食物26-36。我们认为正是共同食物资源的制约导致研究区域内4种鸟类的种群数量变化呈现出一致的趋势。在Barzen等“鄱阳湖控湖工程对越冬水鸟数量和分布的潜在影响”报告中，对鄱阳湖湖心区域的12、14和16立方米水位情况下候鸟适应生境变化进行了评估，认为在鄱阳湖湖心区域水位14立方米时，适应各种觅食群体的栖息地面积占整个鄱阳湖区域的比例达到最大值。但本文的分析主要是面向鄱阳湖国家级自然保护区，因此所得结果不能与全湖的结果进行比较36。

本文还分年度对不同湖泊的水位与鸟类种群数量的关系进行了深入分析。对不同年度分析中，2003-2005年3个年度的鸟类种群数量与水位关系相似，都呈现出先增多后减少的单峰趋势，且峰值水位都出现在14.75-14.90立方米，基本保持稳定。2006和2007年的平均水位升高，鸟类种群数量分布的峰值水位也高于前3年。但由于3个湖泊均为浅碟形湖泊，平均水位的升高仍能维持较大地面积的觅食生境，因此对于种群数量变化的影响并不明显37。对于不同湖泊的分析中，大湖湖和沙湖由于受到良好保护，且湖泊面积较大（大湖湖3000公顷，沙湖4000公顷），均具有丰富水生植物。可为4种食块茎鸟类提供充足的食物资源和觅食栖息地，因此，鸟类种群数量较大较稳定，总体趋势变化较小；而西湖虽然也有苦草冬芽分布，但由于面积较小（300公顷），受到人为干扰较大，年度内和年度间水位变化也较大，不能充分满足候鸟觅食需求，种群数量变化未表现出明显的分布规律38。

致谢：感谢江西鄱阳湖国家级自然保护区管理局和国际鸟类基金委员会为这项工作的有关人员。

4 参考文献

[34] 胡振鹏, 范, 长, 范, 亚. 鄱阳湖越冬生境特性及其对湖水位变化的影响. 《科学》, 2012, 30(1): 30-35.

[38] 罗, 洪, 云, 于, 云等. 鄱阳湖鸟类和水生植物, 透明度和湖水生境关系. 《江西科学》, 2010, 28(4): 559-562.