Phytoplankton absorption and chlorophyll-specific absorption coefficients characteristics of different trophic level lakes

WANG Mingzhu¹,2, ZHANG Yunlin¹, LIU Xiaohan¹,2, ZHU Guangwei¹, TANG Xiangming¹,2 & ZHOU Yongqiang¹,2
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(2: University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract: Phytoplankton absorption and chlorophyll-specific absorption coefficients were analyzed, and the causes were discussed by selecting four different trophic levels including Lake Taihu, Lake Tianmu and Lake Bo'ai. According to trophic level index using chlorophyll-a (Chl.a), total nitrogen, total phosphorus and secchi disc, Lake Taihu includes hyper and medium eutrophication zones. Meanwhile, Lake Tianmu and Lake Bo'ai are light eutrophic and mesotrophic, respectively. Phytoplankton absorption coefficients at 440 nm (a_\text{Chl,440}) are 1.02 \pm 0.51 and 0.69 \pm 0.40 for hyper and medium eutrophication in Lake Taihu, respectively.
Taihu, 0.78 ± 0.24 in Lake Tianmu, and 0.20 ± 0.04 m⁻¹ in Lake Boshiteng, respectively. Correspondingly, $a_{ph}(675)$ are 0.59 ± 0.32, 0.38 ± 0.23, 0.41 ± 0.13 and 0.08 ± 0.02 m⁻¹, respectively. Statistics test shows that phytoplankton absorption of hyper and medium eutrophic Lake Taihu, in addition to light eutrophication Lake Tianmu, is significantly higher than that in mesotrophic Lake Boshiteng. Chlorophyll-specific absorption coefficients at 440 nm ($a_{ch}(440)$) are 0.013 ± 0.006, 0.012 ± 0.004, 0.038 ± 0.008 and 0.051 ± 0.013 m²/mgChl, a_{ch}, respectively. Statistics test shows that $a_{ch}(440)$ of Lake Taihu is much lower than that of Lake Tianmu, and $a_{ch}(440)$ of Lake Tianmu is significantly less than that of Lake Boshiteng. The order of the spectral absorption coefficient is as follows: Lake Taihu > Lake Tianmu > Lake Boshiteng, showing that phytoplankton absorption coefficients generally increase with trophic levels, but Lake Taihu is lower than Lake Tianmu partly due to the high concentration of non-algae suspended matter. In contrast, chlorophyll-specific absorption coefficients decrease with enhanced trophic levels. Phytoplankton absorption coefficients generally increase with trophic levels due to the increase of biomass caused by high nutrient concentration. However, the decrease of chlorophyll-specific absorption coefficients with enhanced trophic level may be attributed to pigment package.

Keywords: Trophic level; Lake Taihu; Lake Tianmu; Lake Boshiteng; absorption coefficient; chlorophyll-specific absorption coefficient; phytoplankton

浮游植物的吸收特性可以改变水体的光学特性。它的重要功能包括调节水域下光场及影响光合作用光能合成，在利用遥感技术估算色素生物量、初级生产力以及监测水环境变化等方面发挥着越来越重要的作用。浮游植物的吸收系数和比吸收系数是表征水体光学特性的重要参数，吸收系数 $a_{ph}(\lambda)$ 是水体吸收的生物—光学模式、光辐射传输、初级生产力估算和生态过程模拟的基本参数。吸收系数 $a_{ph}(\lambda)$ 与叶绿素 a 浓度的比值称为浮游植物的比吸收系数 $a_{ph}(\lambda)$, 它是建立浮游植物生物量与色素光谱吸收关系的重要参数，可以将现场的生物光学测量与卫星遥感数据相联系，从而在利用卫星遥感估计水体初级生产力中发挥着重要作用。比吸收系数常被认为是一个常数，大约为 0.016 m²/mg Chl, a_{ph}, 然而目前很多学者认为它并非常数，会随着浮游植物群落结构、色素组成及包裹效应、生长环境和季节变化等因素的变化。国内外关于浮游植物吸收和比吸收特性研究的文献日增。然而因为浮游植物结构和组成的不同，不同水体尤其是富营养化湖泊与海洋的差异性显著，目前对内陆水体尤其是湖泊这方面的研究尚处于初步阶段，并且大部分集中在色素组成及包裹效应、浮游植物群落组成或随季节变化方面。本研究详细调查太湖、天目湖、博斯腾湖 3 个湖泊的富营养化代表型指标（透明度、总磷、总氮和叶绿素 a）, 按照综合营养指数法划分为 4 个不同的营养等级。从此入手旨在研究湖泊浮游植物吸收系数和比吸收系数随水体营养程度的变化规律，加深对不同水体中比吸收系数变化规律的了解。为进一步研究水下光场与浮游植物相互关系、监测水质变化及湖泊水色遥感提供科学依据，为我国内陆水体光谱库积累数据。同时通过湖泊营养状况评价，了解湖泊富营养化进程并预测其发展趋势，为湖泊水质管理如太湖水体富营养化的控制提供科学依据。

1 材料与方法

1.1 采样时间和站位

太湖（样点：42 个样点，采样于 2004 年 8 月中下旬，分布于梅梁湾等北部湖区，天目湖水样（10 个样点）采样于 2006 年 6、7、8 月每旬中，较均匀地分布全湖，博斯腾湖水样（22 个样点）采样于 2010 年 8 月，较均匀地分布全湖。野外采样均在风平浪静和小风浪条件下进行，使用中国科学院水生生物研究所研制的有机玻璃采水器采集表层水样（0 ~ 0.5 m），装入干净的塑料桶并置于冷藏箱内黑暗低温保存，带回实验室分析营养盐等。水样吸收系数以及浮游植物色素浓度等。透明度（SD）现场用 30 cm 透明度盘测定。

1.2 化学参数测定和营养状态评价

总氮（TN），总磷（TP）测定前采用碱性过硫酸钾消化，然后分别用紫外分光光度法、钼蓝抗显色法进行测定，叶绿素 a 的测定采用分光光度法用 Whatman GF/F 滤膜过滤水样，然后将滤膜置于冰箱中冷冻 48 h 以上，取出用 90% 的乙醇液释，然后在分光光度计上测定 665,750 nm 处吸光度，加入 1 滴 1% 稀盐酸酸化，放置后测得叶绿素 a 和脱镁叶绿素浓度。浮游植物色素浓度为叶绿素 a 和脱镁叶绿素浓度之
和[15]，用 Chl. a 表示。

对水体营养状态评价重点选取了与水体富营养化密切相关的监测项目：透明度、总磷、总氮和叶绿素 a 浓度。国内常用的评价湖泊富营养化程度的基本方法有：营养状态指数法（卡尔森营养状态指数：TSI）、修正的营养状态指数、综合营养状态指数（TLI）、营养度指数法。评分法[16]。以上几种方法在实际工作中都被采用，其中营养度指数法计算步骤繁琐、耗时长，不如综合营养指数法简便易行；评分法在实际应用过程中，受人为因素的干扰较多，影响结果的准确性。因此，本文选取综合营养状态指数法评价湖泊富营养化程度。

评价项目选取了反映水体营养程度的主要指标，包括 Chl. a、TN、TP、SD 4 项。综合营养状态指数为（TLI（Σ））：

$$ TLI(\Sigma) = \sum_{j=1}^{n} W_j TLI(j) \quad (1) $$

式中，W_j 为第 j 种参数的营养状态指数的权重；$TLI(j)$ 为第 j 种参数的营养状态指数。

以 Chl. a 作为基准参数，则第 j 种参数的归一化相关权重计算公式见表 1[17]。各指标营养状态指数计算公式为：

$$ TLI(\text{Chl. a}) = 10 (2.5 + 1.086 \ln \text{Chl. a}) \quad (2) $$

$$ TLI(\text{TP}) = 10 (9.436 + 1.624 \ln \text{TP}) \quad (3) $$

$$ TLI(\text{TN}) = 10 (5.453 + 1.694 \ln \text{TN}) \quad (4) $$

$$ TLI(\text{SD}) = 10 (5.118 - 1.94 \ln \text{SD}) \quad (5) $$

采用 0～100 的一系列连续数字对湖泊营养状态进行分级：TLI（Σ）< 30 为贫营养，30 ≤ TLI（Σ）≤ 50 为中营养，TLI（Σ）> 50 为富营养，30 < TLI（Σ）≤ 60 为轻度富营养，60 < TLI（Σ）≤ 70 为中度富营养，TI
LI（Σ）> 70 为重度富营养。

1.3 悬浮颗粒物吸收和比吸收系数测定与计算

悬浮颗粒物的吸收用定量滤膜技术（QFT）测定，用直径为 47 mm 的 Whatman GF/F 滤膜过滤 50～400 ml 水样（根据水里悬浮物浓度决定过滤的体积），在 UV-2401PC 型分光光度计下测定滤膜上颗粒物的吸光度，用同样湿程度的空白滤膜做参比，为中国散射误差，被测滤膜尽量靠近分光光度计的接受窗口，在 350～800 nm 间每隔 1 nm 测定一个吸光度，用各波段的吸光度减去 750 nm 波长的吸光度，采用 Cleveland 等[17]提出的公式进行放大因子校正：

$$ OD_{1}(\lambda) = 0.378 OD_{0}(\lambda) + 0.523 OD_{1}(\lambda)^2 \quad OD_{0}(\lambda) \leq 0.4 \quad (6) $$

式中，$OD_{1}(\lambda)$ 为校正后的滤膜上悬浮颗粒物吸光度；$OD_{t}(\lambda)$ 为直接在仪器上测定的滤膜上悬浮颗粒物吸光度。

滤膜上悬浮颗粒物的光谱吸收系数计算公式为[18]：

$$ a_{p}(\lambda) = 2.303 S V OD_{t}(\lambda) \quad (7) $$

式中，V 为被过滤水样的体积，S 为沉积在滤膜上的颗粒物的有效面积。

用 10～20 ml 热甲醇浸泡滤膜 4 h 左右，将色素萃取掉，滤膜上只剩下非藻类悬浮物颗粒物，使用同样浸泡过的空白滤膜作参比，按与总颗粒物吸收系数同样的测定方法得到藻类吸收系数。由于浮游植物颗粒物的吸收是非藻类颗粒物和藻类色素吸的简单线性叠加，因而由藻悬浮物颗粒物的光谱吸收系数 $a_{p}(\lambda)$ 减去非藻类的光谱吸收系数 $a_{s}(\lambda)$ 就得到浮游植物的光谱吸收系数 $a_{sp}(\lambda)[19]$，公式为：

$$ a_{sp}(\lambda) = a_{p}(\lambda) - a_{s}(\lambda) \quad (8) $$

<table>
<thead>
<tr>
<th>参数</th>
<th>Chl. a</th>
<th>TN</th>
<th>TP</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1.00</td>
<td>0.82</td>
<td>0.84</td>
<td>-0.83</td>
</tr>
<tr>
<td>R^2</td>
<td>1.00</td>
<td>0.67</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>W_j</td>
<td>$r^2 / \Sigma R^2_j$</td>
<td>0.33</td>
<td>0.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

表 1 中国湖泊部分参数与叶绿素 a 的相关性关系 r 及 R^2 值

王明珠等：不同营养水平湖泊浮游植物吸收和比吸收系数变化特征
浮游植物比吸收系数是单位色素浓度吸收能力的大小，可以表示为浮游植物吸收系数 \(a_a(\lambda) \) 与叶绿素 a 浓度 (Chl. a, \(\mu g/L \)) 的比值，即：

\[
a_a(\lambda) = \frac{a_a(\lambda)}{Chl. a}
\]

1.4 统计分析

运用 SPSS 17.0 进行数据统计分析，包括计算平均值、中值、极值、标准差、方差等。不同湖泊间参数差异性分析采用独立样本 t 检验，显著性水平 \(P \) 值小于 0.05 表示存在显著性差异。

2 结果与讨论

2.1 湖泊营养状态评价结果

利用综合营养状态指数法评价湖泊富营养化程度，太湖因湖泊面积较大，生态系统多样，空间异质性较大，逐个计算样点的综合权后，这 42 个采样点可以划分为三类。其中 20 个点位为重度富营养，记为 T I ；其余的 22 个为中度富营养，记为 T II ；太湖湖 6.7.8 月均为轻度富营养；而博斯腾湖 8 月则为中营养（表 2）。统计结果发现，重度营养及中度营养的湖泊浮游植物色素、总磷浓度均显著高于轻度营养的太湖湖和中营养的博斯腾湖，而透明度则显著低于太湖湖和博斯腾湖 (t-test, \(P < 0.05 \)) 。研究结果与金相等 [2] 对太湖、张运林等 [21] 对太湖湖、谢明华等 [22] 对波斯湖的评价结果一致。本文结果一方面反映评价的合理性，另一方面也证明了 3 个湖泊营养水平近年来没有发生明显变化。

表 2 太湖、太湖湖、波斯湖湖营养程度评价参数值及富营养化评价结果

<table>
<thead>
<tr>
<th>湖泊</th>
<th>Chl. a/((\mu g/L))</th>
<th>TN/(mg/L)</th>
<th>TP/(mg/L)</th>
<th>SD/m</th>
<th>TLI</th>
<th>富营养水平</th>
</tr>
</thead>
<tbody>
<tr>
<td>太湖 T I</td>
<td>98.36 ± 30.5</td>
<td>2.45 ± 0.84</td>
<td>0.31 ± 0.08</td>
<td>0.20 ± 0.05</td>
<td>75.69</td>
<td>重度富营养</td>
</tr>
<tr>
<td>太湖 T II</td>
<td>29.25 ± 17.4</td>
<td>1.23 ± 0.27</td>
<td>0.14 ± 0.04</td>
<td>0.25 ± 0.04</td>
<td>64.78</td>
<td>中度富营养</td>
</tr>
<tr>
<td>太湖全部</td>
<td>62.16 ± 42.5</td>
<td>1.81 ± 0.87</td>
<td>0.22 ± 0.11</td>
<td>0.22 ± 0.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>太湖 6 月</td>
<td>19.63 ± 3.91</td>
<td>1.06 ± 0.09</td>
<td>0.04 ± 0.01</td>
<td>1.12 ± 0.19</td>
<td>51.59</td>
<td>轻度富营养</td>
</tr>
<tr>
<td>太湖 7 月</td>
<td>12.41 ± 2.37</td>
<td>1.95 ± 0.86</td>
<td>0.03 ± 0.005</td>
<td>0.99 ± 0.24</td>
<td>51.98</td>
<td>轻度富营养</td>
</tr>
<tr>
<td>太湖 8 月</td>
<td>29.18 ± 7.61</td>
<td>1.48 ± 0.30</td>
<td>0.08 ± 0.02</td>
<td>1.19 ± 0.17</td>
<td>56.57</td>
<td>轻度富营养</td>
</tr>
<tr>
<td>太湖全部</td>
<td>20.39 ± 8.54</td>
<td>1.50 ± 0.63</td>
<td>0.05 ± 0.02</td>
<td>1.10 ± 0.21</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>博斯腾湖</td>
<td>2.80 ± 0.81</td>
<td>1.02 ± 0.28</td>
<td>0.006 ± 0.01</td>
<td>2.10 ± 0.81</td>
<td>34.60</td>
<td>中营养</td>
</tr>
</tbody>
</table>

2.2 浮游植物吸收系数

浮游植物是湖泊中主要的初级生产者, 440 nm 和 675 nm 附近是浮游植物的特征吸收波段, 675 nm 主要是叶绿素 a 贡献, 而 440 nm 除了叶绿素还可以反映辅助色素的贡献, 因此在国际上被广泛应用于表征浮游植物对光的吸收能力。在不同的营养状态下, 浮游植物的吸收光谱在 440, 675 nm 附近有两个吸收峰, 但同一营养状态下不同采样点之间由于色素浓度有所差异, 相应的浮游植物的吸收系数变化也不同 (图 1)。3 个湖泊 4 个不同的营养状态在 440 和 675 nm 处的吸收系数 (\(a_{a,440} \), \(a_{a,675} \)) 的变化范围分别为: 太湖 T I 0.35 ~ 2.13, 0.20 ~ 1.38 m⁻¹, 太湖 T II 0.27 ~ 1.58, 0.12 ~ 0.89 m⁻¹, 太湖湖 0.41 ~ 1.18, 0.23 ~ 0.66 m⁻¹, 博斯腾湖 0.12 ~ 0.31, 0.02 ~ 0.13 m⁻¹, 均值分别为太湖 T I 1.02 ± 0.51, 0.59 ± 0.32 m⁻¹, 太湖 T II 0.69 ± 0.40, 0.38 ± 0.23 m⁻¹, 太湖湖 0.78 ± 0.41, 0.13 m⁻¹ 和博斯腾湖 0.20 ± 0.04, 0.08 ± 0.02 m⁻¹, 不难看出重度富营养的太湖 T I 的浮游植物吸收系数最大, 中度富营养状态的太湖 T II 与轻度富营养的太湖湖浮游植物吸收系数均值相差不多, 而中营养的博斯腾湖最小。另外将太湖的 42 个采样点作为整体来看, 浮游植物吸收系数相对于太湖湖、博斯腾湖变化范围最大, 但就太湖 T I 和太湖 T II 来说, 即使是同一湖泊, 但因营养水平的差异, 浮游植物吸收系数变化范围和均值差异仍很显著。原因在于太湖湖湖面积大, 生态系统类型多样, 加之其属于浅水湖泊, 沉积物容易再悬浮, 开放水域水体无机颗粒物比较高, 各点之间浮游植物色素浓度和吸收系数的差异较其他水体大得多。
图 1 400～700 nm 浮游植物吸收系数曲线：太湖 TⅠ (a)、太湖 TⅡ (b)、天目湖 (c)、博斯腾湖 (d)
Fig. 1 Absorption coefficient spectra of phytoplankton at 400～700 nm in Lake Taihu TⅠ (a), Lake Taihu TⅡ (b), Lake Tianmu (c) and Lake Bositeng (d)。

个湖泊浮游植物吸收系数平均值的比较可以明显看出，浮游植物吸收系数随营养水平的变化情况，重度富营养的太湖 TⅠ > 轻度富营养的天目湖 > 中度富营养的太湖 TⅡ > 中营养的博斯腾湖 (图 2).。总体来看，太湖和天目湖属于富营养化湖泊，浮游植物吸收系数明显高于中营养的博斯腾湖 (t-test，P < 0.01)，这充分反映了随营养程度增加，浮游植物吸收系数逐渐增加。由于本文水样采集均选择在夏季的 6～8 月，浮游植物密度较高，其吸收系数的分布也较为准确，获得的不同湖泊浮游植物吸收系数具有可比性。但天目湖浮游植物略高于太湖 TⅡ 可能是因为太湖风浪较大，底泥易发生再悬浮，造成藻类悬浮颗粒物含量增加而表层的藻类被悬浮到下层水体，因此影响浮游植物的吸收系数，使其偏小。另外 440 nm 处受藻类颗粒物的影响较 675 nm 明显，因此 675 nm 处二者的差距更小一些 (图 2). 尽管有关浮游植物吸收系数随湖泊营养程度增加而增加的报道很少见，但在大洋水体的许多研究中显示，浮游植物吸收系数随营养程度的增加显著上升 [23~24].

浮游植物吸收系数主要受水体中浮游植物的色素浓度及种群组成的影响，而群落结构的组成与湖泊的营养状态密切相关。叶绿素 a 是水体富营养化的重要指标，浮游植物的吸收系数随着叶绿素 a 浓度的变化而变化。4 种营养状态的湖泊水体，相应的叶绿素 a 变化范围及均值为：太湖 TⅠ 47.67～171.01 μg/L，太湖 TⅡ 8.51～68.25 μg/L，天目湖 9.75～38.6 μg/L，博斯腾湖 0.96～4.39 μg/L。统计结果显示，太湖 TⅠ 的叶绿素浓度显著大于太湖 TⅡ、天目湖和博斯腾湖 (t-test，P < 0.01).。湖泊营养状态的差异导致叶绿素 a 浓度间的差异，进而影响到浮游植物吸收系数的差异。在远海 I 类水体和河口区、沿岸带等 II 类水体的一些研究结果均显示，浮游植物吸收系数与叶绿素 a 浓度存在线性或者非线性关系，如 Bricaud 等 [23] 对海洋水体中浮游植物的吸收系数及叶绿素 a 浓度的线性关系研究。
者有很好的线性关系。不同营养水平湖泊浮游植物吸收系数与各自叶绿素 α 浓度的线性拟合曲线可以看出，浮游植物在 440 和 675 nm 处的吸收系数都随水体叶绿素 α 浓度的增加呈线性增加，线性关系很好地反映了浮游植物吸收系数随叶绿素 α 浓度的变化（图 2）。

图 2 不同营养水平湖泊浮游植物吸收系数 \(\alpha_{ph}(440) \), \(\alpha_{ph}(675) \) 与叶绿素 α 浓度的关系

Fig. 2 Correlations between phytoplankton absorption coefficients \(\alpha_{ph}(440) \), \(\alpha_{ph}(675) \)
and chlorophyll-a concentration in different trophic level lakes

2.3 浮游植物比吸收系数

浮游植物比吸收系数表征的是单位叶绿素 a 浓度对光的吸收能力，它随水体不同营养水平，不同地区，
不同季节、不同光照条件和浮游植物群落结构的变化而变化。而在这些众多的影响因素中，水体的营养水平往往起到关键作用，因为水体的营养水平在很大程度上决定水下光照条件和浮游植物的群落结构。一般贫营养水体浮游植物比吸收系数高于富营养水体。\(\sigma_\text{P}^*(440) \)的变化范围为 \(0.01 \sim 0.18 \text{ m}^2/\text{mg Chl. a} \)。本文4种营养状态湖泊水体 \(440,675 \text{ nm} \) 波长的比吸收系数变化范围分别是：太湖 T I 0.008 ~ 0.027, 0.003 ~ 0.015 \text{ m}^2/\text{mg Chl. a}, 太湖 T II 0.006 ~ 0.023, 0.004 ~ 0.013 \text{ m}^2/\text{mg Chl. a}, 天目湖 0.02 ~ 0.05, 0.01 ~ 0.03 \text{ m}^2/\text{mg Chl. a}。博斯腾湖的 \(0.03 \sim 0.08 \text{ m}^2/\text{mg Chl. a} \)，相应的均值为：太湖 T I 0.013 ± 0.006, 0.007 ± 0.003 \text{ m}^2/\text{mg Chl. a}, 太湖 T II 0.012 ± 0.004, 0.006 ± 0.002 \text{ m}^2/\text{mg Chl. a}, 天目湖 0.038 ± 0.008, 0.019 ± 0.003 \text{ m}^2/\text{mg Chl. a}。博斯腾湖 0.051 ± 0.013, 0.020 ± 0.007 \text{ m}^2/\text{mg Chl. a}。统计检验显示，太湖浮游植物比吸收系数显著小于天目湖，而天目湖浮游植物比吸收系数又显著小于博斯腾湖（t-test, \(P < 0.01 \)）。400 ~ 700 \text{ nm} \) 波段浮游植物比吸光系数光谱曲线明显看出3个湖泊比吸光系数的变化情况（图3）：博斯腾湖 > 天目湖 > 太湖。按照水体营养状态来看，水体上随着水体富营养状态的增加而降低，只是重度富营养的太湖 T I 和中度富营养的太湖 T II 比吸光系数值很接近，原因在于太湖 T I 和太湖 T II 虽然浮游植物吸光系数差异显著，但太湖 T I 的叶绿素 a 浓度较太湖 T II 大得多，因此太湖 T I 和太湖 T II 的比吸光系数差异并不明显，其深层次原因是浮游植物群落组成和细胞生长速率差异不明显。由于本研究中3个湖泊的采样均选择在夏季，因此浮游植物比吸光系数的差异很大程度上归因于水体的营养水平，因此也进一步证实了富营养水体的浮游植物比吸光系数低于贫营养水体的事实。与张益林等(2) 在太湖与海洋的比较分析结果一致。

图3 不同营养水深湖泊 400 ~ 700 \text{ nm} \) 浮游植物吸光系数（a）和比吸光系数（b）变化曲线

Fig. 3 Phytoplankton absorption coefficient spectra (a) and chlorophyll-specific absorption coefficient spectra (b) at 400 ~ 700 nm in different trophic levels lakes

浮游植物比吸光系数随湖泊营养程度增加而降低可归于色素包藏效应。随着湖泊营养程度增加浮游植物色素浓度明显增加，相应地色素的吸收效应增加，使得浮游植物吸光系数下降(25-26)。浮游植物的比吸光系数和叶绿素 a 之间的关系因为受到色素包藏效应的影响多为非线性的。本研究的相关分析发现，除了博斯腾湖在 675 nm 之外，其他湖泊在 440 nm 和 675 nm 浮游植物吸光系数和叶绿素 a 浓度之间存在显著的负相关关系 (ANOVA, \(P < 0.05 \))，即单位浓度的叶绿素 a 对光的吸收能力逐渐减小，证明了这 2 个波段色素包藏效应的存在。就 3 个湖泊在 440 nm 和 675 nm 处浮游植物吸光系数和叶绿素 a 浓度整体分析而言，这 2 个波段浮游植物吸光系数与叶绿素 a 浓度存在显著的负相关关系，且 440 nm 处吸光系数变化更快（图4）。与王桂芬等(3) 对南海北部的研究结果相比，浮游植物吸光系数在 440 nm 处变化更慢，而 675 nm 处变化稍快。

3 结论

1）利用综合营养状态指数法评价 8 月份太湖 T I 、太湖 T II 、6-8 月份天目湖及 8 月份博斯腾湖的营养状态分别为：重度富营养、中度富营养、轻度富营养和中营养，在此阶段 3 个湖泊存在明显营养梯度。

2）3 个湖泊的浮游植物吸光系数在 440 和 675 nm 有明显的吸光峰，440、675 nm 处浮游植物吸光系数与叶绿素 a 浓度存在显著正相关，线性关系很好地反映浮游植物吸光系数随叶绿素 a 浓度的变化。
图4 浮游植物比吸收系数与叶绿素a浓度的关系

Fig.4 Correlations between chlorophyll-specific absorption coefficient and chlorophyll-a concentration of phytoplankton

3) 浮游植物比吸收系数和吸收系数光谱相似, 在440和675nm有明显的吸收峰,但是浮游植物比吸收系数和叶绿素a浓度呈显著的负相关关系,证明了色素包裹效应的存在。

4) 随着富营养水平的增加,由于浮游植物色素浓度增加其吸收系数逐渐增大,而色素包裹效应的存在导致浮游植物比吸收系数明显降低。

4 参考文献

