Assessment of fish spatial distribution and biomass in Lake Taihu using hydroacoustic method

SUN Mingbo1,2, GU Xiaohong1, ZENG Qingfei1, MAO Zhigang1,2 \& GU Xiankun1,2

(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)

(2: University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract: Before the fishing of Lake Taihu, a mobile hydroacoustic survey was performed in eastern and northern of Lake Taihu in August of 2011, with using BioSonics DT-X scientific echo-sounder (208 kHz). Combining Geographic Information System (GIS) model, then fish size component, spatial distribution and biomass are assessed. The results show that the mean target strength (acoustic reflectivity of target fish) in the surveying lake areas is -51.85 ± 0.02 dB and the mean length is about 6 cm, ranging from 2.35 to 89.33 cm. The fish target strength in different areas is significantly different, which means there is significant difference of fish size, with the minimum mean target strength (-53.94 ± 0.10 dB) in the middle of Dongshan Island and Xishan Island and the maximum mean target strength (-50.27 ± 0.14 dB) in Guangfu Bay. The mean fish density is 2.27 ± 0.57 ind./m3, ranging from 0.43 to 3.90 ind./m3 in all survey areas, where a high fish density occurred in open water zone. Based on the raster data gained from fish distribution GIS model, the total amount of fish mantissa biomass are estimated to be 5.3×10^9 ind., in which the fish with target strength lower than -45 dB (length about 13 cm) is 98.49%. The present study provided a preliminary application of the hydroacoustic method and performed in big shallow lake for fish resources investigation. This can break through the limitations of the traditional investigation methods for fish resource assessment on large spatial scales, to a certain extent. The application is still influenced by stormy waves, aquatic plants and speed.

Keywords: Hydroacoustic; Lake Taihu; fish; size component; spatial distribution; biomass

* 国家科技支撑计划项目（2012BAD25B06）, 环保部环保公益项目（2010467014）和江苏省水产三项工程项目（PJ2011-55）联合资助。2012-02-07 收稿; 2012-07-18 收修改稿。孙明波, 男, 1987 年生, 博士研究生; E-mail: sumingbo2008@126.com。

** 通信作者; E-mail: xgha@niglas.ac.cn.
随着仪器性能的提高和计算机软件的发展，声学方法已日益成为鱼类资源量评估的主要手段。相对于传统的声学方法，声学方法具有数据多、覆盖区域广、不损害生物资源、提供连续数据、精确定位鱼类位置等优点，称得上是鱼类生物量快速评估的一种有效方法。自1980年引入“北斗”号调查船的SIMRAD EK500回声探测仪，声学方法已逐渐应用于我国近海鱼类资源的调查和研究。然而，由于水深较浅，声学方法在内陆水体中应用时受声波衰减、盲区、噪声、旁瓣效应、水生生物等影响较大。但随着水平探测技术、抛物线天线等技术的发展与提高，这些问题得到逐步解决。国内学者也对内陆淡水鱼类资源进行了一些研究。

太湖地处长江三角洲边缘，气候温和，水系发达，湖底平坦，湖水营养物质丰富，水质良好，水生生物种类丰富，为典型的淡水渔业资源的优良生态湖。根据统计，太湖拥有鱼类资源107种，隶属于14目25科73属。鱼类是太湖捕捞渔业的主要资源，其中淡水鱼类资源总量在1952—2006年间呈不断增长趋势，从1952年的4060.71增加到2006年的32187.1，其中小型鱼类湖鲜为优势种，产量占总生物量的95%左右，大中型鱼类比例大幅度下降，而太湖鱼类放流、富营养化、不合理的捕捞方式以及太湖氨氮、磷等水体富营养化等，使得太湖鱼类资源面临严重威胁。为了保护太湖鱼类资源的可持续发展，太湖渔业管理实施了封湖休渔政策。将太湖的禁渔期延长到2月1日至8月31日，建立大面积繁殖保护区，建立了渔具渔法，实施了保护性放流。目前，太湖的鱼类资源状况只能通过每年的捕捞产量来反映，并不能完全代表实际的鱼类资源状况，因此，选择太湖开捕前的几天，避开捕捞后捕捞作业船只和捕捞日回声探测仪，鱼类自然空间分布的干扰，采用声学方法对太湖鱼类大小组成、空间分布和资源量进行评估，为制定更合理的捕捞强度和捕捞方式提供有价值的参考，并对声学方法在大型淡水湖泊中的应用进行探讨。

1 研究区域与研究方法

1.1 研究区域

太湖（30°55′40″～31°32′58″N,119°52′32″～120°36′10″E），位于长江三角洲南缘，是我国五大淡水湖泊之一。水深3.14 m，长68 km，水位56.0 km，面积为2338 km²，最大水深9.3 m，平均水深2.12 m，湖底平坦，最大风速24.7 m/s，平均风速最大值为3.8～4.3 m/s之间，出现在3～5月；最小值为2.6～2.9 m/s，出现在8月或12月。本次声学调查在太湖的东部湖区和北部湖区进行，每个湖区各走航调查7个区域，具体情况如表1所示。

1.2 调查研究方法

2001年太湖开捕前的8月28～29日，采用声学方法对东太湖和太湖湖区的鱼类空间分布和资源量进行调查。每天具体时间为7:00～17:30。使用太湖水生探鱼器（85马力）进行走航，Garmin Oregon 450导航仪进行航线导航，走航航速为3 m/s，区域1～14的走航航程和航线如表1和图1所示，总长度约为38 km。

本次声学探测使用的设备为BioSonic DT-X型声回声探测仪（6.0°分裂波束数字换能器，工作频率为208 kHz）。太湖属于浅水湖泊，采取水平式探测，将换能器用铁架固定于船舱，入水深度约0.3 m，波束与水面

图1 太湖东部和北部湖区的声学调查区域（图中数字代表调查区域，根据调查先后划分，黑线为航程依托）

Fig. 1 Hydroacoustic survey area in eastern and northern Lake Taihu
呈15°倾斜，波束在8 m 左右的时候可以探测到水底。利用 BioSonics Acquisition 6.0 软件进行水声学数据采集，采集过程中换能器脉冲频率为4 pps，脉冲宽度为0.5 ms，数据收集阈值为-130 dB，数据收集距离为1 ~ 20 m，采用 Garmin GPS 17x HVS 对 GPS 数据同步采集存储。实测水温为29.6℃，使用36 mm 的碳化钨标准球对仪器进行实地校准。

表1 太湖东部湖区和北部湖区水声学调查的基本信息
Tab. 1 The basic information of hydroacoustic survey in eastern and northern Lake Taihu

<table>
<thead>
<tr>
<th>调查区域</th>
<th>湖区环境特征</th>
<th>走航区域</th>
<th>走航航程/km</th>
<th>平均水深/m</th>
<th>区域位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>东部湖区</td>
<td>水生植物分布广泛，生物多样性较高，水质较好，为草型湖</td>
<td>1</td>
<td>2.7</td>
<td>2.18</td>
<td>西山岛北侧与激水区的交界处，横山外围</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.4</td>
<td>2.32</td>
<td>西山岛北侧与激水区的交界处，竹山东侧</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.2</td>
<td>2.09</td>
<td>西山岛西侧与激水区的交界处</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2.3</td>
<td>2.12</td>
<td>东西太湖的交汇处，为生态多样性保护区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2.6</td>
<td>2.11</td>
<td>洞庭东西山间，为鱼类繁殖保护区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>2.7</td>
<td>1.95</td>
<td>余山岛西侧，为鱼类繁殖保护区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>2.6</td>
<td>2.41</td>
<td>西山大桥附近，为鱼类繁殖保护区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>2.3</td>
<td>2.37</td>
<td>沿岸带，揽山岛东南侧，为螺类保护区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3.1</td>
<td>2.51</td>
<td>湖心激水区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.0</td>
<td>2.78</td>
<td>湖心激水区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>3.1</td>
<td>2.34</td>
<td>湖心激水区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.5</td>
<td>2.17</td>
<td>梅梁湾，设置渔具禁止捕捞区</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>3.3</td>
<td>2.03</td>
<td>贡湖湾</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>2.2</td>
<td>2.64</td>
<td>沿岸带，为螺类保护区，禁渔区</td>
</tr>
</tbody>
</table>

1.3 水生物采样

2011年9月6日对高塘网水生物随机抽样调查，高塘网由2只渔船组成作业组，网的长度2000 m 左右，网目1 mm，机械收网，可将围网范围内的鱼——网打尽。共对3个作业组的水生物进行随机取样，统计记录鱼类种类、尾数比例、体长、体重数据。

1.4 数据处理及分析

1.4.1 水声学数据处理及分析 对采集到的水声学数据用 BioSonics Visual Analyzer 4.1 进行分析，将每个航段平均分成10个相等的单元，记录每个单元的中心坐标，数据处理从波束的2 m 处开始，同步输出单体回声识别结果，单体回声识别参数为：回波阈值为-60 dB，相关系数为0.90，最小脉冲宽度系数为0.75，最大脉冲宽度系数为3，终止脉冲宽度为-12 dB，时变增益（TVG）为40 lgR。采用 Misund[32] 的方法计算鱼类密度，将单体回声计数结果除以探测体积，得到各单元的鱼类密度，计算公式为：

$$ V = \frac{1}{3} \pi \cdot \tan \frac{\theta}{2} \cdot (R^3 - r^3) $$

(1)
\[\rho = \frac{N}{\sum_{i=1}^{n} V_i} \quad (2) \]

式中，\(V \)为单个脉冲波束探测的水体体积(m³)，\(\theta \)为回声探测仪的角度 6.5°，\(r \)为探测波束数据分析的起始距离(m)，\(R \)为探测波束数据分析的终止距离(m)，\(\rho \)为鱼类密度(ind./m³)，\(N \)为回声计数得到鱼类回声信号个数，\(p \)为单元内的第 \(i \) 个脉冲。

将各单元所有单体回声结果根据TS (目标强度) 分为 -60 ~ -55, -55 ~ -50, -50 ~ -45, -45 ~ -40, -40 ~ -35, -35 ~ -30 dB六段，分别统计各TS段的单体回声数，同样利用上述方法计算各单元分TS段的鱼类密度和目标强度。本文根据Foote（24）经验公式对鱼类长度进行估算：\(TS = 20 \log L - 67.4 \)，式中，\(TS (dB) \)为鱼类的目标强度，\(L (cm) \)为目标鱼体的体长。

1.4.2 鱼类空间分布建模及资源量评估

对于不同探测区域的鱼类空间分布特征，采用ArcGIS 10.0软件进行空间分布的建模。将计算出的各单元鱼类密度，各区域的均水深，各单元航段中心坐标数据导入ArcGIS平台，采用IDW方法进行栅格插值运算\(^{25,26}\)。设定栅格大小为0.0026°，约为0.29 km x 0.25 km，设定权重 \(p = 2 \)，在面积为1194.8 km²的东部和北部湖区中共得到1600多个栅格，导出每个栅格鱼类密度和水深的数值。利用导出的每个栅格鱼类密度的数值、水深数值和栅格面积进行乘积计算得到各栅格的鱼类尾数，最后统计所有栅格的鱼类总尾数，从而获得鱼类的资源总量。计算公式为：

\[B = \sum_{i=1}^{n} \frac{p_i \cdot S_i \cdot h_i}{V_i} \quad (3) \]

式中，\(B \)为鱼类资源总量(ind.)，\(p_i \)为每个栅格的鱼类密度值(ind./m³)，\(S_i \)为所在栅格数，\(S_i \)为栅格的面积(m²)，\(h_i \)为栅格水深(m)。利用同样的方法对上述各TS段的鱼类空间分布进行建模，并评估相应TS段的资源尾数。

1.4.3 数据的统计分析

本文所进行的回声信号TS值分布和鱼类密度分布的正态性检验、回声信号TS值差异性非参数检验、鱼类密度的描述性统计、鱼类密度分布方差齐性检验、鱼类密度分布单因素方差分析、鱼类密度和目标强度的区域聚类分析均采用SPSS 17.0。鱼类密度变异系数 \(CV = S/X \) 式中，\(S \)为标准差(ind./m³)，\(X \)为平均值(ind./m³)。鱼类分布建模采用ArcGIS 10.0。

2 结果和分析

2.1 渔获物组成

从高塘湖随机取样，在三个高塘湖作业组共采集鱼类17.19 kg，包括8 种鱼类。尾数比例为：湖鲚(Coilia ectenes taihuensis) 92.86%、银鱼(Stolephorus intermedius) 0.65%、鲫(Carassius auratus) 0.43%、鲈(Mylopharodon chrysops) 0.25%、鳗鲡(Oithona falcata) 0.10%、鲢(Pelteobagrus fulvidraco) 0.05%、鲶(Obontobutus obontobutus) 0.02%。鱼类体长与体重统计结果如表2，其中湖鲚、银鱼、间下鲢等鱼类各取20尾，其他鱼类个体数较少从渔获物随机取样补至20尾。

表 2 渔获物调查

<table>
<thead>
<tr>
<th>种类</th>
<th>体长/cm</th>
<th>体重/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最小值</td>
<td>平均值±标准差</td>
</tr>
<tr>
<td>湖鲚</td>
<td>5.0</td>
<td>8.4±2.4</td>
</tr>
<tr>
<td>银鱼</td>
<td>7.5</td>
<td>8.3±0.4</td>
</tr>
<tr>
<td>鲫</td>
<td>9.5</td>
<td>15.0±2.3</td>
</tr>
<tr>
<td>间下鲢</td>
<td>9.4</td>
<td>11.2±0.7</td>
</tr>
<tr>
<td>鲈</td>
<td>18.3</td>
<td>21.5±2.0</td>
</tr>
<tr>
<td>鲢</td>
<td>20.8</td>
<td>41.1±7.1</td>
</tr>
<tr>
<td>鳗</td>
<td>23.0</td>
<td>37.9±6.5</td>
</tr>
<tr>
<td>黄颡鱼</td>
<td>12.0</td>
<td>15.8±1.1</td>
</tr>
</tbody>
</table>
2.2 鱼类大小组成特征

在本次所有走航调查航段内共收集到88121个回声信号, 其中大 T S 值为 -51.85 ± 0.02 dB, 其中最大 T S 值为 -28.38 dB, 最小 T S 值为 -59.99 dB (回波阈值). 按照 Foote 经验公式推算鱼类平均体长约为 6 cm, 体长范围为 2.35 ~ 89.33 cm, 对各 T S 航段 (从小到大) 进行统计, 相应平均体长为 3.5, 9, 17, 30 和 51 cm. 在本次调查中, 检测到的大小 -30 dB 的目标信号 9 个, 即长度大于 74 cm 的鱼非常少, 在沿岸的区域 14 中探测到 2 个, 东北太平洋交汇处 (区域 4) 中探测到 3 个, 其余 4 个在深水的渔场区域 (区域 9, 10, 11, 12) 探测到. 目标个体数非常低, 故不再分 T S 航段进行统计. 在深水区域的区域 10 中探测到的回声信号最多, 在沿岸的区域 14 中探测的回声信号最少, 各调查区域的回波数如图 2 所示。

经 Shapiro-Wilk 正态性检验, 走航的 14 个调查区域中所探测到的鱼类回声信号 T S 值并不符合正态分布 (P < 0.05), 各调查区域中 T S 值的鱼类个体占有较高的比例(图3). 故利用非参数检验方法对 14 个调查区域内鱼类回声信号 T S 值差异性进行比较, 发现 14 个调查区域内鱼类回声信号 T S 值差异显著, 即在不同区域里鱼类的大小差异显著 (P < 0.05), 洞庭东西山间 (区域 5) 的平均 T S 值最小 -53.94 ± 0.10 dB, 沿岸的区域 14 平均 T S 值最大 -50.27 ± 0.14 dB, 各走航调查区域平均 T S 见图 4.

2.3 不同区域鱼类密度

在14个区域的各单元航段中，密度最小值为 0.43 ind./m³，位于西山大桥附近的区域 7(31°10’N, 120°21’E); 密度最大值为 3.9 ind./m³, 位于湖心北端的敞水区区域 11 (31°39’N, 120°8’E)。在走航调查的所有区域中，敞水区的区域 11 均密度最大，为 3.67 ± 0.12 ind./m³, 沿岸区的区域 14 的均密度最小，为 0.58 ± 0.04 ind./m³（表 3）。经方差齐性检验,14个调查区域中鱼类密度分布方差不具备同质性（P < 0.05），这表明在不同调查区域中，鱼群密度空间分布不相同。对各个调查区域内鱼类密度的变异系数比较,洞庭东西山间的区域 5 变异系数最大为 0.35, 敞水区的区域 10 变异系数最小为 0.04, 说明在洞庭东西山间鱼类分布比较不均，而在敞水区内鱼类密度分布相对均匀，所有区域的鱼类密度变异系数都小于 1, 根据孙儒泳种群分布型的划分标准[31], 调查区域的鱼类都属于均匀分布，无成群存在。对各调查区域的鱼类密度在未假定方差齐性下采用 Games-Howell 方法进行多重比较（表 3）。

表 3 不同调查区域鱼类密度差异性比较

<table>
<thead>
<tr>
<th>调查区域</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>鱼类密度/(ind./m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td></td>
<td>2.56 ± 0.46</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td></td>
<td>2.06 ± 0.22</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
<td>2.19 ± 0.15</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>1.04 ± 0.26</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td></td>
<td>2.85 ± 0.20</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>-</td>
<td>*</td>
<td></td>
<td>1.46 ± 0.30</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.34 ± 0.25</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.89 ± 0.15</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.44 ± 0.10</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.67 ± 0.12</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.93 ± 0.33</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.35 ± 0.05</td>
</tr>
<tr>
<td>14</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.58 ± 0.04</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.31 ± 0.21</td>
</tr>
</tbody>
</table>

- 表示在 P = 0.05 不显著，* 表示在 P = 0.05 显著。

选取各区域的鱼类密度，TS, T5 变异系数作为变量，采用主成分聚类法对各区域进行系统聚类分析，同一类在一定程度上体现区域间的鱼类密度和大小组成两者的相似性，可分为五类：区域 1, 8, 3 和 4 为 I 类，区域 2 为 II 类，区域 6, 9, 10, 11 和 12 为 III 类, 区域 7, 13 和 14 为 IV 类, 区域 5 为 V 类(图 5)。同一类也反映出了环境的相似性, 如 I 类主要为东部湖区水草较多的区域, II 类中的区域主要为敞水区, 而 III 类中的区域鱼类密度较低。

图 5 调查区域聚类图

Fig. 5 Cluster dendrogram of survey areas
2.4 鱼类空间分布建模和资源总量评估

对面积为 1194.8 km²的东部和北部湖区进行地理信息系统(GIS)建模(图6),在图示的湖中鱼类密度建模均值为 2.27 ± 0.57 ind./m²,初步估算鱼类资源总尾数为5.3 x 10⁴ ind., 其中 -60 ~ -55, -55 ~ -50, -50 ~ -45, -45 ~ -40, -40 ~ -35, -35 ~ -30 dB 的鱼类资源尾数分别为 6.9 x 10⁴, 3.1 x 10⁴, 1.4 x 10⁴, 6.6 x 10³, 1.0 x 10³, 3.7 x 10² ind., 所占总尾数的百分比分别为 13.10%, 26.45%, 1.25%, 0.19%, 0.07%, 小于 -45 dB (约 13 cm) 的鱼类所占的尾数比例达到了 98.49%。结合渔获物和根据 Foote 公式得到的平均体长值赋予个 TS 段(从小到大)的鱼类平均体重约为 0.8, 1.4, 20.280 和 1250 g, 并乘以相应个 TS 段的鱼类资源尾数得到资源重量, 对各 TS 段的资源重量相加初步估算调查湖区鱼类资源总重量约为 1.8 x 10⁴ t.

3 讨论

本文在太湖开捕前期利用水声学方法和地理信息系统(GIS)模型对太湖鱼类大小组成特征、鱼类空间分布和鱼类资源量进行了调查研究,但在实际的调查中仍遇到了一些问题。风力在 3 ~ 4 m/s 以上时, 波浪较大, 采用回声探测仪进行水平探测受到的影响非常大[28], 在风浪下, 大型浅水湖泊, 需进行水平检测, 本次调查选在风浪较小的 9 月 28 日和 29 日进行, 由风浪造成的水体变动在 5 km/h 以下, 将风浪的影响尽可能最小化。另外在走航的一些区域中, 水草生长较多, 对鱼类的探测会造成较大影响。后期的分析中对这些区域进行了去除。在水草较少的浅水体, 利用水声学方法对鱼类资源量调查并不适合, Hughes 在泰晤士河的研究中也提出了沉水植物较多时使用声学方法并不理想, 但对于泰晤士河鱼类资源量评估和分布研究仍是一个高效的工具[17]。在探测的区域中没有发现明显的鱼类聚集现象, 个体间相对分散, 采用回声计数的方法进行检测计算更为合适[10]。

鱼类回声信号 TS 值依赖于鱼类大小、脉冲发射频率、鱼类在波束中的位置[28]、游泳活动中生物物理条件[31], 超声波在浅水湖泊水平扩散与垂直扩散有所不同, TVG 也有所不同[14], 仍缺少在浅水体中水平探测时回声计数 TS 值与鱼类大小关系的研究, 尚无法准确根据鱼类 TS 值计算出相应的鱼类大小, 对于鱼类大小的初步估计借鉴国外的一些初步探测的经验公式, 不同的研究应以不同 TS 值下的密度进行准确比较。尽管如此, 水声学方法仍是鱼类资源量分析的具有的方法, 在调查过程中克服了其他传统方法工作效率低、工作量大、难以在大空间尺度下的鱼类密度、无法准确获得鱼类自然分布状态下连续数据等局限性[10,33-34], 可以准确的给出鱼类大小组成特征、空间分布和尾数资源量情况。

本次调查所有探测到的鱼类回声信号平均 TS 值为 -51.85 ± 0.02 dB, 根据 Foote 的 TS 值与体长经验公式计算的体长平均在 6 cm, 本文在 9 月 6 日进行了高密度网渔获物采样统计, 高密度网上捕到所有鱼类, 其中鱼尾数占绝大部分的湖鳗(92.86%) 的平均体长为 8.38 ± 2.41 cm, 两者比较可见通过水声学方法调查得到的平均 TS 值按 Foote 经验公式计算出的相应平均体长偏大, 但仍在渔获物平均体长的 95% 置信度上下限区间内, 渔获物统计结果亦表明小型鱼类尾数比例占了 99% 以上, 水声学方法调查结果与之具有—致性,这与其他学者太湖鱼类小型化的研究结果相符合[31], 太湖的主要优势种为湖鳗, 其群种为小型鱼类, 一般不会超过 20 cm, 体长多在 10 cm 以下。本次调查所探测到的回声信号中较大的 TS 值 (> -30 dB) 非常少, 分布在调查区域 4, 9, 10, 11, 12 和 14, 区域 4 处于东西太湖交汇处的草型湖区, 为生物多样性保护区, 可能是较大的草鱼或鲤, 区域 9, 10 和 11 在湖心敞水区, 区域 12 在梅梁湾, 都属于典型的藻型湖区, 可能是较大的鲢鳙; 而区域 14 位于螺鱼保护区和太湖渔业实验站保护区, 常年禁渔, 亦有可能存在较大个体

图 6 太湖东和北部湖区开捕前鱼类密度分布

Fig. 6 The fish density distribution of northern and eastern Lake Taihu before fishing
鱼类^{20}。

在所有调查区域内，鱼类密度最大的为敞水区的区域11（3.67 ± 0.12 ind./m^3），最小的为沿岸区的区域14（0.58 ± 0.04 ind./m^3）。这可能与区域11属于敞水区有很大关系，太湖中的小型鱼类栖息，银鱼在敞水区分布较多^{36-37}。聚类分析中也体现出敞水区聚集群区9、10、11和12的密度具有明显性，而沿岸区的区域14中虽然密度较低，但较大型个体的鱼类7S比例却有所上升，这可能是由于该区域属于保护区受到常年禁捕保护有关。各个调查区域的鱼类密度差异性显著，根据地理信息系统建模的分布图显示，鱼类密度在敞水区较高，有山岛山间两侧的山山北侧相对较低，东西山间的东北侧的鱼类密度略高，东南侧，另外可以明显发现梁山湾的鱼类密度明显高。于沿山湾的鱼类密度，鱼类密度的分布与流速、植被状况、浮游生物、底质特点、保护区建立、湖泊营养水平等因素有关^{34-40}，对于太湖鱼类的分布与这些因子的关系需要进一步的探索研究。

4 参考文献

[18] 何俊, 聂振华, 白秀玲等. 太湖渔业产量和结构变化及其对水环境的影响。*海洋湖沼通报*, 2009, **2**: 143-150.

孙明波等:基于水声学方法的太湖鱼类空间分布和资源量评估

(3)；981-987.

[34] 王 江, 陈朝杰, 刘保平等. 三峡库区大宁河鱼类的时空分布特征. 水生生物学报, 2009, 33(3)；516-521.

