广东湖光岩玛珥湖沉积物漫反射光谱数据反映的全新世以来古环境演化

吴旭东1,2, 沈吉1**
(1: 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008)
(2: 中国科学院研究生院, 北京 100049)

摘要: 利用漫反射光谱技术得到湖光岩玛珥湖沉积物的叶绿素 a 浓度。通过与 TOC, Sr/Re 比值和磁化率的对比发现,叶绿素 a 浓度能够真实反映湖泊初级生产力的变化, 较高的叶绿素 a 浓度代表季风较强, 降雨量较高, 反之亦然。湖光岩玛珥湖沉积物多环境代用指标分析结果表明, 湖区地区早全新世季风加强, 中全新世季风迅速衰退。这种全新世季风演化模式与北半球季风区的很多地质记录以及北纬 30°变化趋势相似, 反映了太阳辐射是湖泊地区千年尺度季风演化的主要驱动因素, 但是湖区地区的季风演化滞后于太阳辐射变化大约 2200 a。叶绿素 a 浓度记录显示 6000 a BP 左右季风迅速减弱, 这与他其它记录显示的季风演化模式不同, 一方面, 太阳辐射减弱激发了湖泊地区植被一大气圈的负反馈作用, 这可能是造成 6000 a BP 左右气候迅速变干的原因之一; 另一方面, 沉积速率增加导致的释稀作用放大了叶绿素 a 浓度下降的趋势。3600 a BP 以来的沉积环境可能受到了人类活动的影响。

关键词: 全新世; 古环境演化; 湖光岩玛珥湖; 漫反射光谱; 沉积物

Paleoenvironment evolution since the Holocene reflected by diffuse reflectance spectroscopy from Huguangyan Maar Lake sediments, Guangdong Province

WU Xudong1,2 & SHEN Ji1
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(2: Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract: Chlorophyll-a concentration of Huguangyan Maar Lake sediments were determined by diffuse reflectance spectroscopy. Through comparison with TOC, Sr intensity and magnetic susceptibility we concluded that chlorophyll-a can be taken as a reliable proxy of primary production, higher chlorophyll-a absorption reflects stronger monsoon intensity and higher precipitation, and vice versa. Holocene environment evolution at Zhanjiang area reconstructed by chlorophyll-a, TOC, Sr intensity and magnetic susceptibility of Huguangyan Maar Lake sediments demonstrated that the monsoon intensity in Zhanjiang area was strong in the early Holocene and declined dramatically since 6000 a BP. Holocene climate evolution pattern at Zhanjiang area is similar with many other records from the monsoonal areas of the North hemisphere and summer isolation at 30°N, implying that solar isolation is the driving force of millennial-scale Holocene monsoon evolution at Zhanjiang area. However, monsoonal evolution lags behind solar isolation by about 2200 a. Monsoon strengthen demonstrated by chlorophyll-a declined significantly since 6000 a BP. Nonetheless, all the other records display gradual weakening process. Negative feedback of vegetation-atmosphere induced by solar isolation might have caused quick droughty trend, on the other hand, dilution effect led by increased sedimentary rate may amplify declining trend of chlorophyll-a around 6000 a BP. Sedimentary environment since 3600 a BP could be impacted by human activities.

Keywords: Holocene; paleoenvironment evolution; Huguangyan Maar Lake; diffuse reflectance spectroscopy; sediment
全新世的气候变化是在人类活动的影响下形成的，尤其是在全新世后期，人类活动逐渐增强。研究全新世的气候演变，既有助于对未来环境演变趋势进行预测，同时对研究人类的进化、发展也具有重要的理论意义。亚洲季风区是全世界人口分布最密集的区域，然而关于全新世亚洲季风演化高分辨率的气气候记录非常有限。作为一种特殊类型的火山口湖，湖面湖在形成和保存高分辨率地质记录方面具有独特的优势，是全球性高分辨率古气候研究的重要补充。

湖光岩玛珥湖位于中国大陆最南端的广东省湛江市，东濒海，南接琼州海峡，西临北部湾。特定的地理位置和非常小的湖泊面积使湖光岩对季风变化具有较高的敏感性，并在最大程度上记载了当地气候的变化。因此，湖光岩是研究全新世亚洲季风演化非常理想的地点。1997年以来，中外学者已经在湖光岩玛珥湖开展了大量的古气候研究工作，这些研究都显示了全新世早期季风强盛，全新世中期季风开始逐渐衰退。但是这些研究工作所用的年代标尺是一致的，都缺乏8300-3800 a BP的年龄数据，而这一阶段恰恰是全新世早期向中期转化的重要阶段。因此，有高质量的年代标尺控制的湖光岩全新世气候记录对了解湛江地区全新世的季风演化具有重要的意义。

湖泊沉积物中的色素能够反映湖泊周围环境的变化，叶绿素a 是湖泊生态系统中最重要的、普遍存在各种植物中的色素。叶绿素a 的含量在一定程度上反映了初级生产力的变化。高效液相色谱（HPLC）能精确、定量地测定沉积物叶绿素a 含量，但是其往往要消耗大量的人力、物力，而反射光谱学为我们提供了一种快速、经济、无样品损失的测定沉积物叶绿素a 的方法。大部分湖泊沉积物样品的反射光谱都有一个中心位于670 nm左右，非常显著的凹陷，而这个凹陷就是叶绿素a 和其衍生物光谱特征。本文根据湖光岩玛珥湖反射光亮光谱测定的叶绿素a，在精确年份的基础上，与其它指标和前人研究结果进行对比分析，深入探讨湛江地区全新世以来的古环境演化。

1 研究区概况与样品采集

湖光岩玛珥湖(21°08′29″～21°09′22″N, 110°16′22″～110°17′20″E)位于广东省湛江市的西南方，雷州半岛的北部。湛江市的年平均气温为23.1℃，年平均降水量约为1600 mm。受到东南季风和西南季风的共同影响，干、湿季变化明显，每年4～9月的降雨量占到全年总降雨量的90%。7～9月湛江地区的热带风暴频发，往往带来强降雨。目前，湖泊周围的自然植被是半常绿季雨林。湖水分面积为2.25 km²，汇水面积为3.2 km²，没有河流汇入或湖水流出，水体补给主要是湖水区内大气降水和地下水。最大水深为22 m，平均水深为12 m。湖光岩四周被火山岩墙所包围，湖光岩湖边为心形，一条南北走向的浅滩把它分隔为东西两部分，其中东湖小，西湖大。湖光岩水质营养类型属于亚热带贫营养型，营养元素是湖光岩初级生产力的控制因子。

2009年11月，我们用UWITEC型水上平台和活塞取芯设备在湖光岩玛珥湖西湖水深16.2 m处（图1）采集了两根长岩芯，分别为A（855 cm）、B（926 cm）。两根岩芯的距离仅为5.2 m。采集的岩芯在实验室沿中轴线剖开，并以1 cm 为间隔进行分样。

2 分析方法

2.1 测年

在岩芯 B 选择了 24 个样品送往加州大学进行全有机质的AMS¹⁴C 测年，年份结果采用 Intcal09 曲线校正，所用软件为 OxCal 4.0.1 beta。
2.2 漫反射光谱

指标分析使用的是岩芯 A 样品的漫反射光谱分析参照前人已有的步骤[23] : 把研磨好的粉末样品放在干燥的玻璃薄膜上，加蒸馏水使粉末呈泥浆状，并把泥浆均匀涂抹在玻璃薄膜上，然后在低温下干燥 (<40℃)。漫反射光谱测试是在南京大学表生地球化学研究所完成，所用仪器是美国 Perkin-Elmer 公司生产的 Lambda 900 型分光光度计，测试范围是可见光(400～700 nm)，测试间距为 2 nm。样品的漫反射强度是样品的反射率与标准白板(Spectralon)反射率的比值。

叶绿素 a 的相对含量是通过连续移动的方法测量漫反射光谱 670 nm 左右的吸收深度来决定的[24]。粒度、岩芯水含量以及沉积物组成等因素都会影响沉积物的光谱形状，连续移动的方法能够排斥其他参数只集中于叶绿素 a 对光谱形状的影响[25]。图中我们以 670 nm 左右的凹槽最底部的吸收深度为叶绿素 a 和其衍生物的浓度，吸收深度越深表示沉积物的叶绿素 a 含量越高(图 2)。

2.3 TOC

总有机碳(TOC)含量在中国科学院南京地理与湖泊研究所用水浴热重铬酸钾氧化-Bi色法测得。岩芯顶部 4 cm 的样品量太少, TOC 数据缺失。

2.4 元素分析

剖开的岩芯首先在同济大学海洋地质国家重点实验室做元素扫描分析，测量的仪器为 AVAATECH 公司的 XRF 岩芯元素扫描仪(XRF Core Scanner)，有效分辨率 0.5 cm，以 counts(计数器的计数)为含量单位(cps)。分析间距为 1 cm，岩芯顶部 22 cm 的含水量过高，元素扫描数据缺失，共得到 823 个点的元素强度数据。

2.5 磁化率

磁化率在中国科学院南京地理与湖泊研究所测得，使用的仪器是英国 Bartington 公司生产的 MS2 型磁化率测量仪，经过计算得到每个样品的低频质量磁化率(以下简称磁化率)，所以结果均以相对 SI 标准表示。最顶部的四个样品量太少，磁化率数据缺失。

3 结果

3.1 年代

各个年龄点之间采用线性内插的方法计算得到整根岩芯的年代标尺，岩芯年代-深度图显示整个岩芯年代连续，无倒置现象(图 3)。

3.2 叶绿素 a 浓度和 TOC 含量

叶绿素 a 浓度在 0.00474 ～ 0.13084 之间，平均值为 0.03238。TOC 含量在 0.82% ～18.74% 之间，平均值为 7.56%。叶绿素 a 浓度和 TOC 含量在全新世内的变化趋势相似，6000 a BP 以前，叶绿素 a 浓度和 TOC 含量较高，这一阶段的平均值分别是 0.05382 和 12.95%；6000 a BP 以后，叶绿素 a 浓度和 TOC 含量迅速降低，6000 ～3600 a BP 的
平均值分别是 0.03 和 8.36%；全新世晚期，叶绿素 a 浓度和 TOC 含量最低，平均值分别为 0.01734 和 4.06%（图 4）。

3.3 Sr/Rb 比值

Sr/Rb 比值在 1.66～7.19 之间，平均值为 3.21（图 4）。早全新世的 Sr/Rb 比值最高（11400～6000 a BP），都高于平均值，6000 a BP 之后，Sr/Rb 比值迅速下降；3600 a BP 之后，Sr/Rb 比值大幅度波动但仍然维持在较低水平。整个全新世中晚期的 Sr/Rb 比值一直维持在较低的水平，基本上低于平均值。

3.4 磁化率

磁化率值在 20×10^{-8}～1130×10^{-8} m3/kg 之间，平均值为 315×10^{-8} m3/kg。全新世早期（11400～6000 a BP），磁化率值最低；一直到全新世中期（6000～3600 a BP），磁化率值都高于平均值；3600 a BP 之后，磁化率值大幅度增加（图 4）。

图 4 湖光岩玛珥湖叶绿素 a、TOC、Sr/Rb 比值、磁化率结果
（黑三角代表年代测试样品位置）

Fig. 4 Results of chlorophyll-a, TOC, Sr/Rb and magnetic susceptibility from Huguangyan Maar Lake (Black triangles represent positions of selected dating samples)
4 讨论

4.1 环境指标的意义

4.1.1 叶绿素 a 湖泊沉积物中的叶绿素 a 含量是最好的生产力和保存条件的综合反映。保存在沉积物中之前，叶绿素 a 往往降解为一系列可辨识的衍生物。在某种程度上，叶绿素 a 的降解会导致叶绿素 a 的损失[36]。陆地和水生大型植物的降解物可能会对湖泊底泥区沉积物中叶绿素 a 的衍生物有所贡献，但是我们所采的光合岩岩芯来自于湖心，因此其叶绿素 a 含量的变化主要反映了湖泊中浮游植物色素含量的变化[36]。TOC 和生物硅的变化趋势的相似性进一步证明了光合岩沉积物的有机质主要是自生藻类[38]。营养盐输入是湖光岩藻湖浮游生物量的限制因素[39]，而湖泊中的营养盐主要来自于流域的径流输入。当降雨量高时，进入湖泊的营养盐增加，湖泊初级生产力水平提高，湖泊沉积物中的叶绿素 a 含量增加，反之亦然。

4.1.2 Sr/Rb 比值 Rb 和 Sr 的关系地球化学行为具有较大的差异。在风化过程中 Sr 的活动性比 Rb 强，从而造成了风化产物中 Rb 和 Sr 的分离。风化作用越强，风化产物中 Sr/Rb 比值越低[39-40]。在湖相沉积物中的 Sr/Rb 比值与风化强度的关系与风化产出中的 Sr/Rb 比值与风化强度的关系是相反的[31-32]。Sr/Rb 比值可以反映湖泊流域的风化作用强度[29]。

4.1.3 碳酸率 碳酸盐主要反映了沉积物中风化作用形成的亚铁磁性矿物的变化。但降雨量在 1000~1500 mm 之间时，黄土碳酸盐随降雨量升高而升高[33]。湖光岩表层沉积物岩石磁学和粒度分析结果表明，沉积物中的磁性矿物与周围火山岩中的磁性矿物性质相似[33]。因此湖光岩沉积物中碳酸率的变化既受到气候变化的影响也受到流域表层过程的影响[33]。目前，湖光岩的年平均降雨量是 1600 mm，我们认为较干旱的气候有利于亚铁磁性矿物的生成，使其碳酸率升高。全新世早期（10406~6000 a BP），碳酸率非常低，反映气候湿润，不利于亚铁磁性矿物生成。6000~3600 a BP，碳酸率迅速上升，反映了气候逐渐转干，亚铁磁性矿物增加。3600 a BP 以来，碳酸率迅速增加并且剧烈波动，一方面反映了气候转干，另一方面也可能受到了人类活动的影响[35]。

4.2 全新世以来古气候演化阶段

根据叶绿素 a 浓度、TOC 含量、Sr/Rb 比值和碳酸盐的变化特征，湖光岩藻湖 12000 a BP 以来的气候演化过程可以划分为以下三个阶段（图 4）：

阶段 I：10406~6000 a BP，926~656 cm。这一阶段的叶绿素 a 浓度、TOC 含量和 Sr/Rb 比值最高，碳酸率最低，反映了夏季风加强，气候温暖湿润，流域化学分化作用强，湖泊扩张。

阶段 II：6000~3600 a BP，656~375 cm。与早全新世相比，叶绿素 a 浓度、TOC 含量和 Sr/Rb 比值都明显下降，碳酸率值缓慢升高，反映了夏季风减弱，气候转冷转干，化学风化作用减弱，湖水位下降。

阶段 III：3600 a BP 至现今，375~0 cm。3600 a BP 以来，叶绿素 a 浓度和 TOC 含量持续下降，Sr/Rb 比值波动较大但仍然维持在较低水平，指示夏季风强度逐渐减弱，气候持续变冷变干，化学风化作用继续减弱，湖泊逐渐收缩。大幅度增加的碳酸率和波动频繁的 Sr/Rb 比值可能在一定程度上反映了人类活动增强造成的植被破坏和水土流失导致的外源输入增加的影响。

4.3 与湖光岩前人研究工作的对比

以往湖光岩的相关研究多集中在现代全新世与中全新世季风减弱的时间定在 7800 a BP[34]，但本文的研究结果指示湛江地区夏季风的迅速减弱时间在 6000 a BP 左右，比以往研究提出的时间晚了大约 1700 a。这是因为以往的研究在年代框架控制较差，缺乏 8300~3800 a BP 之间的年代控制点。位于湖光岩东北方向大约 600 km 的定南泥炭记录在全新世显示了与湖光岩沉积物记录近乎同步的古环境演化过程：定南泥炭记录显示社会间季风在 10450 a BP 开始增强，直到 6040 a BP 一直保持较强的季风，6040 a BP 之后季风减弱，气候变冷，变干，而 3800 a BP 之后的沉积序列受到人类活动的影响不适合与其其他记录比较[36]。定南泥炭记录显示的历史季风减弱的时间与本文的结果在定年误差范围内是一致的，同时也证明湖光岩的研究结果可靠。

4.4 湛江地区全新世以来千年尺度的古气候演化

全新世气候适宜期是全新世气候研究的焦点。有研究指出中国全新世气候适宜期在空间上具有明显的
穿时性，自东北、华北、长江中下游到华南地区，气候适宜期出现的时间逐渐滞后[37]，然而后继研究发现中国全新世气候适宜期从西到东，出现时间逐渐后延[38]。陈发虎等认为亚洲中部西风区与东部季风区的全新世气候适宜期存在反相位关系：季风区的气候适宜期出现在全新世早期，而西风区的气候适宜期出现在全新世中期[39]。近年来，越来越多高分辨率的古气候记录显示，千年前尺度全新世季风演化不但在亚洲季风区而且在整个北半球都是同步的：早全新世季风最强，中全新世开始，季风逐渐减弱[40-43]（图5B、C、D、E）。湛江地

![图5](image)

图5 湖光岩玛珥湖叶绿素a与其他记录的对比：(A) 叶绿素a吸收强度；
(B) 贵州董哥洞石笋δ¹⁸O[40]；(C) 阿拉伯G. bulloides%[41]；
(D) 阿曼Qunf洞石笋δ¹⁸O[42]；(E) 北美Carioca盆地Ti%[43]；
(F) 30°N 夏季太阳辐射[44]

Fig. 5 Comparison between chlorophyll-a record from Huguanyan Maar Lake and other records from the monsoon areas: (A) Chlorophyll-a absorption intensity;
(B) Stalagmite δ¹⁸O from Dongge Cave[40]; (C) Arabian Sea G. bulloides%[41];
(D) Stalagmite δ¹⁸O from Qunf Cave in Southern Oman[42];
(E) Ti% from the Carioca Basin[43]; (F) Summer solar isolation at 30°N[44]
区早全新世季风强盛(11970—6000 a BP),中全新世季风开始减弱,并一直持续到晚全新世,这与北半球的其他记录是一致的,由地球轨道驱动引起的太阳辐射的变化是季风千年尺度演化主要驱动因素的观点已经被广泛认同[40-42]。 referencing 《潜力》,全新世季风强盛,中全新世季风开始减弱的特点,显示出了全新世季风演化的气侯性[41]。北半球西部地区在图9000 a BP 达到最强[43] (图5 F),而中国地区的季风强盛期出现在6800 a BP 左右,季风相对于太阳辐射的滞后时间是1500 a[44],而关于印度季风区多个记录的综合研究显示这一滞后时间为 3000 a[45] (图5)。区域性强,不同研究载体和年代误差以及不同研究者在确定季风最强盛时间的主观性,可能导致产生不同滞后时间的原因[46]。

湖光岩叶绿素 a 吸收强度记录显示6000 a BP 左右季风迅速减弱。然而,贵州董哥洞石笋记录[48]、阿拉伯(图5) 沉积物记录[49]、阿曼石笋记录[50]和北美 Carioca 盆地 Ti% 记录[48]却显示 6000 a BP 左右的季风是逐 渐减弱的,这种中全新世气候突然变干的现象不仅出现在亚洲季风区,也出现在非洲季风区[48]及南大西洋记录中[49],前人为轨道作用驱动太阳辐射逐渐减弱,激发了植被—大气圈的负反馈作用,导致了非洲地区 6000—5000 a BP 气候迅速变干[49,50],这种观点在亚洲季风区可能同样适用。6000 a BP之后,湖光岩沉积物的沉积速率明显增加,外源碎屑物质的稀释作用放大了叶绿素 a 浓度下降的趋势,这可能也是导致叶绿素 a 记录显示的季风减弱比其他记录显著的原因之一。

5 结论

湖光岩湖沉积物物相反射光谱测试的叶绿素 a 是反映气候变化的可靠指标,叶绿素 a 可以忠实反映湖泊初级生产力的变化并进一步反映气候变化。较高的叶绿素 a 含量代表季风较强、降雨量较高,反之亦然。湖光岩地区早全新世的季风强盛,6000 a BP 后风季风迅速减弱,较弱的季风一直持续到晚全新世,这种全新世季风演化模式与北半球季风区的很多地质记录以及北纬 30°变化趋势相似,反映了太阳辐射是湖光岩地区千年尺度季风演化的主要驱动因素,但是湖光岩地区的季风演化滞后于太阳辐射变化大约2200 a。湖光岩叶绿素 a 记录显示6000 a BP 左右季风迅速减弱,这与其他记录显示的季风演变模式不同。一方面,太阳辐射变激了湖光岩地区植被—大气圈的负反馈作用可能是造成 6000 a BP 左右气候迅速变干的原因之一;另一方面,沉积速率增加导致的稀释作用放大了叶绿素 a 浓度下降的趋势。3600 a BP 以来的沉积环境可能受到了人类活动的影响。

致谢:感谢中国科学院南京地质与湖泊研究所的张恩栋老师、汪勇老师和袁和忠博士以及南京大学地球科学与工程学院潘华老师、王星辰在野外采样中给予的帮助,感谢南京大学地球科学与工程学院季俊峰教授以及中国科学院南京地质与湖泊研究所的周桂荣老师在实验分析中的指导。

6 参考文献

18. 杨彩福，焦新龙，彭灿．热带辐合带与南海气候．海洋通报，2003，22(6)：83-87.

